STP Toolbox for Matlab*

Hongsheng Qi, Daizhan Cheng

Institute of Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R.China

E-mail: gihongsh@amss.ac.cn), dcheng@iss.ac.cn

1 Introduction

The STP toolbox is developed for calculating the semi-tensor product (STP) of (logical) matrices and its
application to the analysis and control of Boolean networks.

The semi-tensor product of matrices is defined as follows [T} 2]

Definition 1.1 1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X', -+, XP, which are 1 x n rows. Define the STP, denoted

by X, as
p .
XxY=> X'y, € R",

=1,) (1)
YT x XT = 3 y:(X)T € R™

i=1

2. Let A € Myxn and B € Myy,. If either n is a factor of p, say nt = p and denote it as A <; B,
or p is a factor of n, say n = pt and denote it as A = B, then we define the STP of A and B , denoted
by C = A x B, as the following: C consists of m x q blocks as C = (CY) and each block is

Cij:AixBjﬁ i=1,---,m, j=1,---,gq,
where A is i-th row of A and B; is the j-th column of B.

We use some simple numerical examples to describe it.

1

Example 1.2 1. Let X = {1 2 3 —1} and Y = . Then

Xxwy=[1 2 -1+[3 —1]-2=]7 o].

2. Let
1211 o
A=1|2 3 1 2|, B=]
2 1
32 10
Then ~ _
1 9
(1211) (1211)
2 1
:) 3 4 -3 -5
Ax B = (2312)2 (2312) =] 7 5 -8
5 2 -7 —4
1
2

*Supported partly by NNSF 60674022, 60736022, and 60221301 of China.

mailto:qihongsh@amss.ac.cn
mailto:dcheng@iss.ac.cn

Definition 1.3 1. Ann X p matriz, A, is called a logical matriz if

A= [oir gz ... o], (2)
where 8% is the i-th column of the identity matriz I, .
2. The condense form of a logical matriz (as A in) is denoted as
A = 6,[i1, 12, ,ip). (3)

Remark 1.4 According to , an n X p logical matriz is described by a vector of dimension p and a

parameter n. In the toolbox structure “Im” is used to express a logical matrix as

Im.n =n,
o . (4)
Im.v = i1, i, -, ip].
Example 1.5 Consider

10 00
Ao 0 01 0

01 00

0 0 01

It is a logical matriz and it can be expressed in condensed form as

A =64]1,3,2,4].
Ezxpressing A in “lm” structure, we have

An =4,

Av=1[1324].

a

Definition 1.6 The swap matriz Wi, ,, is an mn X mn matriz constructed in the following way: label
its columns by (11,12,--- ;1n,--- ,ml,m2,--- ,mn) and its rows by (11,21,--- ;m1,--- ,1n,2n,--- ,mn).

Then its element in the position ((I,J),(i,7)) is assigned as

1, I=¢andJ =
I1,J ’)
WLy, (i) = 05)f = (5)
{.03) " 0, otherwise.

Remark 1.7 Let X €¢ R™ and Y € R" be two columns. Then
Wimn X X XY =Y x X, (6)
Example 1.8 Let m =2 and n = 3, the swap matriz Wi 31 is constructed as

(11) (12) (13) (21) (22) (23)

Wiag =

o = O O O O
S O = O O O
_ o O O O O

S O O O O
S O O = O O
S O O O = O

In condensed form we have
Wins) = 6[1,3,5,2,4,6].

Definition 1.9 Let A be an m X n matriz, m = pg, n = rs. FExpress A in blocks as

A A - Ay
Agr Ay --- Agg

A= | . ; (7)
Ap Ag - Ag

where A; j are p x r matrices. then the block transpose AT@) s defined as

2

All A21 to Aql
A12 A22 ce Aq2

A= . , (8)
Als AQs o Aqs

Functions

This section provides detailed description for the functions in this package.

2.1

1.

Fundamental Calculations
C= Sp(A7 B)
Description: The function performs the semi-tensor product of two matrices A and B.

Argument(s): Two matrices A and B, and the column number of A must be the factor or multiple

of the row number of B.

Return Value: C = A x B.

. C =spl(A, B)

Description: The function performs the semi-tensor product of two matrices A and B.

Argument(s): Two matrices A and B, and the column number of a must be the factor or multiple
of the row number of b.

Return Value: C = A x B.

Note that this function is the same as the function C' = sp(A, B). The difference is inside. In
program this function uses the original definition, while C' = sp(A, B) uses the Kronecker product

according to some properties.

. C = spn(Al,A2,~-~ ,An)

Description: The function performs the semi-tensor product of finite set of matrices Ay, -, A,.
Argument(s): Finite matrices Ay,--- , A, which are of proper dimension.

Return Value: C = x}_, 4;.

. B=0bt(A,p,r)

Description: The function performs the block transpose of A (refer to Definition for the
definition).

Argument(s): A is the matrix to be transposed; the size of fixed blocks is p x r (refer to Definition

for the concept.)

Return Value: B = AT®7),

5.

6.

7.

8.

10.

W = wij(m,n)

Description: This function produces an mn X mn swap matrix (refer to Definition for the
definition).

Argument(s): Two positive integers m and n. n is optional, default n is m.
Return Value: Matrix W of dimension mn x mn.

v = vc(A)

Description: The function converts a matrix to its column stacking form.
Argument(s): Matrix A = (a;j)mxn-

Return Value: v =[ay1 - Gm1 - Gin -+ Gmn) T

v =uvr(A)

Description: The function converts a matrix to its row stacking form.

Argument(s): Matrix A = (a;j)mxn-

Return Value: v =[ay; - G1p * Gmi -+ Gmn) T
A = invvc(z, m)
Description: Let © = (21,2, -+ ,2;,). This function reshapes x into a matrix A with row number
m as

1 Tm+1 e xp—m-l—l

T2 xm+2 e xp—m+2

A =
Tm T2m s Tp

If p is not a multiple of m, we add at the end of x a least number of zeros such that the length of

x becomes a multiple of m.

Argument(s): x is a vector; m is the row number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Return Value: Matrix A with row number m.

. A =invor(z,n)

Description: Let © = (21,22, -+ ,zp,). This function reshapes = into a matrix A with column
number n as
:I/‘l .’1’;2 DY :I:n
Tn41 Tn4-2 o T2n
A fr—
Tp—n+1 Tp—n+2 ~°° Tp

If p is not a multiple of n, we add at the end of x a least number of zeros such that the length of x

becomes a multiple of n.

Argument(s): z is a vector; m is the column number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Return Value: Matrix A with column number m.

v = dec2any(a, k,len)

Description: The function converts a decimal number a into a k-based number as

a=ask®+as_ 1k 1+ +ark+ag, as>0.

(Say, k = 2, the result is a binary number. In fact we define v = dec2bin(a,len) for binary case.)

Argument(s): a is a positive integer; k is optional, and k > 2. Default k is 2. Default len is 0, it
means ag # 0, but if len > 0 and len > s+ 1, len — s — 1 zeros should be added at the beginning
of returned value.

Return Value: v = [as as—1 -+ a1 ag).
11. M = stp(A)

Description: stp class constructor.

Argument(s): Matrix A.

Return Value: stp object M.

2.2 Calculation for Logical Matrices
In this subsection we will introduce the functions for logical matrices or 1m structure.
1. M =Im(A) or M =lIm(v,n)
Description: 1m class constructor.

Argument(s): i) Logical matrix A; ii) vector v = [v; va --- vp] and positive integer n satisfying
v; <n, 1 <i<p. (Casei, refer to Deﬁniation and Example Case ii, Im.n =n, lm.v = v.)

Return Value: 1m object M.
2. C=1Isp(A,B)
Description: The function performs the semi-tensor product of logcial matrices A and B.

Argument(s): A, B are 1m objects. (refer to Definition and Remark for the structure.)
Return Value: C' = A x B is an 1m object.

3. C= lspn(AhAQv e 7A7L)

Description: The function performs the semi-tensor product of logical matrices Ay, Aa,--- , A,.
Argument(s): A4, -+, A, are 1m objects. (refer to Definition and Remark for the struc-
ture.)

Return Value: C = x}_; A, is an 1m object.

4. M = leye(n)
Description: The function produces an n x n identity matrix.
Argument(s): Positive integer n.

Return Value: 1m object M.

5. M =Imn(k)
Description: The function produces the structure matrix of negation for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

6. M =lmc(k)
Description: The function produces the structure matrix of conjunction for k-valued logic (k > 2).

Argument(s): k is optional, default & is 2.
Return Value: 1m object M.

10.

11.

12.

13.

14.

M =lmd(k)

Description: The function produces the structure matrix of disjunction for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.

Return Value: 1m object M.

. M = Imi(k)

Description: The function produces the structure matrix of implication for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

. M =lme(k)

Description: The function produces the structure matrix of equivalance for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

M = lmr(k)

Description: The function produces the power-reducing matrix for k-valued logic (k > 2).
Argument(s): k is optional, default & is 2.

Return Value: 1m object M.

M = Imu(k)

Description: The function produces the dummy matrix for k-valued logic (k > 2). The dummy

matrix M satisfies the following property

MXY =Y, VX.,Y € Dy

Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

M = lmrand(m,n)
Description: The function produces an m x n logical matrix randomly.
Argument(s): Positive integers m and n. n is optional, default n is m.

Return Value: 1m object M.

M = lwij(m,n)
Description: The function produces an mn X nn swap matrix.
Argument(s): Positive integers m and n. n is optional, default n is m.

Return Value: 1m object M.

M = randlm(m,n)

Description: Alias function of Imrand.

3 Examples

1 |% This example is to show how to perform semi—tensor product

slx=[1 23 —1];
ly =12 11

5 |rl = sp(x,y)

6 |% r1l = [5, 3]

s|x = [2 1];

oly = [1 23 —1]%
10 |r2 = sp(x,y)

11 |% r2 = [5; 3]

12
13lx =121 1;
14 231 2
15 321 0];
6|y = [1 =2
17 2 —1];

18 |13 = sp(x,y)

19 |rd4d = spl(x,y)

20 |% r3 = r4 = [3,4,-3,—-5;4,7,—5,—8;5,2,—7,—4]
21
22 |15 = sp(sp(x,y),y)

23 |16 = spn(x,y,y)

24 |% r5 = r6 = [-3,-6,-3,-3;-6,-9,—-3,—-6;—9,—6,—3,0]

1 |% This example is to show the usage of stp class.

2 |% Many useful methods are overloaded for stp class, thus you can use stp object as

double.
3
4|x =[1 21 1;
5 231 2;
6 321 0];
|y = [1 =2
8 2 —1];
9

10 |% Covert x and y to stp class

11 |a = stp(x);
12 |b = stp(y);
13

14 |% mtimes method is overloaded by semi—tensor product for stp class
15 | c0 = spn(x,y,y)

16 | ¢ = axbxb, class(c)

17
18 |% Convert an stp object to double
19 | ¢l = double(c), class(cl)

20
21 |% size method for stp class
22 | size(c)

23
24 |% length method for stp class
25 | length (c)

26
27 |% subsref method for stp class
28 [c(1,:)

29

30 |% subsasgn method for stp class

w
ot

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

c(1,1) =3

% This example is to show the usage of lm class.

% Many methods are overloaded for lm class.

% Consider classical (2—valued) logic here
k = 2;

T =Ilm(1,k); % True
= Im(k,k); % False

o
I

% Given a logical matrix, and convert it to lm class

A=1[100 0;
011 1]
M = Im(A)

% or we can use
%M=1m([1 2 2 2], 2)

% Use m—function to perform semi—tensor product for logical matrices
rl = lspn (M, T,F)

% Use overloaded mtimes method for lm class to perform semi—tensor product
r2 = M«TxF

% Create an 4—by—4 logical matrix randomly
M1l = lmrand (4)
% M1 = randlm (4)

% Convert an Im object to double
double (M1)

% size method for Im class
size (M1)

% diag method for Im class
diag (M1)

% Identity matrix is a special type of logical matrix
13 = leye(3)

% plus method is overloaded by Kronecher product for Ilm class

r3 = Ml + I3

% Alternative way to perform Kronecher product of two logical matrices
r4 = kron(M1,13)

% Create an lm object by assignment
M2 = Im;

M2.n = 2;

M2v = [1 1 2 2];

M2

% This example is to show how to use vector form of logic to solve the following
question :

% A said B is a liar, B said C is a liar, and C said A and B are both liars. Who is
the liar?

% Set A: A is honest, B: B is honest, C: C is honest

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

k = 2; % Two—valued logic

MC = Imc(k); % structure matrix for conjunction
ME = lme(k); % structure matrix for equivalance
MN = Imn(k); % structure matrix for negation
MR = Ilmr(k); % power—reducing matrix

% The logical expression can be written as
logic_expr = ’(A=!B)&(B=!C)&(C=(!A&!B)) ’;

% where = is equivalance, & is conjunction, and ! is negation

% convert the logic expresson to its matrix form

matrix_expr = lmparser(logic_expr);

% then obtain its canonical matrix form
expr = stdform (matrix_expr);

% calculate the structure matrix
L = eval (expr)

% The uniqe solution for Lxx=[1 0]"T is x=[0 0 0 0 0 1 0 0] "T:=8[6]
sol = v2s(lm(6,8))

% One can see sol=[0 1 0], which means only B is honest, A and C are liars.

% Examples for Boolean network

% Initializing
k = 2;

options = [];

% Please note that in this toolbox any variable intialized with capital M is
as a logical matrix, otherwise it will be considered as logical vector.

% The followings are some commonly used logical matrices

ME = lme(k); % equivalence

MI = Imi(k); % implicaiton

MD = Imd(k); % disjunction

MN = Imn(k); % negation

MR = Ilmr(k); % power—reducing matrix

MC = Imc(k); % conjunction

MX=Im([2 1 1 2], 2); % xor

% choose a number from 1-5 to select a Boolean network
n = 3;

switch n
case 1
% Dynamics of Boolean network
% A(t+1) = MCxB(t)*C(t)
% B(t+1) = MN+A(t)
% C(t+1) = MD«B(t)=*C(t)
% Set X(t)=A(t)B(t)C(t), then
eqn = MCB CMN AMD B C’;
case 2
% Dynamics of Boolean network
% A(t+1) = MC«B(t)*C(t)
% B(t+1) = MN«A(t)
% C(t+1) = B(t)
eqn = 'MC B C MN A B’;
case 3

% Dynamics of Boolean network

defined

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

T4

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

E(t+1) = MX«E(t)*I(t)
H(t+1) = MX«F(t)*H(t)
F(t+1) = MX«F(t)*J(t)
I(t+1) = MX«G(t)*I(t)
G(t+1) = MX+G(t)«MXxF(t)«H(t)
% J(t+1) = MX«MX«E(t)*I(t)*J(t)
% Set X(t)=E(t)H(t)F(t)I(t)G(t)J(t), then

if k % 2
error ('This example is only for the case k=2.7);
end
eqgn = MXE I MXFHMXF JMXGIMKXGMXFHMKMXE I J ’;

)

% set the variables’ order, otherwise they will be sorted in the dictionary
order
options = lmset(’vars’ ,{’E’,’H’,’F’,’1’,°G’,’J’});
case 4
% Dynamics of Boolean network
% A(t+1) = MN«MI«K(t)«H(t)
% B(t+1) = MN«MI*A(t)*C(t)

% C(t+1) = MI«sD(t)*I(t)

% D(t+1) = MCxJ (t)*K(t)

% E(t+1) = MIxC(t)*F(t)

% F(t+1) = MN«MI«E(t)«G(t)
% G(t+1) = MN«MCxB(t)*E(t)
% H(t+1) = MN«MI*F(t)*G(t)
% I(t+1) = MN«MI«H(t)=*I(t)
% J(t+1) = J(t)

% K(t+1) = K(t)

% Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t)J(t)K(t), then
eqgn = MNMIKHMN MIACMIDIMCJ KM CFMNMI EGDNMNMCB EMNMI F G
MNMIHTIJK’;
case 5
% Dynamics of Boolean network
% A(t+1) = MN«MD«C(t)*F(t)

% B(t+1) = A(t)

% C(t+1) = B(t)

% D(t+1) = MC+MC« VN I (t) *MN«C(t) «VN«F (t)
% E(t+1) = D(t)

% F(t+1) = E(t)

% G(t+1) = MN«MD«F (t)*1(t)

% H(t+1) = G(t)

% I(t+1) = H(t)

% Set X(£)=A(t)B(t)C(£)D(t)E(t)F(t)G(t)H(t)I(t), then
eqn = MNMDCF ABMCMCMNI MNCMNFDEMINMDF I GH’;
otherwise
return
end

% Convert the equation to a canonical form
[expr,vars] = stdform (eqn,options ,k);

% Calculate the network transition matrix
L = eval (expr)

% Analyze the dynamics of the Boolean network
[n,1,¢,10,T] = bn(L,k);

fprintf(’Number of attractors: %d\n\n’,n);
fprintf(’Lengths of attractors:\n’);

disp (1);

fprintf(’\nAll attractors are displayed as follows:\n\n’);
for i=1l:length(c)

10

95 fprintf(’No. %d (length %d)\n\n’,i,1(i));

96 disp (c{i});

o7 | end

98 | fprintf(’Transient time: [r0, T] = [%d %d]\n\n’,r0,T);

References

[1] D. Cheng, H. Qi, Semi-tensor Product of Matrices — Theory and Applications, Science Press, Beijing,
2007. (In Chinese)

[2] D. Cheng, Sime-tensor product of matrices and its applications — A survey, Proc. ICCM’07, Higher
Edu. Press, Hangzhou, 641-668, 2007.

11

	Introduction
	Functions
	Fundamental Calculations
	Calculation for Logical Matrices

	Examples

