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1 Introduction

The STP toolbox is developed for calculating the semi-tensor product (STP) of (logical) matrices and its
application to the analysis and control of Boolean networks.

The semi-tensor product of matrices is defined as follows [T} 2]

Definition 1.1 1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X', -+, XP, which are 1 x n rows. Define the STP, denoted

by X, as
p .
XxY=> X'y, € R",

=1, ) (1)
YT x XT = 3 y:(X)T € R™

i=1

2. Let A € Myxn and B € Myy,. If either n is a factor of p, say nt = p and denote it as A <; B,
or p is a factor of n, say n = pt and denote it as A = B, then we define the STP of A and B , denoted
by C = A x B, as the following: C consists of m x q blocks as C = (CY) and each block is

Cij:AixBjﬁ i=1,---,m, j=1,---,gq,
where A is i-th row of A and B; is the j-th column of B.

We use some simple numerical examples to describe it.

1

Example 1.2 1. Let X = {1 2 3 —1} and Y = . Then

Xxwy=[1 2 -1+[3 —1]-2=]7 o].

2. Let
1211 o
A=1|2 3 1 2|, B= ]
2 1
32 10
Then ~ _
1 9
(1211) (1211)
2 1
: ) 3 4 -3 -5
Ax B = (2312)2 (2312) =] 7 5 -8
5 2 -7 —4
1
2
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Definition 1.3 1. Ann X p matriz, A, is called a logical matriz if

A= [oir gz ... o], (2)
where 8% is the i-th column of the identity matriz I, .
2. The condense form of a logical matriz (as A in ) is denoted as
A = 6,[i1, 12, ,ip). (3)

Remark 1.4 According to , an n X p logical matriz is described by a vector of dimension p and a

parameter n. In the toolbox structure “Im” is used to express a logical matrix as

Im.n =n,
o . (4)
Im.v = i1, i, -, ip].
Example 1.5 Consider

10 00
Ao 0 01 0

01 00

0 0 01

It is a logical matriz and it can be expressed in condensed form as

A =64]1,3,2,4].
Ezxpressing A in “lm” structure, we have

An =4,

Av=1[1324].

a

Definition 1.6 The swap matriz Wi, ,, is an mn X mn matriz constructed in the following way: label
its columns by (11,12,--- ;1n,--- ,ml,m2,--- ,mn) and its rows by (11,21,--- ;m1,--- ,1n,2n,--- ,mn).

Then its element in the position ((I,J),(i,7)) is assigned as

1, I=¢andJ =
I1,J ’ )
WLy, (i) = 05)f = (5)
{.03) " 0, otherwise.

Remark 1.7 Let X €¢ R™ and Y € R" be two columns. Then
Wimn X X XY =Y x X, (6)
Example 1.8 Let m =2 and n = 3, the swap matriz Wi 31 is constructed as

(11) (12) (13) (21) (22) (23)

Wiag =

o = O O O O
S O = O O O
_ o O O O O

S O O O O
S O O = O O
S O O O = O

In condensed form we have
Wins) = 6[1,3,5,2,4,6].



Definition 1.9 Let A be an m X n matriz, m = pg, n = rs. FExpress A in blocks as

A A - Ay
Agr Ay --- Agg

A= | . ; (7)
Ap Ag - Ag

where A; j are p x r matrices. then the block transpose AT@) s defined as

2

All A21 to Aql
A12 A22 ce Aq2

A= . , (8)
Als AQs o Aqs

Functions

This section provides detailed description for the functions in this package.

2.1

1.

Fundamental Calculations
C= Sp(A7 B)
Description: The function performs the semi-tensor product of two matrices A and B.

Argument(s): Two matrices A and B, and the column number of A must be the factor or multiple

of the row number of B.

Return Value: C = A x B.

. C =spl(A, B)

Description: The function performs the semi-tensor product of two matrices A and B.

Argument(s): Two matrices A and B, and the column number of a must be the factor or multiple
of the row number of b.

Return Value: C = A x B.

Note that this function is the same as the function C' = sp(A, B). The difference is inside. In
program this function uses the original definition, while C' = sp(A, B) uses the Kronecker product

according to some properties.

. C = spn(Al,A2,~-~ ,An)

Description: The function performs the semi-tensor product of finite set of matrices Ay, -, A,.
Argument(s): Finite matrices Ay,--- , A, which are of proper dimension.

Return Value: C = x}_, 4;.

. B=0bt(A,p,r)

Description: The function performs the block transpose of A (refer to Definition for the
definition).

Argument(s): A is the matrix to be transposed; the size of fixed blocks is p x r (refer to Definition

for the concept.)

Return Value: B = AT®7),



5.

6.

7.

8.

10.

W = wij(m,n)

Description: This function produces an mn X mn swap matrix (refer to Definition for the
definition).

Argument(s): Two positive integers m and n. n is optional, default n is m.
Return Value: Matrix W of dimension mn x mn.

v = vc(A)

Description: The function converts a matrix to its column stacking form.
Argument(s): Matrix A = (a;j)mxn-

Return Value: v =[ay1 - Gm1 - Gin -+ Gmn) T

v =uvr(A)

Description: The function converts a matrix to its row stacking form.

Argument(s): Matrix A = (a;j)mxn-

Return Value: v =[ay; - G1p * Gmi -+ Gmn) T
A = invvc(z, m)
Description: Let © = (21,2, -+ ,2;,). This function reshapes x into a matrix A with row number
m as

1 Tm+1 e xp—m-l—l

T2 xm+2 e xp—m+2

A =
Tm  T2m s Tp

If p is not a multiple of m, we add at the end of x a least number of zeros such that the length of

x becomes a multiple of m.

Argument(s): x is a vector; m is the row number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Return Value: Matrix A with row number m.

. A =invor(z,n)

Description: Let © = (21,22, -+ ,zp,). This function reshapes = into a matrix A with column
number n as
:I/‘l .’1’;2 DY :I:n
Tn41 Tn4-2 o T2n
A fr—
Tp—n+1 Tp—n+2 ~°°  Tp

If p is not a multiple of n, we add at the end of x a least number of zeros such that the length of x

becomes a multiple of n.

Argument(s): z is a vector; m is the column number of the resulting matrix, and it is optional.
Default m is ceil(sqrt(length(v))).

Return Value: Matrix A with column number m.

v = dec2any(a, k,len)

Description: The function converts a decimal number a into a k-based number as

a=ask®+as_ 1k 1+ +ark+ag, as>0.



(Say, k = 2, the result is a binary number. In fact we define v = dec2bin(a,len) for binary case.)

Argument(s): a is a positive integer; k is optional, and k > 2. Default k is 2. Default len is 0, it
means ag # 0, but if len > 0 and len > s+ 1, len — s — 1 zeros should be added at the beginning
of returned value.

Return Value: v = [as as—1 -+ a1 ag).
11. M = stp(A)

Description: stp class constructor.

Argument(s): Matrix A.

Return Value: stp object M.

2.2 Calculation for Logical Matrices
In this subsection we will introduce the functions for logical matrices or 1m structure.
1. M =Im(A) or M =lIm(v,n)
Description: 1m class constructor.

Argument(s): i) Logical matrix A; ii) vector v = [v; va --- vp] and positive integer n satisfying
v; <n, 1 <i<p. (Casei, refer to Deﬁniation and Example Case ii, Im.n =n, lm.v = v.)

Return Value: 1m object M.
2. C=1Isp(A,B)
Description: The function performs the semi-tensor product of logcial matrices A and B.

Argument(s): A, B are 1m objects. (refer to Definition and Remark for the structure.)
Return Value: C' = A x B is an 1m object.

3. C= lspn(AhAQv e 7A7L)

Description: The function performs the semi-tensor product of logical matrices Ay, Aa,--- , A,.
Argument(s): A4, -+, A, are 1m objects. (refer to Definition and Remark for the struc-
ture.)

Return Value: C = x}_; A, is an 1m object.

4. M = leye(n)
Description: The function produces an n x n identity matrix.
Argument(s): Positive integer n.

Return Value: 1m object M.

5. M =Imn(k)
Description: The function produces the structure matrix of negation for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

6. M =lmc(k)
Description: The function produces the structure matrix of conjunction for k-valued logic (k > 2).

Argument(s): k is optional, default & is 2.
Return Value: 1m object M.



10.

11.

12.

13.

14.

M =lmd(k)

Description: The function produces the structure matrix of disjunction for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.

Return Value: 1m object M.

. M = Imi(k)

Description: The function produces the structure matrix of implication for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

. M =lme(k)

Description: The function produces the structure matrix of equivalance for k-valued logic (k > 2).
Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

M = lmr(k)

Description: The function produces the power-reducing matrix for k-valued logic (k > 2).
Argument(s): k is optional, default & is 2.

Return Value: 1m object M.

M = Imu(k)

Description: The function produces the dummy matrix for k-valued logic (k > 2). The dummy

matrix M satisfies the following property

MXY =Y, VX.,Y € Dy

Argument(s): k is optional, default k is 2.
Return Value: 1m object M.

M = lmrand(m,n)
Description: The function produces an m x n logical matrix randomly.
Argument(s): Positive integers m and n. n is optional, default n is m.

Return Value: 1m object M.

M = lwij(m,n)
Description: The function produces an mn X nn swap matrix.
Argument(s): Positive integers m and n. n is optional, default n is m.

Return Value: 1m object M.

M = randlm(m,n)

Description: Alias function of Imrand.



3 Examples

1 |% This example is to show how to perform semi—tensor product

slx=[1 23 —1];
ly =12 11

5 |rl = sp(x,y)

6 |% r1l = [5, 3]

s|x = [2 1];

oly = [1 23 —1]%
10 |r2 = sp(x,y)

11 |% r2 = [5; 3]

12
13lx =121 1;
14 231 2
15 321 0];
6|y = [1 =2
17 2 —1];

18 |13 = sp(x,y)

19 |rd4d = spl(x,y)

20 |% r3 = r4 = [3,4,-3,—-5;4,7,—5,—8;5,2,—7,—4]
21
22 |15 = sp(sp(x,y),y)

23 |16 = spn(x,y,y)

24 |% r5 = r6 = [-3,-6,-3,-3;-6,-9,—-3,—-6;—9,—6,—3,0]

1 |% This example is to show the usage of stp class.

2 |% Many useful methods are overloaded for stp class, thus you can use stp object as

double.
3
4|x =[1 21 1;
5 231 2;
6 321 0];
|y = [1 =2
8 2 —1];
9

10 |% Covert x and y to stp class

11 |a = stp(x);
12 |b = stp(y);
13

14 |% mtimes method is overloaded by semi—tensor product for stp class
15 | c0 = spn(x,y,y)

16 | ¢ = axbxb, class(c)

17
18 |% Convert an stp object to double
19 | ¢l = double(c), class(cl)

20
21 |% size method for stp class
22 | size(c)

23
24 |% length method for stp class
25 | length (c)

26
27 |% subsref method for stp class
28 [c(1,:)

29

30 |% subsasgn method for stp class
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c(1,1) =3

% This example is to show the usage of lm class.

% Many methods are overloaded for lm class.

% Consider classical (2—valued) logic here
k = 2;

T =Ilm(1,k); % True
= Im(k,k); % False

o
I

% Given a logical matrix, and convert it to lm class

A=1[100 0;
011 1]
M = Im(A)

% or we can use
%M=1m([1 2 2 2], 2)

% Use m—function to perform semi—tensor product for logical matrices
rl = lspn (M, T,F)

% Use overloaded mtimes method for lm class to perform semi—tensor product
r2 = M«TxF

% Create an 4—by—4 logical matrix randomly
M1l = lmrand (4)
% M1 = randlm (4)

% Convert an Im object to double
double (M1)

% size method for Im class
size (M1)

% diag method for Im class
diag (M1)

% Identity matrix is a special type of logical matrix
13 = leye(3)

% plus method is overloaded by Kronecher product for Ilm class

r3 = Ml + I3

% Alternative way to perform Kronecher product of two logical matrices
r4 = kron(M1,13)

% Create an lm object by assignment
M2 = Im;

M2.n = 2;

M2v = [1 1 2 2];

M2

% This example is to show how to use vector form of logic to solve the following
question :

% A said B is a liar, B said C is a liar, and C said A and B are both liars. Who is
the liar?

% Set A: A is honest, B: B is honest, C: C is honest
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k = 2; % Two—valued logic

MC = Imc(k); % structure matrix for conjunction
ME = lme(k); % structure matrix for equivalance
MN = Imn(k); % structure matrix for negation
MR = Ilmr(k); % power—reducing matrix

% The logical expression can be written as
logic_expr = ’(A=!B)&(B=!C)&(C=(!A&!B)) ’;

% where = is equivalance, & is conjunction, and ! is negation

% convert the logic expresson to its matrix form

matrix_expr = lmparser(logic_expr);

% then obtain its canonical matrix form
expr = stdform (matrix_expr);

% calculate the structure matrix
L = eval (expr)

% The uniqe solution for Lxx=[1 0]"T is x=[0 0 0 0 0 1 0 0] "T:=8[6]
sol = v2s(lm(6,8))

% One can see sol=[0 1 0], which means only B is honest, A and C are liars.

% Examples for Boolean network

% Initializing
k = 2;

options = [];

% Please note that in this toolbox any variable intialized with capital M is
as a logical matrix, otherwise it will be considered as logical vector.

% The followings are some commonly used logical matrices

ME = lme(k); % equivalence

MI = Imi(k); % implicaiton

MD = Imd(k); % disjunction

MN = Imn(k); % negation

MR = Ilmr(k); % power—reducing matrix

MC = Imc(k); % conjunction

MX=Im([2 1 1 2], 2); % xor

% choose a number from 1-5 to select a Boolean network
n = 3;

switch n
case 1
% Dynamics of Boolean network
% A(t+1) = MCxB(t)*C(t)
% B(t+1) = MN+A(t)
% C(t+1) = MD«B(t)=*C(t)
% Set X(t)=A(t)B(t)C(t), then
eqn = MCB CMN AMD B C’;
case 2
% Dynamics of Boolean network
% A(t+1) = MC«B(t)*C(t)
% B(t+1) = MN«A(t)
% C(t+1) = B(t)
eqn = 'MC B C MN A B’;
case 3

% Dynamics of Boolean network

defined
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E(t+1) = MX«E(t)*I(t)
H(t+1) = MX«F(t)*H(t)
F(t+1) = MX«F(t)*J(t)
I(t+1) = MX«G(t)*I(t)
G(t+1) = MX+G(t)«MXxF(t)«H(t)
% J(t+1) = MX«MX«E(t)*I(t)*J(t)
% Set X(t)=E(t)H(t)F(t)I(t)G(t)J(t), then

if k % 2
error ('This example is only for the case k=2.7);
end
eqgn = MXE I MXFHMXF JMXGIMKXGMXFHMKMXE I J ’;

)

% set the variables’ order, otherwise they will be sorted in the dictionary
order
options = lmset(’vars’ ,{’E’,’H’,’F’,’1’,°G’,’J’});
case 4
% Dynamics of Boolean network
% A(t+1) = MN«MI«K(t)«H(t)
% B(t+1) = MN«MI*A(t)*C(t)

% C(t+1) = MI«sD(t)*I(t)

% D(t+1) = MCxJ (t)*K(t)

% E(t+1) = MIxC(t)*F(t)

% F(t+1) = MN«MI«E(t)«G(t)
% G(t+1) = MN«MCxB(t)*E(t)
% H(t+1) = MN«MI*F(t)*G(t)
% I(t+1) = MN«MI«H(t)=*I(t)
% J(t+1) = J(t)

% K(t+1) = K(t)

% Set X(t)=A(t)B(t)C(t)D(t)E(t)F(t)G(t)H(t)I(t)J(t)K(t), then
eqgn = MNMIKHMN MIACMIDIMCJ KM CFMNMI EGDNMNMCB EMNMI F G
MNMIHTIJK’;
case 5
% Dynamics of Boolean network
% A(t+1) = MN«MD«C(t)*F(t)

% B(t+1) = A(t)

% C(t+1) = B(t)

% D(t+1) = MC+MC« VN I (t ) *MN«C(t ) «VN«F (t)
% E(t+1) = D(t)

% F(t+1) = E(t)

% G(t+1) = MN«MD«F (t)*1(t)

% H(t+1) = G(t)

% I(t+1) = H(t)

% Set X(£)=A(t)B(t)C(£)D(t)E(t)F(t)G(t)H(t)I(t), then
eqn = MNMDCF ABMCMCMNI MNCMNFDEMINMDF I GH’;
otherwise
return
end

% Convert the equation to a canonical form
[expr,vars] = stdform (eqn,options ,k);

% Calculate the network transition matrix
L = eval (expr)

% Analyze the dynamics of the Boolean network
[n,1,¢,10,T] = bn(L,k);

fprintf(’Number of attractors: %d\n\n’,n);
fprintf(’Lengths of attractors:\n’);

disp (1);

fprintf(’\nAll attractors are displayed as follows:\n\n’);
for i=1l:length(c)
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95 fprintf(’No. %d (length %d)\n\n’,i,1(i));

96 disp (c{i});

o7 | end

98 | fprintf(’Transient time: [r0, T] = [%d %d]\n\n’,r0,T);
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