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Predictive Thresholds for Plague in Kazakhstan
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Abstract 

In Kazakhstan and elsewhere in central Asia, the bacterium Yersinia pestis circulates in natural populations of gerbils, which are the source of human cases of bubonic plague. Our analysis of field data collected between 1955 and 1996 shows that plague invades, fades out, and reinvades in response to fluctuations in the abundance of its main reservoir host, the great gerbil (Rhombomys opimus). This is a rare empirical example of the two types of abundance thresholds for infectious disease-invasion and persistence-operating in a single wildlife population. We parameterized predictive models that should reduce the costs of plague surveillance in central Asia and thereby encourage its continuance.
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