SPECMAP Archive # 1: README file NGDC Data Set # 0997 obtained from: U.S. Department of Commerce National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration U.S. National Geophysical Data Center (NGDC) (http://www.ngdc.noaa.gov/mgg/mggd.html) & collocated World Data Center for Marine Geology & Geophysics Data also available from WDC Paleoclimatology _______________________________________________________________________ NOTE: PLEASE CITE ORIGINAL REFERENCE WHEN USING THESE DATA _______________________________________________________________________ CONTRIBUTORS: J. Imbrie, A. Duffy, et al , Brown University NAME OF DATA SET: SPECMAP Archive #1 LAST UPDATE: 2/90 (Original receipt date by WDC-A MGG) GEOGRAPHIC REGION: Global PERIOD OF RECORD: 0-400,000 YBP DATA VOLUME: approximately 1.45 mbytes MGG IDENTIFIER : MGG44995001 LIST OF FILES 101 data files, named specmap.001 - specmap.101, plus README (this file). See listing at end of this README for file contents. RELATED FILES Additional SPECMAP Archives (2-4) are available from the WDC for Paleoclimatology from this ftp server in directory: paleo/paleocean/specmap SUMMARY The SPECMAP Archive No.1 was compiled by Brown University under the direction of A. Duffy and J. Imbrie with the assistance of A.C. Mix and A. Mcintyre, funded by the National Science Foundation. The SPECMAP Archive No.1 Contains climate times series of the past 400,000 years, and basic downcore and core-top data from which these time series were derived for 17 sediment cores from the Atlantic Ocean. Downcore records include (1) quantitative data on planktonic species and assemblages which reflect conditions in the surface waters of the Atlantic ocean; (2) measurements of 0-18, C-13 difference (planktic and benthic), and Cd/Ca. The age model used to transform each downcore record into a time series by correlation of its O-18 record with the published O-18 chronology of Imbrie et al. (1984) is given. Time series with uniformly spaced samples may be calculated by linear interpolation. The Archive No. 1 contains 101 files, including documentation and bibliographic information. ORIGINAL REFERENCES "Oceanic Response to Orbital Forcing in the Late Quaternary: Observational and Experimental Strategies", by J. Imbrie, A. McIntyre, and A. C. Mix. in 'Climate and Geosciences, A Challenge for Science and Society in the 21st Century', A. Berger, S. H. Schneider, and J.-C. Duplessy, eds., D. Reidel Publishing Company. "Surface water response of the equatorial Atlantic Ocean to orbital forcing" McIntyre et al., 1989, Paleoceanography, v. 4, p. 19-55. AVAILABILITY Data are available at no charge via NGDC's Web site. WDC Paleoclimatology Technical Contact: Dr. David Anderson NOAA/NGDC E/GC 325 Broadway Boulder, CO 80305 USA phone: 303-497-6237 fax: 303-497-6513 DOCUMENTATION RECEIVED FROM BROWN UNIVERSITY FILE 1: SUMMARY OF SPECMAP ARCHIVE NO. 1 This archive, prepared as part of the NSF-funded SPECMAP Project, contains climatic time series of the past 400,000 years, as well as basic downcore and core-top data from which these time series are derived. Downcore records include (1) quantitive data on planktonic species and assemblages which reflect conditions in the surface waters of the Atlantic Ocean; (2) estimates of sea-surface temperature derived from these faunal data; and (3) measurements of O-18, C-13 difference (planktic and benthic), and Cd/Ca. The age model used to transform each downcore record into a time series by correlation of its O-18 record with the published O-18 chronology of Imbrie et al. (1984) is given. Time series with uniformly spaced samples may be calculated by linear interpolation. The O-18 chronologies of Imbrie et al. (1984) and Martinson et al. (1987) are given for reference, as well as orbital time series taken from the work of Berger (1978a,b). Also archived are N. G. Kipp's Atlantic core-top foraminiferal data and SST equations FA20 and UW7 derived from them by procedures described in Kipp (1976). FA20 is used to derive SST estimates for cores V25-21, V30-49, V25-59, V25-56, V30-40, RC24-16, V22-174, and RC12-294. Equation UW7, designed for upwelling areas in the southeast Atlantic is used to estimate temperature variations in RC13-228. SST estimates for other cores are based on equations and data referenced on Table 1 in the printed memorandum which accompanies this archive. Data and models archived here are the basis for the paleoclimatic time series analyzed in "Oceanic Response to Orbital Forcing in the Late Quaternary: Observational and Experimental Strategies", by J. Imbrie, A. McIntyre, and A. C. Mix. This paper is scheduled for publication in 1989 in 'Climate and Geosciences, A Challenge for Science snd Society in the 21st Century', A. Berger, S. H. Schneider, and J.-C. Duplessy, eds., D. Reidel Publishing Company. Table 2 gives the parameters of time series analyzed in this paper. Parts of this archive are referenced in "Surface water response of the equatorial Atlantic Ocean to orbital forcing" by McIntyre et al., 1989, Paleoceanography, v. 4, p. 19-55. Many of the data and models in this archive have been generated as part of the SPECMAP project. Other data sources are listed in Table 1 in the printed memo which accompanies this archive. These include unpublished data of T. J. Crowley, J. D. Hays, N. G. Kipp, A. McIntyre, A. C. Mix, W. F. Ruddiman, and N. J. Shackleton. This archive was compiled at Brown University by A. Duffy and J. Imbrie with the assistance of A. C. Mix and A. McIntyre. Financial support came from NSF SPECMAP grants: ATM-8319372 (Brown University), ATM-8318850 (Columbia University) and ATM83-19371-03 (Oregon State University). Archive submitted March 6,1989 This tape contains 101 files. The 16 files of the first group contain oxygen isotope data for 13 cores and three stacked records. File 14 contains Cd/Ca data in addition to O-18. The files are as follows: file 2: O-18 data for core RC12-294 file 3: O-18 data for core RC13-228 file 4: O-18 data for core RC24-16 file 5: O-18 data for core V12-122 file 6: O-18 data for core V22-174 file 7: O-18 data for core V25-21 file 8: O-18 data for core V25-56 file 9: O-18 data for core V25-59 file 10: O-18 data for core V30-40 file 11: O-18 data for core V30-97 file 12: O-18 data for core V30-49 file 13: O-18 data for core RC11-120 file 14: O-18 and Cd/Ca data for core AII107 file 15: Stacked benthic O-18 record vs depth in reference core V19-29 (graphic correlation depth stack) file 16: Stacked planktic O-18 record vs depth in reference core V28-238 (graphic correlation depth stack) file 17: SPECMAP STACK, i.e., SPECMAP time scale developed by Imbrie et al., 1984 based on normalized planktonic records (normalized O-18 vs time). This chronology is the basic control for the age models developed in Imbrie et al., 1989 and McIntyre et al., 1989. The 19 files of the next group give the depth-age relationship for 17 cores and two stacked records. The files are as follows: file 18: Age model for core AII107 file 19: Age model for core K708-1 file 20: Age model for core K708-7 file 21: Age model for core RC12-294 file 22: Age model for core RC13-228 file 23: Age model for core RC24-16 file 24: Age model for core V12-122 file 25: Age model for core V19-30 file 26: Age model for core V22-174 file 27: Age model for core V25-21 file 28: Age model for core V25-56 file 29: Age model for core V25-59 file 30: Age model for core V27-116 file 31: Age model for core V30-40 file 32: Age model for core V30-49 file 33: Age model for core V30-97 file 34: Age model for core RC11-120 file 35: Age model for graphic correlation benthic O-18 stack (Martinson et al., 1987) file 36: Age model for graphic correlation planktic O-18 stack in Prell et al., 1986. The age model here is the Imbrie et al., 1984 age model for V28-238. The next 15 files contain sea surface temperature estimates vs depth in core. The files are as follows: file 37: SST estimates for core K708-1 file 38: SST estimates for core K708-7 file 39: SST estimates for core RC12-294 file 40: SST estimates for core RC13-228 file 41: SST estimates for core RC24-16 file 42: SST estimates for core V12-122 file 43: SST estimates for core V22-174 file 44: SST estimates for core V25-21 file 45: SST estimates for core V25-56 file 46: SST estimates for core V25-59 file 47: SST estimates for core V27-116 file 48: SST estimates for core V30-40 file 49: SST estimates for core V30-49 file 50: SST estimates for core V30-97 file 51: SST estimates for core RC11-120 (Radiolaria) Files 52 - 66 of the next group contain SST estimates interpolated at evenly spaced time intervals. File 67 contains Cd/Ca data from core AII107 at evenly spaced times. The files are as follows: file 52: SST vs time for core K708-1 file 53: SST vs time for core K708-7 file 54: SST vs time for core RC12-294 file 55: SST vs time for core RC13-228 file 56: SST vs time for core RC24-16 file 57: SST vs time for core V12-122 file 58: SST vs time for core V22-174 file 59: SST vs time for core V25-21 file 60: SST vs time for core V25-56 file 61: SST vs time for core V25-59 file 62: SST vs time for core V27-116 file 63: SST vs time for core V30-40 file 64: SST vs time for core V30-49 file 65: SST vs time for core V30-97 file 66: SST vs time for core RC11-120 file 67: Cd/Ca vs time for core AII107 Files 68,69 contain delta del 13-C data for the Curry-Crowley stack and for V19-30 respectively. In both files, the data is given at evenly spaced time intervals. File 70 is a memo describing the format used by CLIMAP in its files of census counts of foraminifera. Files 71,72 contain the counts from the core top samples used in deriving two paleoecological equations. Files 73 - 80 give species abundances vs depth for eight cores. The files are as follows: file 70: Memo on CLIMAP format file 71: core top data used in deriving equation FA20 file 72: core top data used in deriving equation UW7 for upwelling areas. file 73: Planktic foram counts for core RC24-16 file 74: Planktic foram counts for core V25-59 file 75: Planktic foram counts for core V30-40 file 76: Planktic foram counts for core V30-49 file 77: Planktic foram counts for core RC12-294 file 78: Planktic foram counts for core RC13-228 file 79: Planktic foram counts for core V12-122 file 80: Planktic foram counts for core V22-174 Files 81-94 contain estimated varimax factor loadings (b-hat matrices) for 14 cores. The product of b-hat matrix and equation vector gives estimated sea surface temperature vector. Except for core V12-122 and those in upwelling areas, the FA20 equation was used for most cores. For V12-122, FA3 was used. The files are as follows: file 81: B-hat matrix for core K708-1 file 82: B-hat matrix for core K708-7 file 83: B-hat matrix for core RC12-294 file 84: B-hat matrix for core RC13-228 file 85: B-hat matrix for core RC24-16 file 86: B-hat matrix for core V12-122 file 87: B-hat matrix for core V22-174 file 88: B-hat matrix for core V25-21 file 89: B-hat matrix for core V25-56 file 90: B-hat matrix for core V25-59 file 91: B-hat matrix for core V27-116 file 92: B-hat matrix for core V30-97 file 93: B-hat matrix for core V30-49 file 94: B-hat matrix for core V30-40 Files 95 - 97 contain paleoecological equations relating sea surface temperature and varimax factor loadings. The equations come in sets of two, one for the cold season and one for the warm. The files are as follows: file 95: The paleoecological equations for upwelling areas, UW7 file 96: The paleoecological equations FA20 based on Atlantic core top data. file 97: FA3, an earlier version of equation FA20 used in estimating SSTs for V12-122 Files 98-100 contain the factor score matrices (transposed) obtained from factor analysis of core top data. These matrices describe the composition of the varimax assemblages in terms of the faunal species. The product of the normalized data matrix and this matrix gives the b-hat matrix. The files are as follows: file 98: F-matrix used in deriving UW7 file 99: F-matrix used in deriving FA20 file 100: F-matrix used in deriving FA3 file 101: This file contains orbital information. It gives ETP, the sum of normalized eccentricity, obliquity, and (negative) precession index in column 2, long term variations in eccentricity, obliquity, and precession index in columns 3,4,and 5, and eccentricity with its 413ky component notched out in column 6. Column 1 gives time (ka). DETAIL OF FILE DESCRIPTIONS ==> specmap.001 <== FILE 1: SUMMARY OF SPECMAP ARCHIVE NO. 1 This archive, prepared as part of the NSF-funded SPECMAP Project, contains climatic time series of the past 400,000 years, as well as basic downcore and core-top data from which these time series are derived. Downcore records include (1) ==> specmap.002 <== FILE 2: COMPOSITE ISOTOPE DATA FOR RC12294 COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) RC12-294COMP 0. 3.26 RC12-294COMP 9. 3.44 RC12-294COMP 20. 3.26 RC12-294COMP 30. 4.23 RC12-294COMP 40. 3.74 RC12-294COMP 45. 4.72 RC12-294COMP 50. 4.80 RC12-294COMP 65. 4.57 ==> specmap.003 <== FILE 3: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) RC13-228 O18 0.0 3.70 RC13-228 O18 2.5 3.26 RC13-228 O18 7.5 3.22 RC13-228 O18 12.5 3.17 RC13-228 O18 17.5 3.22 RC13-228 O18 22.5 3.22 RC13-228 O18 27.5 3.33 RC13-228 O18 32.5 3.27 ==> specmap.004 <== FILE 4: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) RC24-16 DUT 0.0 -0.21 RC24-16 DUT 3.0 -0.46 RC24-16 DUT 6.0 -0.01 RC24-16 DUT 9.0 -0.41 RC24-16 DUT 12.0 -0.13 RC24-16 DUT 15.0 -0.20 RC24-16 DUT 15.0 -0.07 RC24-16 DUT 18.0 -0.12 ==> specmap.005 <== FILE 5: V12-122 O-18 DATA (SACC) COL 1=DEPTH (CM) COL 2=O-18(O/OO) V12 122 O-18 0.0 -2.19 V12 122 O-18 10.0 -2.16 V12 122 O-18 20.0 -2.08 V12 122 O-18 30.0 -0.99 V12 122 O-18 40.0 -0.35 V12 122 O-18 50.0 -0.07 V12 122 O-18 60.0 -0.01 V12 122 O-18 70.0 -0.07 ==> specmap.006 <== FILE 6: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V22-174 O-18 0.0 -0.92 V22-174 O-18 10.00 -0.74 V22-174 O-18 20.00 -0.59 V22-174 O-18 30.00 -0.14 V22-174 O-18 40.00 0.22 V22-174 O-18 43.00 0.41 V22-174 O-18 47.00 0.53 V22-174 O-18 50.00 0.64 ==> specmap.007 <== FILE 7: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V25-21 O-18 0.0 -1.15 V25-21 O-18 5.0 -1.15 V25-21 O-18 10.0 -0.74 V25-21 O-18 15.0 -0.61 V25-21 O-18 20.0 -0.50 V25-21 O-18 25.0 -0.27 V25-21 O-18 27.5 0.12 V25-21 O-18 30.0 0.15 ==> specmap.008 <== FILE 8: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V25-56 O-18 0.0 -1.82 V25-56 O-18 5.0 -1.80 V25-56 O-18 10.0 -1.73 V25-56 O-18 15.0 -1.82 V25-56 O-18 20.0 -1.65 V25-56 O-18 25.0 -1.44 V25-56 O-18 30.0 -1.49 V25-56 O-18 35.0 -1.12 ==> specmap.009 <== FILE 9: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V25-59 O-18 0.0 2.68 V25-59 O-18 2.5 2.52 V25-59 O-18 5.0 2.41 V25-59 O-18 7.5 2.63 V25-59 O-18 10.0 2.56 V25-59 O-18 15.0 2.78 V25-59 O-18 17.5 2.87 V25-59 O-18 20.0 2.75 ==> specmap.010 <== FILE 10: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V30-40 O-18 0.0 -1.26 V30-40 O-18 3.0 -1.25 V30-40 O-18 6.0 -1.26 V30-40 O-18 9.0 -1.19 V30-40 O-18 12.0 -0.80 V30-40 O-18 15.0 -0.98 V30-40 O-18 18.0 -0.96 V30-40 O-18 21.0 -0.74 ==> specmap.011 <== FILE 11: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V30-97 O-18 0.0 3.22 V30-97 O-18 5.0 3.07 V30-97 O-18 10.0 3.08 V30-97 O-18 15.0 3.05 V30-97 O-18 20.0 3.05 V30-97 O-18 25.0 3.09 V30-97 O-18 30.0 3.13 V30-97 O-18 34.0 3.03 ==> specmap.012 <== FILE 12: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) V30-49C.WUEL 0.0 2.47 V30-49C.WUEL 1.0 2.23 V30-49C.WUEL 4.0 2.28 V30-49C.WUEL 8.0 2.22 V30-49C.WUEL 10.0 2.31 V30-49C.WUEL 12.0 2.44 V30-49C.WUEL 16.0 2.17 V30-49C.WUEL 24.0 2.22 ==> specmap.013 <== FILE 13: COLUMN 1=DEPTH(CM) COLUMN 2=O-18(0/00) RC11-120O-18 5. 1.87 RC11-120O-18 10. 1.96 RC11-120O-18 15. 1.97 RC11-120O-18 20. 1.96 RC11-120O-18 25. 2.16 RC11-120O-18 30. 2.38 RC11-120O-18 35. 2.32 RC11-120O-18 40. 2.60 ==> specmap.014 <== FILE 14: COLUMN 1=DEPTH (CM), COLUMN 2=O-18, COLUMN 3= CD/CA AII107O18CAD 6. 2.76 0.049 AII107O18CAD 10. 2.44 0.088 AII107O18CAD 14. 2.84 0.065 AII107O18CAD 17. 3.06 0.067 AII107O18CAD 20. 3.36 0.065 AII107O18CAD 23. 3.56 0.090 AII107O18CAD 26. 3.82 0.109 AII107O18CAD 29. 3.71 0.101 ==> specmap.015 <== FILE 15: COLUMN 1=DEPTH IN REFERENCE CORE, COLUMN2=STACKED O-18 BENTSTCKO-18 2.6 0.92 BENTSTCKO-18 13.0 0.86 BENTSTCKO-18 13.8 0.86 BENTSTCKO-18 22.3 0.86 BENTSTCKO-18 34.4 0.78 BENTSTCKO-18 44.5 0.82 BENTSTCKO-18 54.7 0.53 BENTSTCKO-18 64.5 0.31 ==> specmap.016 <== FILE 16: COLUMN 1=DEPTH IN REFERENCE CORE, COLUMN=STACKED O-18 GRPHCORRSTCK 0. -1.9073 GRPHCORRSTCK 1. -2.0512 GRPHCORRSTCK 2. -2.0744 GRPHCORRSTCK 3. -2.0704 GRPHCORRSTCK 4. -2.1436 GRPHCORRSTCK 5. -2.1983 GRPHCORRSTCK 6. -2.1977 GRPHCORRSTCK 7. -2.1913 ==> specmap.017 <== FILE 17: COLUMN 1=AGE, COLUMN 2= STACKED O-18 0. -2.088 1. -2.036 2. -1.909 3. -1.764 4. -1.738 5. -1.782 6. -1.445 7. -1.247 ==> specmap.018 <== FILE 18: AGE MODEL FOR AII107 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 17. 11. 26. 17. 29. 28. 35. 53. 54. 65. 66. 80. 69. 87. ==> specmap.019 <== FILE 19: AGE MODEL FOR K708-1 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 59. 9.8 389. 50.8 468. 71.7 560. 88. 858. 126.75 950. 152.4 980. 167.7 ==> specmap.020 <== FILE 20: AGE MODEL FOR K708-7 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 27. 9.8 170. 50.8 215. 71.7 310. 126.75 370. 152.4 400. 167.7 445. 183. ==> specmap.021 <== FILE 21: AGE MODEL FOR RC12-294 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 27.7 12.0 50. 19.0 75.0 28.0 115. 53. 135. 65. 160.87 71. 175. 80. ==> specmap.022 <== FILE 22: AGE MODEL FOR RC13-228 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.000 0.00 37.500 5.40 52.500 8.00 80.000 11.00 100.000 15.00 155.000 19.90 202.500 28.00 220.000 34.50 ==> specmap.023 <== FILE 23: AGE MODEL FOR RC24-16 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 45. 12. 69. 18.78 96. 24. 147. 44.36 216. 65. 231. 70.54 273. 82.69 ==> specmap.024 <== FILE 24: AGEMODEL FOR V12-122 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 27.5 8.95 57.5 18.3 85.0 24.0 100. 28. 110. 37. 120. 50.26 125. 53. ==> specmap.025 <== FILE 25: AGE MODEL FOR V19-30 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 0.3225 6.09 0.6675 9.935 1.16 15.0 2.795 28.0 3.365 40.0 4.1 53.0 4.8 60.4 ==> specmap.026 <== FILE 26: AGE MODEL FOR V22-174 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 26.0 10.7 55.0 14.8 57.0 17.8 80.0 24.0 100.0 28.0 150.0 53.0 175.0 59.0 ==> specmap.027 <== FILE 27: AGEMODEL FOR V25-21 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 26.25 12. 40. 19. 60. 24. 65. 28. 92.5 53. 97.5 57.5 100. 65. ==> specmap.028 <== FILE 28: AGE MODEL FOR V25-56 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 1.5 2.75 27.0 8.45 47.5 11.54 63.5 14.33 70.0 19.0 147.0 24.0 160.0 28.0 ==> specmap.029 <== FILE 29: AGE MODEL FOR V25-59 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 1.5 16.5 6.5 25.0 9.1 35.5 11.0 42.5 14. 55. 19. 92.5 28. 160. 53. ==> specmap.030 <== FILE 30: AGE MODEL FOR V27-116 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 37.0 9.8 179.0 57.5 235.0 71.0 552.0 128.0 590. 152.4 618. 167.7 660.0 186.0 ==> specmap.031 <== FILE 31: AGE MODEL FOR V30-40 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 1.5 12. 6. 33. 12. 58.5 17.8 75. 21.4 91.5 24. 162. 53. 183. 59. ==> specmap.032 <== FILE 32: AGE MODEL FOR V30-49 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.00 0.00 0.00 0.28 1.00 0.28 0.83 2.00 0.83 1.92 3.00 1.92 3.76 4.00 3.76 6.52 5.00 6.52 10.30 6.00 10.30 15.11 7.00 15.11 ==> specmap.033 <== FILE 33: AGE MODEL FOR V30-97 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 62. 11. 120. 20. 190. 28. 235. 37. 295. 46. 345. 58. 385. 69. ==> specmap.034 <== FILE 34: AGE MODEL FOR RC11-120 COLUMN 1=DEPTH(CM) COLUMN 2=AGE(KY) 0.0 0.0 35.0 9.37 55.0 12.74 70.0 17.51 105.0 26.0 185.0 53.0 215.0 59.0 225.0 65.0 ==> specmap.035 <== FILE 35: BENTHIC STACKED O-18 VS TIME, COL 1=AGE, COL 2=STACKED O-18 BNTSTKVSTIM 0.21 0.92 BNTSTKVSTIM 2.32 0.86 BNTSTKVSTIM 2.48 0.86 BNTSTKVSTIM 4.20 0.86 BNTSTKVSTIM 6.27 0.78 BNTSTKVSTIM 7.81 0.82 BNTSTKVSTIM 9.14 0.53 BNTSTKVSTIM 10.31 0.31 ==> specmap.036 <== FILE 36: GRAPHIC CORR STACK VS TIME, COL 1=AGE, COL 2=STACKED O-18 (PLANKTIC) GCORSTCKVST 0.0000 -1.9073 GCORSTCKVST 0.5000 -2.0512 GCORSTCKVST 1.0000 -2.0744 GCORSTCKVST 1.5000 -2.0704 GCORSTCKVST 2.0000 -2.1436 GCORSTCKVST 2.5000 -2.1983 GCORSTCKVST 3.0000 -2.1977 GCORSTCKVST 3.5000 -2.1913 ==> specmap.037 <== FILE 37: COLUMN 1= DEPTH(CM), COLUMN 2= T-WARM COLUMN 3= T-COLD K708-1 SST 0. 17.0154 11.0117 K708-1 SST 10. 17.6736 11.2675 K708-1 SST 20. 18.6400 12.1576 K708-1 SST 30. 17.5964 11.5703 K708-1 SST 40. 16.8579 11.1371 K708-1 SST 45. 17.2946 11.0684 K708-1 SST 50. 16.1309 10.8016 K708-1 SST 55. 14.9407 9.4614 ==> specmap.038 <== FILE 38: COLUMN 1= DEPTH(CM), COLUMN 2= T-WARM COLUMN 3= T-COLD K708-7 SST 0. 16.2249 10.3343 K708-7 SST 10. 16.6042 10.6374 K708-7 SST 18. 15.8544 10.1996 K708-7 SST 20. 14.8100 9.5104 K708-7 SST 23. 15.2219 9.2510 K708-7 SST 28. 12.7063 6.9030 K708-7 SST 30. 12.1470 5.1708 K708-7 SST 35. 11.0725 5.9621 ==> specmap.039 <== FILE 39: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM RC12-294 SST 0. 12.7974 17.6424 RC12-294 SST 5. 12.5918 17.3696 RC12-294 SST 10. 12.0301 16.7985 RC12-294 SST 15. 12.7410 17.8720 RC12-294 SST 20. 12.0405 16.9665 RC12-294 SST 30. 10.5564 15.7330 RC12-294 SST 40. 7.8654 12.5283 RC12-294 SST 45. 8.2669 12.8998 ==> specmap.040 <== FILE 40: COLUMN 1= DEPTH(CM), COLUMN 2= T-WARM COLUMN 3= T-COLD RC13-228 SST 0. 20.0496 15.3836 RC13-228 SST 5. 20.0086 15.6308 RC13-228 SST 10. 19.6898 15.2060 RC13-228 SST 15. 20.1370 15.2483 RC13-228 SST 20. 20.4509 15.7266 RC13-228 SST 25. 20.1118 15.1712 RC13-228 SST 30. 20.2171 15.3875 RC13-228 SST 35. 20.3949 15.6417 ==> specmap.041 <== FILE 41: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM 1 RC 24 16 0 25.92537 27.80431 2 RC 24 16 0 25.79688 28.32263 3 RC 24 16 3 24.00313 26.31715 4 RC 24 16 6 23.73592 25.62122 5 RC 24 16 9 23.90785 25.94228 6 RC 24 16 12 23.86642 26.07262 7 RC 24 16 15 23.79817 26.48178 8 RC 24 16 18 23.59686 25.98972 ==> specmap.042 <== FILE 42: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM V12-122 SST 0. 25.9 27.4 V12-122 SST 10. 26.5 27.7 V12-122 SST 20. 25.0 27.2 V12-122 SST 30. 23.6 26.8 V12-122 SST 40. 23.0 26.1 V12-122 SST 50. 22.7 26.3 V12-122 SST 60. 21.9 26.3 V12-122 SST 70. 23.1 26.6 ==> specmap.043 <== FILE 43: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM V22-174 SST 0. 24.3845 26.5892 V22-174 SST 10. 24.8319 26.7221 V22-174 SST 15. 23.5137 25.7854 V22-174 SST 20. 23.7307 26.2010 V22-174 SST 30. 23.6737 26.5070 V22-174 SST 40. 24.0651 26.2370 V22-174 SST 45. 22.8624 26.3701 V22-174 SST 50. 21.3834 25.0620 ==> specmap.044 <== FILE 44: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM V2521 SST 5. 22.75009 26.94194 V2521 SST 10. 22.27858 26.66188 V2521 SST 15. 21.27681 26.28603 V2521 SST 20. 20.31317 26.83511 V2521 SST 25. 20.58231 26.19200 V2521 SST 27.5 20.73804 26.08391 V2521 SST 30. 19.90706 26.15729 V2521 SST 32.5 20.58600 26.09137 ==> specmap.045 <== FILE 45: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM V25-56 SST 5. 24.4780 27.1614 V25-56 SST 10. 25.0743 27.3095 V25-56 SST 15. 25.0816 27.0220 V25-56 SST 21. 25.2782 26.9944 V25-56 SST 25. 25.0235 26.9622 V25-56 SST 30. 24.2447 26.8892 V25-56 SST 35. 24.5275 26.6754 V25-56 SST 40. 23.9825 26.8691 ==> specmap.046 <== FILE 46: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM 1 V 2559 0 25.53633 27.59869 2 V 2559 2.5 25.38742 27.03079 3 V 2559 5 25.73848 27.42252 4 V 2559 7.5 25.90652 27.52785 5 V 2559 10 25.39424 27.29965 6 V 2559 12.5 25.17577 27.56668 7 V 2559 15 25.28325 27.30742 8 V 2559 17.5 24.91252 26.78419 ==> specmap.047 <== FILE 47: COLUMN 1= DEPTH(CM), COLUMN 2= T-WARM COLUMN 3= T-COLD V27-116 SST 0. 14.5354 9.4821 V27-116 SST 8. 12.8176 8.5767 V27-116 SST 12. 11.1453 7.4360 V27-116 SST 16. 11.8626 7.6859 V27-116 SST 20. 13.6358 8.4986 V27-116 SST 25. 12.5493 7.8239 V27-116 SST 28. 13.1192 7.8636 V27-116 SST 36. 8.0118 2.4544 ==> specmap.048 <== FILE 48: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM 1 V 30 40 0 23.99199 26.93324 2 V 30 40 3 24.24438 26.98865 3 V 30 40 6 24.38788 26.98520 4 V 30 40 9 24.71509 26.71599 5 V 30 40 12 23.65654 26.79686 6 V 30 40 15 23.88797 26.70593 7 V 30 40 18 24.24031 26.10025 8 V 30 40 21 23.80432 26.19186 ==> specmap.049 <== FILE 49: COLUMN 1= DEPTH(CM), COLUMN 2= T-WARM COLUMN 3= T-COLD V30-49 SST 0. 24.9969 17.3540 V30-49 SST 4. 25.9719 17.7839 V30-49 SST 8. 26.5918 18.5723 V30-49 SST 12. 25.1718 19.7962 V30-49 SST 16. 26.8947 18.7530 V30-49 SST 20. 25.5453 16.6726 V30-49 SST 24. 26.4062 17.7050 V30-49 SST 28. 24.2321 16.2666 ==> specmap.050 <== FILE 50: COLUMN 1= DEPTH(CM), COLUMN 2= T-WARM COLUMN 3= T-COLD V30-97 SST 0. 21.6400 14.4820 V30-97 SST 2. 21.6400 14.4820 V30-97 SST 5. 20.8738 14.4935 V30-97 SST 10. 21.4057 14.4058 V30-97 SST 12. 20.4454 14.1858 V30-97 SST 15. 22.1050 14.8617 V30-97 SST 20. 21.6066 14.4633 V30-97 SST 25. 19.4804 13.4090 ==> specmap.051 <== FILE 51: COLUMN 1= DEPTH(CM), COLUMN 2= T-COLD COLUMN 3= T-WARM RC11-120 SST 0. 8.3176 11.2099 RC11-120 SST 2. 8.3176 11.2099 RC11-120 SST 10. 8.5478 11.4972 RC11-120 SST 20. 7.8752 10.5407 RC11-120 SST 30. 9.8476 13.2602 RC11-120 SST 39. 9.2701 12.4881 RC11-120 SST 50. 6.9024 9.1806 RC11-120 SST 60. 5.3291 7.0574 ==> specmap.052 <== FILE 52: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD K708-1 SST 0. 17.0154 11.0117 K708-1 SST 1. 17.4116 11.1657 K708-1 SST 2. 17.8708 11.4491 K708-1 SST 3. 18.4527 11.9850 K708-1 SST 4. 18.2140 11.9179 K708-1 SST 5. 17.5888 11.5659 K708-1 SST 6. 17.1442 11.3051 K708-1 SST 7. 17.0450 11.1077 ==> specmap.053 <== FILE 53: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD K708-7 SST 0. 16.2249 10.3343 K708-7 SST 2. 16.4339 10.5013 K708-7 SST 4. 16.5085 10.5815 K708-7 SST 6. 15.9921 10.2800 K708-7 SST 8. 15.0902 9.3340 K708-7 SST 10. 12.8318 7.0201 K708-7 SST 12. 11.1428 5.9104 K708-7 SST 14. 8.4648 2.7834 ==> specmap.054 <== FILE 54: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM RC12-294 SST 0. 12.7974 17.6424 RC12-294 SST 2. 12.6075 17.3905 RC12-294 SST 4. 12.1162 16.8861 RC12-294 SST 6. 12.5775 17.6251 RC12-294 SST 8. 12.2553 17.2442 RC12-294 SST 10. 11.5520 16.5605 RC12-294 SST 12. 10.8204 15.9525 RC12-294 SST 14. 9.4608 14.4282 ==> specmap.055 <== FILE 55: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD RC13-228 SST 0. 20.0496 15.3836 RC13-228 SST 1. 19.8846 15.4656 RC13-228 SST 2. 20.0376 15.2389 RC13-228 SST 3. 20.3944 15.6340 RC13-228 SST 4. 20.1703 15.2914 RC13-228 SST 5. 20.3850 15.6276 RC13-228 SST 6. 20.1429 15.1540 RC13-228 SST 7. 19.5539 14.5163 ==> specmap.056 <== FILE 56: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD RC24-16 SST 2. 26.8100 24.6100 RC24-16 SST 3. 25.8320 23.7779 RC24-16 SST 4. 26.0470 23.9617 RC24-16 SST 5. 26.4332 23.7301 RC24-16 SST 6. 25.9425 23.7137 RC24-16 SST 7. 25.9750 23.7650 RC24-16 SST 8. 26.4465 23.8240 RC24-16 SST 9. 26.2525 23.4581 ==> specmap.057 <== FILE 57: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM V12-122 SST 0. 25.9000 27.4000 V12-122 SST 5. 25.6955 27.4318 V12-122 SST 10. 23.5479 26.7392 V12-122 SST 15. 22.7926 26.2382 V12-122 SST 20. 22.5842 26.4711 V12-122 SST 25. 21.4110 25.2688 V12-122 SST 30. 22.2778 26.1555 V12-122 SST 35. 22.2222 26.0444 ==> specmap.058 <== FILE 58: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM V22-174 SST 0. 24.3845 26.5892 V22-174 SST 4. 24.8193 26.7184 V22-174 SST 8. 23.7064 26.1544 V22-174 SST 12. 23.8770 26.3667 V22-174 SST 16. 20.7089 24.7487 V22-174 SST 20. 20.0559 24.1003 V22-174 SST 24. 20.9406 24.6991 V22-174 SST 28. 21.6537 25.9207 ==> specmap.059 <== FILE 59: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM V25-21 SST 2. 22.8090 26.9769 V25-21 SST 5. 22.0907 26.5914 V25-21 SST 8. 20.7950 26.5606 V25-21 SST 11. 20.5318 26.3126 V25-21 SST 14. 19.9556 26.1526 V25-21 SST 17. 21.1729 26.1764 V25-21 SST 20. 21.3825 26.0913 V25-21 SST 23. 20.7372 26.1023 ==> specmap.060 <== FILE 60: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM V25-56 SST 3. 24.4780 27.1614 V25-56 SST 4. 24.7275 27.2234 V25-56 SST 5. 25.0766 27.2195 V25-56 SST 6. 25.1157 27.0172 V25-56 SST 7. 25.2623 26.9966 V25-56 SST 8. 25.0243 26.9623 V25-56 SST 9. 24.2814 26.8615 V25-56 SST 10. 24.2786 26.7638 ==> specmap.061 <== FILE 61: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM V25-59 SST 1. 25.5363 27.5987 V25-59 SST 2. 25.4380 27.2239 V25-59 SST 3. 25.7315 27.4146 V25-59 SST 4. 25.7528 27.4594 V25-59 SST 5. 25.2588 27.4652 V25-59 SST 6. 25.2767 27.3230 V25-59 SST 7. 24.9072 26.7752 V25-59 SST 8. 24.8368 26.6180 ==> specmap.062 <== FILE 62: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD V27-116 SST 0. 14.5354 9.4821 V27-116 SST 2. 12.9140 8.6276 V27-116 SST 4. 11.7016 7.6298 V27-116 SST 6. 13.0593 8.1406 V27-116 SST 8. 11.7121 6.3733 V27-116 SST 10. 9.4604 3.6724 V27-116 SST 12. 9.3830 3.7390 V27-116 SST 14. 7.5484 1.9244 ==> specmap.063 <== FILE 63: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM V30-40 SST 2. 24.1042 26.9578 V30-40 SST 3. 24.2922 26.9875 V30-40 SST 4. 24.4606 26.9254 V30-40 SST 5. 24.5975 26.7250 V30-40 SST 6. 23.6565 26.7969 V30-40 SST 7. 23.9467 26.6049 V30-40 SST 8. 24.0950 26.1308 V30-40 SST 9. 23.2257 25.8211 ==> specmap.064 <== FILE 64: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD V30-49 SST 0. 24.9969 17.3540 V30-49 SST 1. 25.2355 17.4592 V30-49 SST 2. 25.4740 17.5644 V30-49 SST 3. 25.7126 17.6696 V30-49 SST 4. 25.9511 17.7747 V30-49 SST 5. 26.4056 18.3355 V30-49 SST 6. 25.6934 19.3466 V30-49 SST 7. 26.5652 18.9525 ==> specmap.065 <== FILE 65: COLUMN 1= TIME (B.P.) COLUMN 2= T-WARM COLUMN3=T-COLD V30-97 SST 0. 21.6400 14.4820 V30-97 SST 1. 20.9415 14.4823 V30-97 SST 2. 20.7946 14.2657 V30-97 SST 3. 21.9147 14.7096 V30-97 SST 4. 20.5242 13.9266 V30-97 SST 5. 20.9709 15.0967 V30-97 SST 6. 21.9705 17.1012 V30-97 SST 7. 17.5120 12.7373 ==> specmap.066 <== FILE 66: COLUMN 1= TIME (B.P.) COLUMN 2= T-COLD COLUMN3=T-WARM RC11-120 SST 0. 8.3176 11.2099 RC11-120 SST 1. 8.3683 11.2732 RC11-120 SST 2. 8.4767 11.4084 RC11-120 SST 3. 8.4610 11.3737 RC11-120 SST 4. 8.2079 11.0138 RC11-120 SST 5. 7.9547 10.6538 RC11-120 SST 6. 8.3842 11.2425 RC11-120 SST 7. 9.1265 12.2659 ==> specmap.067 <== FILE 67: COL 1= TIME(KA), COL 2=CD/CA AII107 CD/CA 0. 0.0490 AII107 CD/CA 4. 0.0508 AII107 CD/CA 8. 0.0744 AII107 CD/CA 12. 0.0660 AII107 CD/CA 16. 0.0995 AII107 CD/CA 20. 0.1068 AII107 CD/CA 24. 0.1039 AII107 CD/CA 28. 0.1010 ==> specmap.068 <== FILE 68: COLUMN 1=AGE,COLUMN 2=O-18, COLUMN 3=DELTA DEL 13-C C - C STACK 0. -0.12 0.06 C - C STACK 1. -0.12 -0.08 C - C STACK 2. -0.10 -0.03 C - C STACK 3. 0.12 0.02 C - C STACK 4. 0.10 -0.02 C - C STACK 5. 0.09 0.09 C - C STACK 6. 0.03 -0.07 C - C STACK 7. -0.01 0.14 ==> specmap.069 <== FILE 69: COLUMN 1=AGE, COLUMN 2=O-18, COLUMN3=DELTA DEL 13-C V193O18DLDLC 0. 3.51 1.46 V193O18DLDLC 1. 3.47 1.38 V193O18DLDLC 2. 3.32 1.36 V193O18DLDLC 3. 3.33 1.57 V193O18DLDLC 4. 3.38 1.63 V193O18DLDLC 5. 3.34 1.64 V193O18DLDLC 6. 3.54 1.56 V193O18DLDLC 7. 3.53 1.44 ==> specmap.070 <== file 70: The files in this group contain the raw data, matrices, and observed temperatures which form the basis for the transfer functions, FA20, used to estimate paleo sea-surface temperatures in the Atlantic. The raw data consist of census counts of planktonic foraminifera from 356 Atlantic core tops. The matrices are the transpose of the F-matrix which defines the varimax factors in terms of the selected species, and the B-matrix, which gives the factor loadings for each core top sample. Present day sea surface temperature observations at the sites of the core tops and the location of each core top are given as well as ==> specmap.071 <== FILE 71: A152 84 44 21 -30 -16 148 402750 495 05 MP 99 A152 84 0 4 0 2 28 30 4 0 2 2 0 0 4 8 61 64F P 1 A152 84 0 0 6 0 10 8 30 15 0 0 0 67 7 10 0 42F P 2 A152 84 0 16 41 0 0 0 0 0 0 37 0 0 0 0 0 20F P 3 A152 84 200 130 A153154 28 00 -38 -47 076 884020 215 05 MP 99 A153154 0 1 2 7 168 175 20 2 2 4 0 0 15 0 5 33F P 1 A153154 0 0 6 1 0 0 2 0 0 0 0 39 18 16 5 0F P 2 A153154 0 2 4 0 0 0 0 0 0 44 0 0 0 0 0 21F P 3 ==> specmap.072 <== FILE 72: A180 39 0 7 0 10 103 113 8 46 21 67 0 0 16 4 8 33F T 1 A180 39 0 3 7 0 0 3 23 5 0 0 7 47 32 5 3 11F T 2 A180 39 0 0 1 0 9 0 0 9 0 34 0 0 0 0 0 18F T 3 V 4 12 0 6 3 1 65 66 3 26 9 35 0 0 9 12 51 96F T 1 V 4 12 0 0 1 1 4 0 15 5 0 0 1 77 18 24 2 19F T 2 V 4 12 0 15 11 0 0 0 0 0 0 41 0 0 0 0 0 3F T 3 V 4 32 0 4 1 4 42 46 8 5 5 10 0 0 5 3 25 59F T 1 V 4 32 0 5 3 1 2 2 12 2 0 0 1 32 4 7 1 17F T 2 V 4 32 0 4 15 0 0 0 0 0 0 22 0 0 0 0 0 20F T 3 ==> specmap.073 <== FILE 73: RC 24 16 0 12 3 45 59 104 0 47 49 96 0 0 12 1 1 2FP 1 RC 24 16 0 0 0 0 0 0 4 28 0 0 16 4 0 0 1 1FP 2 RC 24 16 0 0 2 0 21 7 0 28 0 11 0 0 0 0 0 0FP 3 RC 24 16 0 6 1 51 61 112 0 43 44 87 0 0 13 2 2 1FP 1 RC 24 16 0 0 0 0 0 1 1 32 0 0 21 1 0 1 2 3FP 2 RC 24 16 0 0 0 0 21 6 0 27 0 14 0 0 0 0 0 2FP 3 RC 24 16 3 2 0 39 107 146 2 29 27 56 2 0 8 2 8 1FP 1 RC 24 16 3 0 2 0 0 0 7 27 0 0 20 2 0 0 1 11FP 2 RC 24 16 3 0 1 0 16 7 0 23 0 15 0 0 0 0 0 0FP 3 ==> specmap.074 <== FILE 74: V 2559 0 3 15 147 162 2 88 49 137 1 9 5 8 FP 1 V 2559 0 2 2 7 5 2 2FP 2 V 2559 0 1 35 6 1 42 29 FP 3 V 2559 2.5 7 1 12 109 121 57 23 80 1 7 9 1 FP 1 V 2559 2.5 1 2 7 6 1 4 1FP 2 V 2559 2.5 4 26 6 32 24 1FP 3 V 2559 5 4 22 116 138 1 62 45 107 10 12 3 FP 1 V 2559 5 2 1 10 10 5 2 4FP 2 V 2559 5 1 26 5 31 16 FP 3 ==> specmap.075 <== FILE 75: V 30 40 0 5 14 154 168 2 49 21 70 4 13 9 3FP 1 V 30 40 0 6 2 13 19 2 1 1FP 2 V 30 40 0 2 12 8 20 38 FP 3 V 30 40 3 2 10 113 123 1 46 14 60 13 15 5 4FP 1 V 30 40 3 1 7 5 16 FP 2 V 30 40 3 4 11 3 14 36 FP 3 V 30 40 6 7 1 11 121 132 1 52 31 83 1 9 5 9 7FP 1 V 30 40 6 2 1 5 18 1 1 1FP 2 V 30 40 6 2 24 6 30 38 FP 3 ==> specmap.076 <== FILE 76: V30-49 0 6 0 18 37 55 3 29 6 35 0 0 1 19 34 1FP 1 V30-49 0 1 6 0 0 1 32 24 0 0 0 45 3 1 21 39FP 2 V30-49 0 0 7 0 17 0 0 17 0 11 0 0 0 0 0 0FP 3 V30-49 4 7 0 25 39 64 3 21 5 26 0 0 5 7 26 0FP 1 V30-49 4 2 0 0 0 1 14 46 0 0 1 54 4 0 9 13FP 2 V30-49 4 0 2 0 24 0 0 24 0 10 0 0 0 0 0 1FP 3 V30-49 8 2 0 20 38 58 6 27 12 39 0 0 3 20 41 0FP 1 V30-49 8 2 1 0 0 0 9 39 0 0 0 52 0 2 12 5FP 2 V30-49 8 0 3 0 20 0 0 20 0 10 0 0 0 0 0 0FP 3 ==> specmap.077 <== FILE 77: RC 12294 0 1 4 4 1 86 75 1 RC 12294 0 7 1 30 1 96 22 23 2 RC 12294 0 11 4 10 9 3 RC 12294 5 1 4 4 1 1 104 86 1 RC 12294 5 12 4 37 128 43 27 2 RC 12294 5 8 4 17 6 3 RC 12294 10 1 66 60 1 RC 12294 10 14 4 35 86 30 1 23 2 RC 12294 10 10 3 8 1 9 3 ==> specmap.078 <== FILE 78: RC 13228 0 14 1 1 1 1 1 1 55 6 1 RC 13228 0 1 6 65 37 3 191 2 RC 13228 0 1 2 1 1 7 5 3 RC 13228 5 14 4 4 1 1 2 1 46 3 1 RC 13228 5 6 63 26 1 231 2 RC 13228 5 4 2 2 2 14 5 3 RC 13228 10 10 1 1 2 2 2 1 26 2 1 RC 13228 10 2 4 76 21 4 164 2 RC 13228 10 6 10 3 ==> specmap.079 <== FILE 79: V12-122 0 11 3 267 5 157 4 1 1 2 20 55 28 1 1 1 V12-122 0 0 1 46 6 4 1 2 V12-122 10 9 2 106 1 87 2 1 7 23 16 2 1 V12-122 10 1 16 4 1 3 2 V12-122 20 6 4 110 2 48 4 3 1 2 2 22 13 1 1 V12-122 20 2 2 7 2 2 1 2 V12-122 30 2 1 84 2 22 4 7 1 1 4 9 14 12 2 1 V12-122 30 3 1 1 2 4 2 2 V12-122 40 2 3 130 9 46 3 1 2 1 05 24 28 11 14 1 1 ==> specmap.080 <== FILE 80: V 22174 0 6 5 23 146 169 4 43 31 74 35 4 2 1 1 V 22174 0 2 4 16 9 4 1 2 V 22174 0 20 3 23 1 37 10 3 V 22174 10 4 4 15 130 145 3 52 22 74 1 34 3 3 1 V 22174 10 1 5 15 5 1 1 3 1 2 V 22174 10 1 25 5 30 33 2 3 V 22174 14 7 5 21 157 178 9 36 18 54 41 2 8 1 V 22174 14 4 6 1 16 1 10 5 1 12 2 V 22174 14 3 4 12 2 18 34 19 3 ==> specmap.081 <== FILE 81: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 K708001 0 0.9747 0.0416 0.9789 0.0273 -0.0004 0.0383 -0.1117 2 K708001 10 0.9531 0.0502 0.9536 0.0460 -0.0021 0.0505 -0.1910 3 K708001 20 0.9710 0.0476 0.9626 0.0384 0.0084 0.1753 -0.0988 4 K708001 30 0.9335 0.0782 0.9517 0.0699 -0.0016 0.1081 -0.0705 ==> specmap.082 <== FILE 82: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 K708007 0 0.9803 0.0312 0.9666 0.1392 0.0122 0.1494 0.0570 2 K708 7 5 0.8987 0.0624 0.8158 0.4490 -0.0125 -0.1629 -0.0309 3 K708007 10 0.9912 0.0247 0.9780 0.1102 0.0087 0.1475 0.0119 4 K708007 18 0.9745 0.0396 0.9650 0.1758 0.0048 0.1006 0.0231 ==> specmap.083 <== FILE 83: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 RC 12294 0 0.9597 0.0395 0.7826 0.0396 -0.0013 0.4326 0.3961 2 RC 12294 5 0.9647 0.0383 0.7999 0.0551 0.0027 0.4202 0.3791 3 RC 12294 10 0.9513 0.0144 0.8056 0.0661 -0.0056 0.4427 0.3189 4 RC 12294 15 0.9405 0.0400 0.7458 0.0354 -0.0084 0.5163 0.3387 ==> specmap.084 <== FILE 84: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 RC 13228 0 0.9924 0.2666 -0.5446 0.0612 -0.0490 0.0988 -0.7781 0.0579 2 RC 13228 5 0.9870 0.2020 -0.5101 0.0708 0.0098 0.0964 -0.8191 0.0279 3 RC 13228 10 0.9913 0.2546 -0.5654 0.0559 0.1014 0.1223 -0.7603 0.0219 4 RC 13228 15 0.9935 0.3404 -0.5756 0.0721 0.0048 0.1400 -0.7200 0.0548 ==> specmap.085 <== FILE 85: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 RC 24 16 0 0.8412 0.6666 0.0045 0.0164 0.6228 0.0403 -0.0841 2 RC 24 16 0 0.8503 0.6814 -0.0172 0.0239 0.6146 0.0494 -0.0704 3 RC 24 16 3 0.9473 0.8910 0.0253 0.0233 0.3697 0.1123 -0.0542 4 RC 24 16 6 0.9578 0.8926 0.0473 0.0176 0.3752 0.1182 -0.0613 ==> specmap.086 <== FILE 86: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 6 = FACTORS 1 V12-122 0 0.9794 0.9724 0.0477 0.0491 0.1704 2 V12-122 10 0.9440 0.9305 0.0437 0.0565 0.2702 3 V12-122 20 0.9836 0.9863 0.0499 0.0639 0.0652 4 V12-122 30 0.9806 0.9822 0.0847 0.0866 -0.0335 5 V12-122 40 0.9777 0.9768 0.1470 0.0429 0.0131 6 V12-122 50 0.9755 0.9756 0.1318 0.0293 -0.0745 7 V12-122 60 0.9565 0.9568 0.1399 0.0528 -0.1365 8 V12-122 70 0.9776 0.9788 0.1054 0.0713 -0.0570 ==> specmap.087 <== FILE 87: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 V 22174 0 0.9819 0.9532 0.0079 0.0180 0.2617 0.0603 -0.0298 2 V 22174 10 0.9788 0.9375 -0.0030 0.0165 0.3103 0.0496 -0.0299 3 V 22174 14 0.9762 0.9706 0.0214 0.0155 0.1656 0.0686 -0.0353 4 V 22174 15 0.9630 0.9047 0.0502 0.0183 0.3554 0.1188 -0.0340 ==> specmap.088 <== FILE 88: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS V25-21 TW 5. 0.9293 0.9563 0.0460 0.0214 -0.1078 0.0049 0.0243 V25-21 TW 10. 0.9530 0.9559 0.1127 0.0185 -0.1186 -0.0582 0.0938 V25-21 TW 15. 0.9512 0.9566 0.1012 0.0161 -0.1111 -0.0726 0.0895 V25-21 TW 20. 0.9411 0.9549 0.1237 0.0139 -0.1034 -0.0304 0.0471 ==> specmap.089 <== FILE 89: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 V 25 56 5 0.9845 0.9820 -0.0087 0.0198 0.1347 0.0291 -0.0256 2 V 25 56 10 0.9736 0.9573 -0.0099 0.0208 0.2352 0.0134 -0.0331 3 V 25 56 15 0.9768 0.9462 -0.0212 0.0177 0.2778 0.0481 -0.0342 4 V 25 56 21 0.9692 0.9306 -0.0245 0.0175 0.3128 0.0511 -0.0430 ==> specmap.090 <== FILE 90: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 V 2559 0 0.9140 0.8606 -0.0266 0.0212 0.4080 0.0640 -0.0404 2 V 2559 2.5 0.9614 0.9027 -0.0199 0.0185 0.3764 0.0456 -0.0440 3 V 2559 5 0.9248 0.8607 -0.0208 0.0208 0.4222 0.0384 -0.0584 4 V 2559 7.5 0.9166 0.8743 -0.0303 0.0183 0.3824 0.0439 -0.0533 ==> specmap.091 <== FILE 91: 1 V 27116 0 0.9423 0.0008 0.9071 0.0415 0.0192 0.1416 0.3118 2 V 27116 8 0.9905 0.0246 0.9394 0.0839 0.0076 0.0278 0.3154 3 V 27116 12 0.9797 0.0328 0.8483 0.1717 0.0044 -0.0114 0.4789 4 V 27116 16 0.9970 0.0307 0.9126 0.2897 0.0004 -0.0247 0.2803 5 V 27116 20 0.9868 0.0147 0.9606 0.2020 0.0071 0.0353 ==> specmap.092 <== FILE 92: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 V 30 97 2 0.8749 0.3409 0.6051 0.0407 -0.0320 0.5657 0.2643 2 V 30 97 5 0.8371 0.4096 0.6338 0.0797 -0.0524 0.4913 0.1310 3 V 30 97 10 0.8251 0.4003 0.5651 0.0738 -0.0529 0.5439 0.2038 4 V 30 97 12 0.9671 0.4067 0.6985 0.0528 -0.0252 0.4583 0.3167 ==> specmap.093 <== FILE 93: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 0 0.8636 0.4458 0.5122 0.0421 0.3373 -0.5189 -0.1330 2 4 0.8545 0.4723 0.5562 0.0425 0.5012 -0.2624 -0.0158 3 8 0.8143 0.4673 0.5095 0.0438 0.4788 -0.2969 0.1303 4 12 0.8653 0.7830 0.3439 0.0342 0.2939 -0.2133 0.0303 5 16 0.8195 0.5723 0.4044 0.0556 0.4241 -0.3531 0.1444 6 20 0.8378 0.3660 0.5195 0.0621 0.3282 -0.5677 -0.0110 7 24 0.7016 0.3164 0.5595 0.0487 0.3600 -0.3819 0.1027 8 28 0.8357 0.1876 0.7741 0.0436 0.2401 -0.3757 0.0255 ==> specmap.094 <== FILE 94: AFTER COREID,COL 1=DEPTH,COL 2=COMMUNALITY, COLS 3 - 8 = FACTORS 1 V 30 40 0 0.9808 0.9597 -0.0043 0.0199 0.2256 0.0914 0.0029 2 V 30 40 3 0.9673 0.9507 -0.0106 0.0163 0.2330 0.0942 0.0031 3 V 30 40 6 0.9625 0.9134 -0.0084 0.0180 0.3424 0.1027 0.0099 4 V 30 40 9 0.9829 0.9370 -0.0085 0.0165 0.3160 0.0653 -0.0215 ==> specmap.095 <== FILE 95: TRANSFER FUNCTIONS F20 FOR UPWELLING AREAS SUMMER SURFACE TEMPERATURES 7 9.63279 3 THREE 11.27509 1 ONE 7.31493 6 SIX -9.67325 7 SEVEN 3.56606 5 FIVE -1.34627 4 FOUR 0.74637 ==> specmap.096 <== FILE 96: TRANSFER FUNCTIONS F20 WINTER SURFACE TEMPERATURES 24 THREE -41.75287 26 FIVE -15.89519 23 TWO -4.18723 5 FIVE-SQ 2.43739 9 1-4 -11.06123 6 SIX-SQ 1.67177 14 2-5 13.18859 ==> specmap.097 <== FILE 97: TRANSFER FUNCTIONS F3 SUMMER SURFACE TEMPERATURE 14 5.145 11 ONE 34.802 8 2-3 -1.804 2 TWO-SQ 10.969 13 THREE 18.320 5 1-2 -11.435 4 FOUR-SQ 7.959 ==> specmap.098 <== FILE 98: TRANSPOSE OF F-MATRIX FOR UPWELLING TRANSFER FUNCTION F20 1 O.UNIVE 0.0684 -0.0395 0.0308 0.0783 0.0308 0.0568 -0.0282 2 G.CGLOB 0.0006 0.0013 0.0036 0.0008 0.0015 0.0013 0.0061 3 G.RUB P -0.0036 0.0085 0.0710 -0.0187 -0.0103 -0.0286 -0.0466 4 G.RUB W -0.0825 0.0677 0.8561 -0.0028 0.0380 -0.0169 -0.0989 ==> specmap.099 <== FILE 99: TRANSPOSE OF F-MATRIX FOR TRANSFER FUNCTION F20 1 O.UNIVE 0.0187 0.0319 -0.0012 0.0356 0.0103 -0.0520 2 G.CGLOB 0.0227 0.0071 0.0014 0.0130 -0.0077 0.0026 3 G.RUB P 0.1015 -0.0372 0.0034 0.0759 0.0203 -0.0603 4 G.RUB W 0.9295 0.0192 0.0227 -0.1384 -0.0273 -0.0019 5 G.TENEL 0.0443 0.0093 -0.0011 -0.0331 -0.0015 0.0100 6 G.SAC T 0.2509 -0.0609 0.0095 0.5342 0.0129 -0.1056 7 S.DEHIS -0.0031 0.0036 0.0001 0.0386 -0.0054 0.0072 8 G.AEQUI 0.0960 0.0111 -0.0011 0.0310 -0.0007 0.0106 ==> specmap.100 <== FILE 100: TRANSPOSE OF F-MATRIX FOR TRANSFER FUNCTION F3 1 O.UNIVE 0.0208 0.0207 -0.0023 0.0009 0.0121 2 G.CGLOB 0.0240 0.0068 0.0012 -0.0071 0.0080 3 G.RUBER 0.9231 0.0549 0.0078 -0.0506 -0.2351 4 G.TENEL 0.0265 0.0066 -0.0015 0.0014 -0.0514 5 G.SACCU 0.3110 0.0122 -0.0020 0.0342 0.6680 6 G.RUBES 0.0196 -0.0033 -0.0002 0.0034 -0.0073 8 G.PAC L 0.0029 -0.0102 0.9977 0.0241 0.0043 9 G.PAC R -0.0195 0.1085 -0.0233 0.7681 0.1753 ==> specmap.101 <== TIME SERIES OF LONG TERM VARIATIONS IN ORBITAL PARAMETERS COL 1=TIME(KY B.P.), COL 2= ETP(SUM OF NORMALIZED ECC,TILT,-PREC INDEX), COL 3=ECCENTRICITY,COL 4=TILT, COL 5=CHANGE IN PRECESSION INDEX FROM THE PRESENT VALUE OF 0.01636, ECCENTRICITY WITH 413K COMPONENT NOTCHED OUT 0. -1.500900 0.016724 23.439972 0.000000 0.004178 1. -1.300400 0.017103 23.569977 0.000690 0.038810 2. -1.032000 0.017483 23.698990 -0.000150 0.070741 3. -0.710500 0.017810 23.820984 -0.002490 0.099972 4. -0.344700 0.018138 23.932999 -0.006150 0.126404 5. 0.040400 0.018410 24.030991 -0.010810 0.149846