

Proprietary material copyright © 2017, Aurtas International, patents pending

Note: all photographs of experiments are exactly as seen by the eye, no Photoshopping has been done.

PHASE TWO

Phase II: Bigger with More Data

The central feature of the experimental apparatus is a stainless-steel cylinder four feet in diameter and seven feet long.

Also used were software programs for computer aided design, computational fluid dynamics, and finite element analysis.

Computational Fluid Dynamics showing thermal stress distribution and gas flow inside the chamber as a result of intense radiation emissions.

Particular attention was paid to the parts of the apparatus that would probe the plasma and gather data about it.

The team designed a manipulating arm to mount a Langmuir probe and mass and optical spectrometer sensors. The arm is unique in design as it employs the characteristics of a gimbal with a multi-axis computer-numerically-controlled servomotor system. There are two independently directed gimbals that provide 5 degrees of freedom to simultaneously move each probe with a positional accuracy of 0.01mm.

Cathode during experiments

Cathode before

The cathodes are also servomotor controlled and can be moved closer to or further from the anode in an accurately measured manner.

Showing the Servo Computer Numerically Controlled cathode actuator mounted on the chamber door with surrounding cooling shroud.

The anode itself can be withdrawn into an airlock and replaced without substantially affecting the vacuum in the chamber.

Leighton Macmillan, Joe Palermo, Jan Onderco and Montgomery Childs loading the anode into the reactor chamber

There are viewports into the chamber allowing for the external mounting of still, high-speed, infrared, and ultraviolet cameras. Antennas for measuring radio and electromagnetic signals are mounted on the inside of the chamber.

A power supply capable of producing 200kW of clean, continuous, direct current and voltage was constructed for the project. Both voltage and current delivered by the power supply can be varied and monitored independently.

Primary transformer

To solve the problem of excess heat: a metal shroud surrounds the apparatus chamber; a high-volume – high pressure fan blows air under the shroud; the gimbal-mounting probe assemblies are cooled by a pressurized nitrogen gas system; circulating de-ionized water cools the anode, vacuum pumps and other equipment. These cooling systems allow for much longer experimental run times than were possible with the small bell jar. Unanticipated excess heat remains a problem.

Gases, such as hydrogen or deuterium, can be introduced into the chamber so experiments may take place in different atmospheres. Vacuum pumps lower the pressure within the chamber to 0.1 micron.

A cryopump provides additional assistance in controlling the atmosphere within the chamber, in particular by removing water vapor. As a safety measure, the chamber can be rapidly flooded with nitrogen.

Information from the experimental data gathering, safety, and apparatus operating systems, with all of its valves, gauges, pumps, and sending units, are fed into computers in the main control room where it is displayed on numerous monitors. All that gathered information, regardless of its source, goes into a data acquisition transform engine where it is sorted and filed on a Linux server. This information system allows for concise post-experiment data mining and analysis.

Paul Anderson running tests in the SAFIRE control room (SAFCON)

The off-the-shelf availability of most of the components of the experimental system is a relatively recent development. This has allowed the team to build and operate a robust, sophisticated, and comparatively low-cost device in a way that could not have been accomplished just a few years ago.

The SAFIRE engine is made up of 40,000 parts.

THE SAFIRE PROJECT Team

Montgomery Childs

Principal Scientist, Design Engineer

Dr. Michael Clarage

Astrophysicist

Dr. Paul Anderson

Design of Experiments, Chemist

Dr. Lowell Morgan

Applied Physicist

Wallace Thornhill

Cosmologist Electric Universe

Dr. Donald Scott

Plasma Electrodynamics

Jan Onderco

Computer Science and Data Acquisition

Jason Lickver

Systems Engineering and Telemetry

Leighton MacMillan

Mechanical and Electrical Technician

Ben Ged Low

Cinematography, Optics, Video Capture

SCIENCE REVIEW Team

Dr. James Ryder

Chairman International Science Foundation

Harold Puthoff, PhD

Director, Institute for Advanced Studies at Austin

Eric W. Davis, Ph.D.

Chief Science Officer Institute for Advanced Studies at Austin, Austin, TX

William A. Gardner

Professor Emeritus University of California

Hathaway Consulting Services

CORPORATE PARTNERS

Vantage Machine Ltd.

DMI Precision Ltd.

Fogler Rubinoff LLP

University of Toronto

Princeton Instruments

Delta Photonics

Brooks Automation

Intlvac

Fluke Corporation

Plasus

Computer Elite

Orillia Tool & CNC

SAS Institute

Red Cage Solutions

Swagelok Company

Kurt J. Lesker Company

Hathaway Consulting Services

Paradigm Creative Group

Silver Wolf Productions

Proprietary material copyright © 2017, Aurtas International, patents pending.

This document copyright © 2017 The SAFIRE PROJECT & Silver Wolf Productions Inc.

