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Abstract  

Relationships involving solar, terrestrial, and Agassiz, British Columbia 

weather summaries are investigated across a spectrum of timescales using a 

selection of methods including wavelet & time-integrated cross-correlation 

analyses.  Benefits of investigating alternate weather summaries beyond mean 

temperatures are highlighted.  Temperature range indices are shown to be 

strongly related to geomagnetic aa index across a century-scale epoch (1891-

2005) at the timescale of the solar Schwabe (~11 year) cycle.  Monthly maximum 

temperature summaries are shown to be strongly related to cosmic ray flux 

during a multi-decadal epoch (1953-2005) at the timescales of the solar Schwabe 

& Hale (~22 year) cycles.  Average monthly minimum temperature is shown to be 

more tightly synchronized with solar & terrestrial variables than are other 

temperature summaries.  Attention is drawn to a seemingly strong phase 

relationship involving terrestrial polar motion and an index of solar system orbital 

inertia.  Finally, relationships involving terrestrial carbon dioxide concentration 

are briefly explored. 
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Introduction 

A variety of reports from recent years have addressed climate &/or 

climatic trends in coastal British Columbia &/or the Pacific Northwest of the USA 

(BC government 2007, 2006, 2004, & 2002; Leung & Qian 2003; Mote 2003; 

Turner & Clague 1999; Vaccaro 2002; Wade et al. 2001; Walker & Pellatt, 2003; 

Whitfield et al. 2002 & 2003).  While celestial-terrestrial climate influences do not 

form a core focus in these reports, the BC government climate reports, in 

particular, fuel curiosity regarding relative trends in minimum & maximum 

temperatures, topics which are explored in the more general climate literature by 

Vincent et al. (2005), Karl et al. (1993), Easterling et al. (1997), Vose et al. 

(2005), del Rio et al. (2007), Mahmoud (2006), and Stone & Weaver (2002, 

2003). 

Mursula & associates (2008, 2007, 2004, 2003, 2002, 2001, 1999, 1998, 

1996), Lundstedt & associates (2007, 2006, 2005), Georgieva & associates 

(2007, 2006, 2005, 2002, 2000, 1998), Javaraiah (2005, 2003), Kato et al. 

(2003), Tomes (2005), Juckett (1998), Sakurai (2002), and Krivova & Solanki 

(2002) explore solar parameters & related periodicities influencing or potentially 

influencing solar-terrestrial relations.  Relationships between terrestrial mean 

temperature variables and indicators of solar activity reported in the solar-

terrestrial relations literature have gleaned considerable attention, particularly 

with regards to the strong relationships noted at the timescale of the solar 

Schwabe (~11a) cycle (Cliver et al. 1998; Reid 1987; Landscheidt 1999; White et 

al. 1997; Scafetta & West 2006; Wilson 1998; Valev 2006). 

Evidence of a relationship between terrestrial climate and cosmic ray flux 

continues to mount in the literature (Usoskin 2007, 2006a; Svensmark 2007a; 
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Veizer 2005; Palle et al. 2004; Tinsley 2000-2007; Perry 2007; Shaviv et al. 

2002-2005).  At both heliospheric & terrestrial magnetospheric scales, solar 

activity modulates cosmic ray flux which induces ionization in the terrestrial 

atmosphere which in turn, through electrostatic/aerosol interactions, affects cloud 

condensation nuclei dynamics to influence low-altitude cloud coverage, which 

has effects such as moderating daytime maximum temperatures.  Usoskin & 

Kovaltsov (2007) caution that "use of global or even zonally averaged data may 

be misleading" due to strong regional, magnetosphere-related variability in the 

relationship between cosmic ray flux & low-altitude cloud cover, which may vary 

on a timescale of centuries & longer. 

Keeling & Whorf (1997 & 2000) suggest ocean tide patterns may play a 

stronger role in global temperature trends than has traditionally been considered 

possible.  They emphasize that tidal cycles do not repeat exactly, even after 

centuries, and, worthy of note with regards to the present study, they point to an 

interval early during the 20th century (1900-1945) when the usual dominance of 

nearly decadal oscillations in global average temperature was interrupted to a 

considerable extent by a roughly 6 year signal they believe may, in part, be due 

to correspondingly distinct tidal event periodicity patterns between 1899 & 1947. 

Vondrak (1999), Gross (2005), Brzezinski (2003), and Stuck et al. (2005) 

report on proposed causes of & periodicities appearing in earth orientation 

parameters, including polar position.  Kolaczek et al. (2003) and Lehmann et al. 

(2008) report relationships between earth orientation parameters and the El Nino 

Southern Oscillation (ENSO) phenomenon, which Newman et al. (2003) suggest 

directly forces the Pacific Decadal Oscillation (PDO).  Relying on wavelet 

analysis, Yndestad (2006) suggests a strong relationship between polar position, 

which he considers an indicator of the lunar nodal cycle, and arctic temperature 



  11 

series, but McKinnell & Crawford (2007) report only a weak relationship between 

the lunar nodal cycle and temperatures in the region of the northeastern Pacific 

Ocean.  Currie (1996), who employs filtering techniques commonly used in 

electrical engineering, seems to contend that significant lunisolar components 

are detectable in a very wide variety of terrestrial time series, including virtually 

all climate series.  He investigates terrestrial geographic sites individually 

(thousands of them) and cautions that zonal &/or global averaging masks locally-

detectable signals that are intermittently out-of-phase with those at different 

locations, even ones relatively nearby. 

Jose (1965), Landscheidt (1999), Charvatova (2009, 2007, 2000), Juckett 

(2000), Palus et al. (2007), Bucha et al. (1985), Alexander et al. (2007), Freeman 

& Hasling (2004), and Wilson et al. (2008) consider terrestrial climate links with 

solar orbital dynamics &/or solar activity indices.  Landscheidt (2002, 2001, 2000, 

1999) pointed out the coincident timing of extrema in solar orbital summaries and 

extrema in a variety of terrestrial climate phenomena, including ENSO, the PDO, 

and the North Atlantic Oscillation (NAO). 

Haigh (2007) and MacKey (2007) provide recent literature reviews of 

solar-terrestrial relations from relatively conservative & relatively liberal 

perspectives, respectively. 

Keeling & Whorf (1997) admit that research into cycles in climate "does 

not have a good reputation" in some scientific circles, due to exceptions & 

inconsistencies in noted patterns.  Economist Edward R. Dewey (1970) 

suggested, "The study of cycles reveals to us our ignorance, and is therefore 

very disturbing to people whose ideas are crystallized."  Casdagli (1991) stresses 

the extraordinary diversity of behaviours which can be exhibited by nonlinear 

dynamical systems and Currie (1996) suggests that "on decadal and duodecadal 
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time-scales the spectrum of climate is signal-like rather than noise-like, as 

radically assumed by statisticians and mathematicians the past 70 years."  Palus 

& Novotna (2007) suggest that even very weak interactions can be detected by 

studying the instantaneous phase relations of oscillatory processes.  They go on 

to say, "We believe that the synchronization analysis will help to uncover 

mechanisms of the tropospheric responses to the geomagnetic activity and to 

contribute to better understanding of the solar-terrestrial relations and their role in 

the climatic change."   

Ecologists Allen & Hoekstra (1991 & 1992) offer a framework for 

conceptualizing & investigating scale-dependent pattern & process as influenced 

by spatiotemporal heterogeneity.  With the same theme in mind, geographers 

Fotheringham & Rogerson (1993) assert that scale-dependency "... presents us 

with the challenge of reporting on the reliability of parameter estimates in the light 

of changes in scale ..."  The scale-cognizant paradigm has exerted a 

fundamental & dominating influence on the multiscale approach employed in the 

present research. 

A considerable proportion of investigations of celestial-terrestrial-climate 

linkages: 

a) investigate multi-annual phenomena only with annual-resolution data. 

b) limit the presentation of data & estimates to only selected timescales, 

rather than empowering audiences with access to patterns from across a 

broader context. 

c) focus more on means than on minima, maxima, ranges, &/or other 

summaries. 
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The preceding, all considered in conjunction, suggested an array of 

interesting research opportunities, some of which have already been pursued.  

This document presents a selection of the early results. 
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Study Variables 

Geomagnetic aa Index 

The geomagnetic aa index (aa) is a measure of the sun's coronal 

magnetic field strength (magnetic flux density) as mediated through the 

interplanetary magnetic field (IMF) and integrated by the Earth's magnetosphere.  

According to Palus & Novotna (2007), "The aa-index is defined by the average, 

for each 3-hour period, of the maximum of magnetic elements from two near-

antipodal mid-latitude stations in Australia (Melbourne) and England 

(Greenwich)."  There are other indices of geomagnetic activity, but an important 

advantage of the aa index is that its record extends back to 1868 and is 

homogenous. 

Monthly aa index measurements were downloaded from a USA National 

Oceanic and Atmospheric Administration (NOAA) website 

(ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/RELATED_INDICES/AA_INDEX/AA_MONTH). 

The square root & logarithm (base 2, for ease of interpretation) of this 

variable were found to ease analyses.  There was a lack of strong evidence that 

one of these transforms was broadly superior to the other. 

Sunspot Numbers 

Sunspot numbers (R) are indices of solar coronal magnetic activity & 

potential based on inspection of the visible solar disk.  Reliable data go back as 

far as 1749. 

Monthly sunspot numbers were downloaded from a USA National 

Oceanic and Atmospheric Administration (NOAA) website 

(ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/MONTHLY). 
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The logarithm of this variable (plus 1 to avoid log(0)) was found to ease analyses. 

Cosmic Ray Flux 

A shower of energetic particles known as cosmic rays reaches Earth from 

both the sun & extrasolar sources, inducing ionization in the terrestrial 

atmosphere through collisions with atmospheric molecules.  Cosmic ray induced 

ionization is purported to be responsible for a variety of complex microphysical 

atmospheric processes, many of which are not yet fully understood. 

The monthly cosmic ray flux (CRF) series for Huancayo, Peru / 

Haleakala, Hawaii, which dates back to 1953 and is based on neutron monitor 

counting rates, was downloaded from a USA National Oceanic and Atmospheric 

Administration (NOAA) website 

(ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/COSMIC_RAYS/huancayo.tab). 

Polar Position 

The terrestrial rotation axis wobbles & drifts over time, relative to a 

geocentric frame based on the terrestrial crust. 

Polar position x & y (Px & Py) coordinate time series were downloaded 

from the International Earth Rotation & Reference Systems Service (IERS) 

website (http://hpiers.obspm.fr/eoppc/eop/eopc01/eopc01.1846-1899).  Monthly-timescale 

coordinates had to be estimated by interpolation since polar position 

measurements number 10 per year before 1890 and 20 per year since then. 

Atmospheric Carbon Dioxide Concentration 

The Mauna Loa, Hawaii atmospheric carbon dioxide (CO2) concentration 

monthly time series was downloaded from a USA National Oceanic and 
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Atmospheric Administration (NOAA) website 

(ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt). 

Solar Inertia 

Characterizations of solar orbital inertia (SI), as influenced by the jovian 

or gas giant planets, Jupiter, Saturn, Uranus, & Neptune, were based on crudely 

simplified circular orbits in a single plane, with 1960 solar ecliptic coordinates 

coordinated with coordinates provided by an online NASA calculator 

(http://cohoweb.gsfc.nasa.gov/helios/planet.html). 

Agassiz, British Columbia (BC) Weather 

Preliminary investigations focused on other sites in the Vancouver, BC 

area, but the Agassiz weather station, which is situated just over 100km east of 

Vancouver & the Strait of Georgia, where the Fraser Valley narrows between the 

Coast Mountains to the north & the Cascade Mountains to the south heading 

inland, was found to have a record of superior quality for the present study. 

Weather records from Environment Canada for Agassiz, BC 

(http://www.climate.weatheroffice.ec.gc.ca/climateData/bulkdata_e.html?timeframe=3&Prov=XX&StationID=7

07&Year=1889&Month=1&Day=1&format=csv&type=mly) show only a handful of missing 

records.  Temperature records for Agassiz go back to August 1891.  The few 

Vancouver area records that go back further show large quantities of missing 

records. 

The few missing temperature data for Agassiz since August 1891 were 

estimated via very strong relationships with nearby stations (Chilliwack & New 

Westminster, BC, in order of preference as dictated by correlations & residuals 

and depending upon record availability). 
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Precipitation records for Agassiz go back a little further than temperature 

records, but estimating missing precipitation data for the early portion of the 

record proved problematic due to gaps in records at nearby stations and large 

residuals found in relationships with precipitation records from further away, so 

data from before August 1891 were omitted from analyses. 

 

The weather variables of focus in the present study are: 

1) TMax = monthly average maximum temperature 

2) TMin = monthly average minimum temperature 

3) TMean = monthly average temperature (defined by convention as the 

average of TMax & TMin) 

4) XTMax = monthly extreme maximum temperature 

5) XTMin = monthly extreme minimum temperature 

6) PPT = precipitation 

The square root, cubed root, & logarithmic transforms of this variable 

were found to ease analyses. 

7) TRange  =  TR  =  TMax - TMin  =  monthly average temperature range 

This variable can also be expressed as TMax / TMin (using absolute 

temperatures in degrees Kelvin) with little change to the results of 

analyses. 

Although working with the logarithm (base 2, for ease of interpretation) of 

the TRange variable results in a more symmetrical univariate distribution, 

this approach has almost negligible effects on the results of analyses. 

8) XTRange  =  XTR  =  XTMax - XTMin  =  monthly extreme temperature 

range 
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Table 1 summarizes the gap-free record intervals that were available for 

the present study according to combinations of solar-terrestrial-climate variables. 

 
Table 1.  Study record intervals available by combination of study variables. 
Combination of Variables Record Interval Available 

for Combination 
R, aa, polar position, SI, Agassiz weather August 1891  -  May 2005 
CRF, R, aa, polar position, SI, Agassiz weather January 1953  -  May 2005 
CO2, CRF, R, aa, polar position, SI, Agassiz weather March 1958  -  May 2005 
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Relationships 

Illustrating Complex Relationships Involving Solar 
Variables 

It is important to begin this communication by emphasizing that 

relationships between variables involving complex acoustic feedbacks, 

analogous to the echoes of a whistling train passing through a complex 

mountainous landscape, and/or intermittent periods of phase drift, analogous to 

water flowing in-to and out-of a reservoir at differing variable rates reflecting 

different processes that equal-out in rate quasi-periodically, may present 

challenges to comprehension-paradigms governed primarily by linear logic. 

To further reinforce this point while also introducing an important 

relationship, the relationship between geomagnetic aa index and sunspot 

numbers is presented.  Similarities between the aa & R time series are apparent 

(Figure 1), but a variable timescale view (Figure 2) makes the similarities more 

apparent.  Wavelet phase plots (Figure 2, 1st column) for aa & R are strikingly 

similar and the cross-wavelet phase-plot (Figure 2e) verifies cyclically bounded 

asynchrony.  Cross-correlation analysis (Figure 2f) reveals the gain in correlation 

achieved by integrating (over time) across the dominant cycles revealed by 

cross-wavelet analysis.  A sequence of conventional scatterplots (Figure 2g-i) 

further reinforces the change in perspective gained by integrating over the ~11a 

cycles of bounded asynchrony. 

The relationships of the aa & R time series with the CRF time series, 

which appears in the lower panel of Figure 1, involve an even/odd ~11a Schwabe 

cycle morphology related to solar magnetic polarity reversals roughly half-way 

through ~22a Hale solar magnetic cycle.  CRF is addressed in more detail below. 
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Figure 1.  Time series of average monthly geomagnetic aa index <aa> (nT (nano-
Teslas)), sunspot number <R>, and galactic cosmic ray flux <CRF> (average neutron 
counting rates per hour; Huancayo, Peru / Haleakala, Hawaii series; cutoff rigidity 
~12.915GV (1980)) with 1 year moving averages superimposed. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 2.  Wavelet transforms of average monthly solar activity indices (1868-2007).  (a) 
Geomagnetic aa index phase & power.  (b) Sunspot number phase & power.  (c) Cross-
wavelet phase difference and cross-correlation of sunspot number with geomagnetic aa 
index.  (d) Scatterplot; best-lag scatterplot (Lag = 15 months); and best-lag scatterplot 
with 11 year bandwidth smoothing and a log-transform of sunspot number.  Timescale is 
in years. 
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Relationship of Geomagnetic aa Index with Agassiz, BC 
Temperature Summaries 

A crude preliminary investigation revealed: 

1) interesting rough parallels between 11a-smoothed geomagnetic aa index 

and the negative of Agassiz, BC temperature range (Figure 3a). 

2) a provocative matrix of roughly harmonic best-lags stemming from the 

cross-correlation functions of time series smoothed to varying extents 

based upon a very loose & subjective exploratory criterion of smoothing 

until "not too spiky" (Figure 3b). 

 
 (a) (b) 

 
Figure 3.  (a) 11-year-smoothed time series of Agassiz, BC temperature summaries and 
geomagnetic aa index (1891-2005).  The series are linearly shifted & scaled to facilitate 
comparative viewing.  Note also that it is the negative of some temperature variables 
that is shown.  (b) Matrix of best-lags from cross-correlation functions for select pairs of 
study variables initially smoothed according to a loose & subjective preliminary-
investigation criterion of looking "not too spiky", for the purposes of early exploration. 

 

This led to more systematic investigations, including one of the 

relationship of Agassiz, BC temperature range with geomagnetic aa index across 

a variety of smoothing bandwidths (Figure 4), which was next expanded to 

include other temperature summaries, including alternate summaries of 

temperature range (Tables 2 & 3). 
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Figure 4.  Time series (1891-2005) of average monthly geomagnetic aa index 
<Log2(aa)> and Agassiz, BC temperature variables at moving-average smoothing-
bandwidths of 1 year, 6 years, 11 years, and 22 years.  The series are linearly shifted & 
scaled to facilitate comparative viewing.  Note that it is the negative of <TRange> that is 
shown in the left column.  <TRange> is the study variable most closely associated with 
aa index.  Scatterplots of <TRange> vs. <Log2(aa)> (one for each smoothing bandwidth) 
appear down the right column. 
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Table 2.  Relationships (1891-2005) of selected monthly weather summaries with 
average monthly geomagnetic aa index <Log2(aa)> at a selection of smoothing 
bandwidths. 

 
 TMean TMax TMin TRange 

= TMax - TMin 
TMax - 

1.557*TMin 
XTMax 
- TMin 

1 
 

m 
o 

r2 = 5E-07 r2 = 0.0028 r2 = 0.0064 r2 = 0.0505 
 

r2 = 0.1163 r2 = 0.0152 

6 
 

m 
o  

r2 = 0.0002 r2 = 0.0088 r2 = 0.0306 r2 = 0.1737 
 

r2 = 0.3268 r2 = 0.0717 

1 
a 

 
r2 = 0.0631 r2 = 0.0816 r2 = 0.3357 r2 = 0.3850 

 
r2 = 0.4112 r2 = 0.2807 

6 
a 

 
r2 = 0.1921 

 
r2 = 0.4444 r2 = 0.6455 r2 = 0.7378 

 
r2 = 0.7339 r2 = 0.6921 

11 
a  

r2 = 0.3224  
r2 = 0.5980 r2 = 0.8154 r2 = 0.8929 

 
r2 = 0.8903 r2 = 0.9313 

22 
a  

r2 = 0.5479 
 

r2 = 0.7440 r2 = 0.8865 r2 = 0.9269 
 

r2 = 0.9248 r2 = 0.9618 
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Table 3.  Best-Lag relationships (1891-2005) of selected monthly weather summaries 
with average monthly geomagnetic aa index <Log2(aa)> at a selection of smoothing 
bandwidths.  Best-Lags were determined via the cross-correlation function. 

 
 TMean TMax TMin TRange 

= TMax - TMin 
TMax - 

1.557*TMin 
XTMax 
- TMin 

1 
 

m 
o Lag = -6 mo 

r2 = 0085 
Lag = 46 mo 
r2 = 0.0078 

 
Lag = 42 mo 
r2 = 0.0297 

 
Lag = 39 mo 
r2 = 0.0958 

 
Lag = 39 mo 

r2 = 0.2143 

 
Lag = 38 mo 
r2 = 0.0454 

6 
 

m 
o  

Lag = -9.5a 
r2 = 0.0104 

 
Lag = 36 mo 
r2 = 0.0156 

 
Lag = 30 mo 
r2 = 0.0591 

 
Lag = 36 mo 
r2 = 0.2205 

 
Lag = 38 mo 

r2 = 0.3899 
Lag = 37 mo 
r2 = 0.1205 

1 
a 

Lag = -9.5a 
r2 = 0.1304 

 
Lag = 38 mo 
r2 = 0.1762 

Lag = -6 mo 
r2 = 0.3434 

Lag = 34 mo 
r2 = 0.4880 

 
Lag = 34 mo 

r2 = 0.4894 
Lag = 36 mo 
r2 = 0.4802 

6 
a 

Lag = -8.42a 
r2 = 0.3141 

 
Lag = 23 mo 
r2 = 0.4808 

Lag = 0 
r2 = 0.6455 

Lag = 12 mo 
r2 = 0.7465 

 
Lag = 8 mo 

r2 = 0.7387 
Lag = 34 mo 

r2 = 0.8210 

11 
a 

Lag = -6.75a 
r2 = 0.3951 

 
Lag = 11 mo 
r2 = 0.6207 

Lag = 0 
r2 = 0.8154 Lag = 0 

r2 = 0.8929 

 
Lag = 0 

r2 = 0.8903 
Lag = 0 

r2 = 0.9313 

22 
a  

Lag = 0 
r2 = 0.5479 

 
Lag = 0 

r2 = 0.7440 
Lag = 0 

r2 = 0.8865 
Lag = 0 

r2 = 0.9269 

 
Lag = 0 

r2 = 0.9248 
Lag = 0 

r2 = 0.9618 
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At this point, it is convenient to introduce angled brackets < > to 

notationally indicate time-integration via smoothing (simple box-kernel 

averaging). 

Although both <TMax> and <TMin> are significantly correlated with 

<Log2(aa)> at the monthly timescale, the correlations are very small.  The 

contrast <TRange> = <TMax-TMin> is far more strongly correlated with 

<Log2(aa)> than are either of <TMax> & <TMin> alone.  In addition to <TRange>, 

two other indices of temperature range are featured for comparison.  <TMax-

1.557TMin> is seen to be most strongly related to aa index at timescales of 1 

year or less, whereas <XTMax-TMin> is strongest at timescales of 11 years & 

higher.  Of the three non-range variables presented, <TMin> is strongest in its 

relationship with aa index and the blend <TMean> = <(TMax+TMin)/2> is 

weakest. 

Best-lag (based on the cross-correlation function) scatterplots in Table 3 

reveal a few highlights beyond what can be gleaned from Table 2: 

1) A best-lag in the neighborhood of 39 to 40 months (~3.25a) shows up for 

all temperature summaries other than <TMean>. 

2) <TMin> exhibits the most quickly tightening lag pattern with increasing 

time-integration. 

While Tables 2 & 3 convey a fairly clear outline of geomagnetic aa index 

correlations (squared) with a selection of temperature summaries across a crude 

selection of smoothing bandwidths, it is desirable to explore what is happening at 

intermediate timescales across a slightly expanded set of variables, including an 

alternate solar variable, sunspot number (Figures 5 & 6). 
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(a) 

 

(b) 

 
Figure 5.  A comparison (1891-2005) of the strengths of the time-integrated relationships 
(Lag = 0) of (a) average monthly sunspot number <Log2(R+1)> and (b) average monthly 
geomagnetic aa index <Log2(aa)> with a selection of study variables. 
 
 

A comparison of the strengths of the time-integrated relationships (Lag = 

0) of average monthly sunspot number <Log2(R+1)> (Figure 5a) and average 

monthly geomagnetic aa index <Log2(aa)> (Figure 5b) with a selection of study 

variables makes it clear that the strength of sunspot number relationships notably 

varies harmonically with time-integration, as evidenced by sags centred on 

midpoints between successive multiples of ~11 years, and that aa index is almost 

exclusively more strongly related to all depicted study variables across all levels 

of time-integration.  A major point to note is the substantial degree of aa index 

superiority over sunspot number in the depicted relationships in-between the 

Schwabe-resolution resonance nodes.  This is, probably in large part, because 
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the aa index captures information about both heliospheric & geomagnetospheric 

dynamics as experienced at Earth, whereas sunspot number is a less geocentric 

variable that largely only indicates solar potential, capturing information about 

neither interplanetary magnetic field (IMF) configuration nor the 

geomagnetosphere. 

 

(a) 

 

(b) 

 
 (c)  (d) 

 
Figure 6.  Summary of time-integrated cross-correlation analysis of geomagnetic aa 
index <Log2(aa)>w with a selection of study variables <V>w (1891-2005) (where w = 
smoothing bandwidth in years). (a) Cross-correlations (CC) for Lag = 0.  (b)  Cross-
correlations for Lag = Best Lag.  (c) Best Lags (as judged via CC).  (d) Zoom-in on Best 
Lags of (c). 
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Figure 6 provides an alternate view, expanded to include best-lags, of the 

relationships based on time-integrated cross-correlation.  Note that the weakest 

relationships at lag 0 involve <PPT> & <XTMax>.  These mysterious variables 

receive more attention below.  Also worthy of note is that temperature range 

variables achieve best-lags of 0 by the 11a scale of time-integration, while 

<TMax> does not achieve a 0 best-lag until the 22a timescale.  <TMin>, although 

weaker than temperature range variables in <aa> cross-correlations across the 

depicted timescale spectrum, achieves a best-lag of 0 by the 2a scale of time-

integration.  This is likely to be a substantial clue to anyone working on the nature 

of the dynamics driving the time-integrated cross-correlation patterns. 

Figure 7 introduces the use of color-coded contour plots to make it 

possible to display time-integrated cross-correlations for a range of lags beyond 

just best-lags.  Note that aside from some harmonic hollows related to bounded 

cyclical asynchrony, the time-integrated cross-correlation pattern for <aa> with 

<R> (Figure 6b) resembles very strongly the time-integrated auto-correlation 

pattern for <aa> (Figure 6a), further reinforcing points made above about the 

strength of the relationship between <aa> & <R>.  Also note how the relationship 

of <aa> with <TMean> contrasts with the stronger relationships of <aa> with 

<TMin> and <aa> with the temperature range summary <XTMax-TMin> by 

noting the brighter bands near lag 0 that extend to much lower timescales for the 

<TMin> & <XTMax-TMin> plots than for the <TMean> plot.  Finally, note the 

relatively anomalous appearance of the <aa> with <XTMax> plot.  <XTMax> 

receives further attention below. 
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<aa> with 

(a) <aa> (autocorrelation) (b) <R> 

(c) <TMean> (d) <XTMax-TMin> 

(e) <TMin> (f) <XTMax> 

Figure 7.  Time-integrated cross-correlation (1891-2005) of geomagnetic aa index 
<Log2(aa)>w with a selection of study variables <V>w (where w = smoothing bandwidth in years).  
(a) <Log2(aa)>w (i.e. the time-integrated autocorrelation function).  (b) <Log2(R+1)>w.  (c) 
<TMean>w.  (d) <XTMax-TMin>w.  (e) <TMin>w.  (f) <XTMax>w.  Note the resemblance 
of (a) to (b).  Note that <TMin>w (e) is reliably far more strongly related to <Log2(aa)>w 
than is <TMean>w (c) across all timescales.  Also, note the way a 3-dimensional time-
integrated cross-correlation plot draws attention to a loose, weak relationship; 
<XTMax>w (f) is seen to be only weakly related to and poorly synchronized with 
<Log2(aa)>w. 
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Figures 8 through 10 summarize some of the more technical details of the 

time-integrated relationships of <aa> with temperature variables <T>.  

Collectively, these figures help illustrate: 

1) why the blended variable <TMean> = <(TMax+TMin)/2> exhibits weaker 

correlations with <aa> than do temperature range variables. 

2) how time-integration over strong spectral modes adjusts the view of time-

integrated relationships. 

In Figure 8, two sets of cross-correlation functions are plotted in the left 

panel.  Both involve unsmoothed (1 month timescale) temperature summaries 

<T>1mo, but while the first set involves unsmoothed <aa>1mo, the latter set 

involves 11a-smoothed <aa>11a.  Focusing on the first set, note that since the 

signs of cross-correlations for <TMin> & <TMax> are opposite, the cross-

correlations for <TMean> are muted by destructive interference while those for 

temperature range variables are amplified by constructive interference.  Next, 

note that the same is true for the 11a-smoothed <aa>11a set and also note that 

smoothing over the strong 11a aa spectral mode sharpens cross-correlations 

differentially by variable, something which is summarized for a selection of 

variables at intermediate levels of <aa>w smoothing in the top right panel of 

Figure 8.  Different temperature range characterizations are seen to capitalize on 

interference patterns to differing extents, but best-lags converge on 0 as the 11a 

<aa>11a bandwidth is approached (Figure 8c). 

It becomes evident after studying Figures 9 & 10 and then reviewing 

Figure 8 that <TMax-1.557TMin> is capturing seasonal information that is not 

captured by <XTMax-TMin> and that the relationship between <aa> and 

temperature variables can only be seen strongly once the strong shorter-

timescale annual variation in temperature variables is sufficiently time-integrated. 
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temperature held unsmoothed, <aa> time-integration varies 

          (a)  (b) 

 

 (c) 

Figure 8 of .  Evolution of features of the relationship between variable-smoothing-
bandwidth average monthly geomagnetic aa index <Log2(aa)>w (where w = smoothing 
bandwidth, which is 1month (i.e. unsmoothed) if not otherwise indicated) and a selection of 
unsmoothed Agassiz, BC average monthly temperature variables <T>1mo (1891-2005).  
(a) Cross-correlation of average monthly geomagnetic aa index <Log2(aa)> and 11year-
smoothed average monthly geomagnetic aa index <Log2(aa)>11a with a selection of 
unsmoothed Agassiz, BC average monthly temperature variables <T>1mo.  (b) Evolution 
of the cross-correlation from (a) for three indicators of Agassiz average monthly diurnal 
temperature range, with temperature time-integration held constant at the unsmoothed 1 
month timescale <T>1mo, as the scale of aa index time-integration increases from 1mo to 
11a (i.e. shifting focus from <Log2(aa)>1mo towards <Log2(aa)>11a).  (c) Evolution of the 
best lags associated with (b). 

 
 

Figure 9 is analogous to Figure 8, with the difference being that it is 

<aa>1mo that is held unsmoothed while the degree of temperature variable time-

integration varies.  This provides a crude means of assessing the degree to 

which neglect of the dominant annual mode in the temperature series obscures 

the relationships between <aa> and <T>.  As in Figure 8, the effects of 

constructive & destructive interference are seen, but in the top right panel note 

that the <aa>1mo with <T>w cross-correlation traces appear to reach the same 



  33 

limit with increasing time-integration.  With the exception of <XTMax-TMin>w, 

which involves additional high-frequency 4mo & 3mo spectral modes associated 

with <XTMax> that are not as thoroughly muted by smoothing as are the profiles 

for temperature variables with simpler spectral signatures, temperature range 

best-lags are seen to converge to 0 by the 11a smoothing bandwidth. 

 
aa held unsmoothed, <temperature> time-integration varies 

          (a)  (b) 

 

 (c) 

Figure 9.  Evolution of features of the relationship between average monthly 
geomagnetic aa index <Log2(aa)> and a selection of variable-smoothing-bandwidth 
Agassiz, BC average monthly temperature variables <T>w (1891-2005) (where w = 
smoothing bandwidth, which is 1month (i.e. unsmoothed) if not otherwise indicated).  (a) Cross-
correlation of average monthly geomagnetic aa index <Log2(aa)> with a selection of 
unsmoothed and 11year-smoothed Agassiz, BC average monthly temperature variables, 
<T> & <T>11a respectively.  (b) Evolution of the cross-correlation from (a) while <aa>1mo 
is held unsmoothed as temperature-variable time-integration is increased (i.e. shifting 
focus from <T>1mo towards <T>11a) for three indicators of Agassiz average monthly 
diurnal temperature range.  (c) Evolution of the best lags associated with (b). 
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Figure 10 includes the same reference curves in the left panel for 

unsmoothed <aa>1mo with <T>1mo, along with cross-correlation curves for 11a 

smoothing of both <aa>11a and temperature variables <T>11a.  Note the gain in 

cross-correlation when time is integrated equally for both variables (left panel & 

top right panel).  The temperature range variables are seen to juggle relative 

best-lag cross-correlation positions around the 1a smoothing bandwidth (top right 

panel), reflecting differences in the nature of their seasonal information content.  

It is important to keep in mind that in the right panel of Figure 10 both <aa>w & 

<T>w smoothing-bandwidths are being varied, whereas in each of Figures 8 & 9 

one or the other of <aa> & <T> is being held unsmoothed while the degree of 

time-integration of the other varies.  All of the presented temperature range 

variables achieve high cross-correlations and 0 best-lags by the 11a scale of 

time-integration when time is integrated equally for pairs of variables. 

Although <TMin> achieves a 0 best-lag with far less time-integration (see 

Figure 6d), it is seen (Figure 10, left panel & Figure 6a) to retain a peak in cross-

correlation of lower magnitude than those of the temperature range variables as 

the scale of time-integration increases.  Since <TMin> is not independent of 

temperature range variables and since <TMax>, which is also not independent of 

temperature range variables, was seen above (Figure 6d) to not achieve a best-

lag of 0 until the 22a scale of time-integration, it seems clear that there are some 

interesting dynamics at play in the <aa> relationship with temperature variables 

that are worthy of further study. 

Partialing out time-integration information by variable, as has been done 

in Figures 8 to 10, helps to illustrate the breakdown of the boost in relationship 

detection stemming from first integrating over the lower annual mode in 
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temperature and then continuing to integrate over the higher ~11a Schwabe 

mode in geomagnetic aa index.  This means of exploratory investigation has the 

benefit of not contaminating insights with assumptions about seasonal structure 

that could interfere with the detection of seasonal/Schwabe interaction 

complexities.  In a more specialized analysis, this method could be expanded to 

include all possible crosses of independently-varying, paired time-integration 

levels. 

 
time-integration levels of <aa> & <temperature> vary together 

          (a)  (b) 

 

 (c) 

Figure 10.  Evolution of features of the relationship between variable-smoothing-
bandwidth average monthly geomagnetic aa index <Log2(aa)>w (where w = smoothing 
bandwidth, which is 1month (i.e. unsmoothed) if not otherwise indicated) and a selection of variable-
smoothing-bandwidth Agassiz, BC average monthly temperature variables <T>w (1891-
2005).  (a) Cross-correlation of variable-smoothing-bandwidth average monthly 
geomagnetic aa index <Log2(aa)>w with variable-smoothing-bandwidth Agassiz, BC 
average monthly temperature variables <T>w.  (b) Evolution of the cross-correlation from 
(a) with increasing time-integration (i.e. going from <Log2(aa)> with <T> to <Log2(aa)>11a 
with <T>11a) for three indicators of Agassiz average monthly diurnal temperature range.  
(c) Evolution of the best lags associated with (b). 
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Precipitation Relationships 

The precipitation variable exhibited sufficiently distinctive patterns in its 

time-integrated <aa> cross-correlation relations to warrant more detailed focus.  

Table 4 provides a summary of the bivariate relations of <PPT> with a selection 

of study variables at the 11a & 22a smoothing-bandwidths.  If lags of about 25 

years are entertained, much stronger relationships are observed.  Timescales of 

this size are cited by earth scientists as being important in the redistribution of 

water on the Earth (Vondrak 1999). 

Figure 11 provides a summary of time-integrated cross-correlations for a 

broader selection of study variables with <PPT>, extending the view to include 

other scales of time-integration and reinforcing the point about roughly 25 year 

lags.  <TMean> & <XTMax> stand out as being the weaker variables in their 

relationships with <PPT> across a wide range of time-integration scales.  More 

details are shown for a selection of time-integrated <PPT> relationships in Figure 

12, which provides information for lags other than best-lags, revealing a generally 

similar pattern shared by <R>, <aa>, <TR>, & <XTMax-TMax> in their time-

integrated relations with <PPT>. 

It is important to note that the results presented here are epoch-

dependent.  It is also worth noting that wavelet analysis reveals similar rates of 

<aa> & <PPT> cycling at a fairly wide range of timescales, a detail which could 

contribute an important focus in a more detailed future study of the complexities 

at work in <PPT> relations. 
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Table 4.  Relationships of average monthly precipitation <Log2(PPT+1)> at Agassiz, BC 
with a selection of study variables (1891-2005) at smoothing bandwidths of 11a & 22a. 

 
 TMean TMax TMin TRange 

=TMax-TMin 
XTMax 
- TMax Log2(aa) Log2(R+1) 

11 
a 

r2 = 0.0025 
 

r2 = 0.0223 r2 = 0.0160 r2 = 0.0222 
 

r2 = 0.0081 
 

r2 = 0.1207 r2 = 0.1337

11 
a 

Lag = 18a 
r2 = 0.3222 

 
Lag = 25a 
r2 = 0.7717 

Lag = 24a
r2 = 0.7720

Lag = 25a
r2 = 0.8749

Lag = 24a 
r2 = 0.8234

 
Lag = 25a 
r2 = 0.7889 

Lag = 25a
r2 = 0.7028 

22 
a  

r2 = 0.0036 
 

r2 = 0.0788 r2 = 0.0336 r2 = 0.0518 
 

r2 = 0.0002 
 

r2 = 0.1813 r2 = 0.2119 

22 
a 

Lag = 16a 
r2 = 0.5871 

Lag = 25a 
r2 = 0.8291 

Lag = 25a
r2 = 0.7901

Lag = 25a
r2 = 0.8452

Lag = 24a 
r2 =0.9155 

 
Lag = 26a 
r2 = 0.8030 

Lag = 26a
r2 = 0.7489 
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(a) 

 

(b) 

 

(c) 

 
Figure 11.  Summary of time-integrated cross-correlation analysis (1891-2005) for a 
selection of study variables <V>w with Agassiz, BC average monthly precipitation 
<Log2(PPT+1)>w (where w = smoothing bandwidth in years). (a) Cross-correlations for Lag = 0.  
(b)  Cross-correlations for Lag = Best Lag.  (c) Best Lags.  Note the heavy concentration 
of variables with a <Log2(PPT+1)>1mo best-lag of ~26a. 
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(a) <R> with <PPT> (b) <aa> with <PPT> 

(c) <TR> with <PPT> (d) <XTMax-TMax> with <PPT> 

Figure 12.  Time-integrated cross-correlation (1891-2005) of (a) sunspot number 
<Log2(R+1)>w (with traditional-style plot illustrating specified horizontal-slices beneath to 
assist viewers who are unaccustomed to reading color-contour plots) (b) geomagnetic 
aa index <Log2(aa)>w (with traditional-style plot beneath), (c) <TRange>w, and (d) 
<XTMax-TMax>w with Agassiz, BC average monthly precipitation <Log22(PPT+1)>w 
(where w = smoothing bandwidth).  Precipitation at Agassiz, BC shows complex epoch-
dependent relationships with other study variables. 
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Relationships Involving Extreme Maximum Monthly 
Temperature, Cosmic Ray Flux, & Solar Inertial Motion 

The relatively complex time-integrated relationships of <XTMax> (Figures 

13 & 14a,b,&c) led to the inclusion of cosmic ray flux <CRF> as a study variable.  

<CRF> is strongly cyclically synchronized with both <R> & <aa>, as summarized 

in Figure 15, but the timescale-dependent features of <CRF> relationships with 

<R> & <aa> reflect substantial complexity. 

 

(a) 

 

(b) 

 
Figure 13.  Summary of time-integrated cross-correlation analysis of monthly extreme 
temperature range <XTMax>w with a selection of study variables <V>w (where w = 
smoothing bandwidth in years). (a) Cross-correlations for Lag = 0.  (b)  Cross-correlations for 
Lag = Best Lag.  The <SIx+60°(1)> and <CRF> series depicted here only cover 1953-
2005.  All other series depicted here cover 1891-2005. 
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(a) <aa> (b) <TR> (c) <TMean> 

  
... with <XTMax> 
<TMax> with ... 

  
(d) <aa> (e) <TR> (f) <TMean> 

Figure 14.  Time-integrated cross-correlation (1891-2005) of (a) geomagnetic aa index 
<Log2(aa)>w, (b) <TR>w, and (c) <TMean>w with Agassiz, BC extreme maximum 
monthly temperature <XTMax>w (where w = smoothing bandwidth).  For comparison:  Time-
integrated cross-correlation (1891-2005) of <TMax>w with (d) geomagnetic aa index 
<Log2(aa)>w, (e) <TR>w, and (f) <TMean>w, (where w = smoothing bandwidth).  <XTMax> at 
Agassiz, BC shows complex epoch-dependent relationships with other study variables.  
The vertical bands in these plots at ~25a & ~50a are suggestive of statistical resonance 
modes. 
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(a) 

 
(b) 

 
(c) 

 
Figure 15.  Cross-wavelet transform phase-difference, time-integrated cross-correlation, 
and monthly-timescale best-lag scatterplots for pairs of solar activity-related indices 
(1953-2005).  (a) Geomagnetic aa index <Log2(aa)> with cosmic ray flux <CRF>.  (b) 
Geomagnetic aa index <Log2(aa)> with sunspot number <Log2(R+1)>.  (c) Sunspot 
number <Log2(R+1)> with cosmic ray flux <CRF>. 
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Regardless of the level of our present understanding, we can start by 

mapping out the morphology of relations.  In the present study, a strong 

relationship is found to exist, during the epoch for which <CRF> data is available 

(1953-2005), between <CRF> & <XTMax> at the 11a & 22a year timescales, the 

timescales of the solar Schwabe & Hale cycles (Figures 13b & 16).  During the 

limited record interval, <CRF> exhibits an even-odd pattern alternation that is 

related to the solar polarity reversal about midway through each ~22a magnetic 

Hale cycle (Figure 1).  In light of this, stronger 0 lag cross-correlations & tighter 

best-lags around the 22a timescale, relative to those around the 11a timescale, 

are not surprising (Figures 13 & 17a).  <TMax> relates nearly as strongly to 

<CRF> as does <XTMax>, but it is important to be aware that <TMax> shows 

relatively less enigmatic time-integrated relations with other study variables than 

does <XTMax> (Figure 14). 

Both <XTMax> & <CRF> exhibit strong time-integrated relations with 

patterns of solar motion about the barycentre of the solar system over the interval 

for which <CRF> data is available (Figures 13, 16, & 17).  When considering the 

apparent 1953-2005 epoch Schwabe/Hale-timescale 3-way relationship involving 

<XTMax>, <CRF>, & <SI>, it is worth keeping in mind that the latter half of the 

20th century contrasts with the earlier half in the following ways:  (1) rapidly rising 

atmospheric CO2 concentrations; (2) high average geomagnetic activity; (3) low 

temperature ranges; (4) regular 9 year tidal-event period (versus 6 year period in 

the early 20th century) (Keeling & Whorf 1997); and (5) "slightly disordered" 

(1957-2005) solar inertial motion pattern (versus "trefoil, stable" pattern 1906-

1956) (Charvatova 2007).  These &/or other factors may play important roles in 

modulating dominances over & between epochs.  Further investigation will be 

necessary to further characterize &/or rule out the apparent relationships. 
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Figure 16.  Time-integrated cross-correlations (Lag = Best Lag; 1953-2005) for cosmic 
ray flux <CRF>w with a selection of study variables <V>w (where w = smoothing bandwidth in 
years). 
 
 

(a) <CRF> with <XTMax> (b) <CRF> with <SIx+0(1)> (c) <XTMax> with <SIx+60(1)> 

 
Figure 17.  Time-integrated cross-correlation (1953-2005) of cosmic ray flux <CRF>w 
with (a) <XTMax>w and (b) <SIMx+0°(1)>w, (where w = smoothing bandwidth).  (c) Time-
integrated cross-correlation (1953-2005) of extreme monthly maximum temperature at 
Agassiz, BC <XTMax>w with <SIx+60°(1)>w. 

 

As a final note, Figure 17c draws attention to a relationship involving a 60° 

rotation.  In order to explore anisotropy, the coordinate frame of solar motion was 

rotated to investigate how time-integrated cross-correlation patterns vary with 

spatial-orientation.  During the present study, it was found that some 

orbital/rotational relationships, including the (apparent) ones involving solar motion 

with <XTMax> & <CRF>, exhibit considerable anisotropy and that while negative 

best-lags might appear at some reference frame orientations, positive best-lags 

can appear at others, providing a means of investigating any lags that are puzzling 

in light of imaginable causation-chains. 
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Polar Position 

It has been suggested that terrestrial polar position is an indicator of the 

lunar nodal cycle and that it is related to Arctic temperature series (Yndestad 

2006).  Leaving aside the issue of whether polar position is primarily conveying 

information about the lunar nodal cycle, polar position was investigated for time-

integrated cross-correlations with a selection of study variables.  Rotations of the 

polar position coordinate axes were also explored to assess the influence of 

spatial orientation on relationships.  It was determined that orientation has an 

effect on the nature of the relationships observed, but further details on 

orientation are omitted because the original polar position x & y orientations 

provide nearly optimal orientations for the purposes of the present research. 

Summaries of time-integrated relationships involving polar position x 

direction are presented in Figure 18.  Figure 19 includes additional detail for a 

smaller selection of the relationships.  Polar position shows strong relationships 

with <aa>, <TMin>, & temperature range variables.  It shows a weaker 

relationship with <TMean> and an even weaker relationship with <XTMax>.  

Studies that focus solely on the relationships between mean temperatures and 

polar position might benefit from a broadening to include additional summaries. 
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Figure 18.  Time-integrated cross-correlations (Lag = Best Lag; 1891-2005) for polar 
position x-direction <Px>w with a selection of study variables <V>w (where w = smoothing 
bandwidth in years).  While a lot of studies in the literature focus on mean temperature 
variables, this summary suggests that investigating alternative summaries may be 
fruitful. 
 
 

<Px> with 
(a) <aa> (b) <XTR> (c) <TMax-XTMin> 

  
(d) <TMin> (e) <TMean> (f) <XTMax> 

 
Figure 19.  Time-integrated cross-correlation (1891-2005) of polar position x-direction 
<Px>w with (a) geomagnetic aa index <Log2(aa)>w and Agassiz, BC average monthly 
temperature range indices (b) <XTR>w = <XTMax-XTMin>w, (c) <TMax-XTMin>w, (d) 
<TMin>w, (e) <TMean>w, and (f) <XTMax>w, (where w = smoothing bandwidth). 
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Alternate Characterizations of Solar System Orbital Inertia, 
with Focus on Possible Relationships with Polar 
Position 

A class of solar system orbital inertia (SI(k)) characterizations, in which 

jovian planet contributions are weighted by fractional moments mrk, k∈Real, was 

investigated for relationships with a selection of other study variables.  Jose 

(1965) presented a few examples of SI characterizations and stressed that any 

number of other characterizations are possible.  Orbital angular momentum 

(OAM) is one SI characterization which has received considerable attention in 

the literature (Landscheidt 1999; Jakubcova 1985; Wilson et al. 2009; Juckett 

2000).  OAM can easily be derived from the class of SI characterizations 

investigated in the study at hand. 

A number of Landscheidt's publications (1998-2002) focused on variation 

of OAM at particular timescales, such as 3 years and 9 years.  Variable time-

integration was introduced in the present study to expand the view across a 

spectrum of timescales.  Landscheidt found very interesting correlations, but 

skeptics appear to have suspended judgement for now, possibly awaiting 

concrete documentation on physical mechanisms.  The variable moment-degree 

in the present study was initially introduced to help sharpen the perception of 

fundamental SI oscillations (which were found to be muted around 1930, for 

example, in the OAM series), but it proved to also produce provocative 

correlations, some of which are worthy of report even in the present absence of 

full theoretical support.  Also noteworthy, attentiveness to spatial orientation has 

led to an enhanced awareness of nearly-neighboring timescale modes that could 

easily be overlooked by investigators.  Juckett (2000) appears to have arrived at 

a similar insight. 
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The lissajous pattern of the relative jovian planet orbits results in an 

epitrochoid orbit of the sun around the solar system barycentre (Figure 20).  

Color-contour plots of time-integrated SI time series and their spatial orientation 

vector-decompositions, along with a selection of derivatives, draws visual 

attention to striking periodicities (that can be confirmed spectrally) that exhibit 

correspondingly striking time-integration properties. 

 
(a) (b) 

 

Figure 20.   (a) Sun's orbit of solar system barycentre (1891-2005).  (b) Relative angular 
position (°) of the Sun & the four Jovian planets, Jupiter (J), Saturn (S), Uranus (U), & 
Neptune (N)  (1891-2005). 

 
 

The first inertial moment, SI(1), with planet contributions weighted by mr1, 

is a scalar multiple of the variable-radius of the sun's orbit, so it can be 

interpreted as characterizing the sun's physical position relative to the solar 

system barycentre.  Not surprisingly, due to Jupiter's mass and the modulation of 

its influence by its most frequently encountered and most massive neighbor 

Saturn, a roughly 19.76a cycle is prominent in this series, with an alternating 

intensity on odd cycles induced by lower frequency beats between the gas 

giants.  However, investigating derivatives of SI characterization, via differencing, 

increasingly reveals (Figure 21 a-c (top row)) a seemingly fundamental half-

period of about 6.4a (over the interval 1891-2005), which falls just below the third 
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harmonic of the Jupiter-Saturn (JS) synodic period and very close to the half-

period of the Jupiter-Neptune (JN) synodic period. 

 
 (a) SI'(1) (b) SI''(1) (c) SI'''(1) 

 
 (d) SI'(2.70) (e) SI''(2.70) (f) SI'''(2.70) 

 
 (g) SIx'(1) (h) SIy'(1) (i) SIx''(1) 

 
Figure 21.  Standardized time-integrated time series (1891-2005):  (a) SI'(1).  (b) SI''(1).  
(c) SI'''(1).  (d) SI'(2.70).  (e) SI''(2.70).  (f) SI'''(2.70). (g) SIx'(1).  (h) SIy'(1).  (i) SIx''(1).  
The 1st through 3rd derivative fractional k=2.70a moment of inertia SI sequence adjusts 
non-linear distortions to sharpen the view of the ~6.4a beat half-period.  (Compare d-f 
with a-c.)  Also, note the slight downshift in period for the axial series (g-i). 

 
 

To see this better, the time-smoothed spectrum of the SI characterization 

for a fractional moment of k=2.70, SI(2.70), chosen to equalize the relative 

influence of Saturn & Uranus, is presented (Figure 21 d-f (middle row)).  This 

emphasizes the ~6.4a alternation, particularly with increasing derivatives.  

Harmonics & subharmonics (confirmed spectrally) show up visually with time-

integration.  These harmonics & subharmonics coincide with a pattern of lags 

found in solar-terrestrial-climate relations in the present study. 
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When polar SI characterizations are re-expressed as axial components, 

SIx(k) & SIy(k) in a Cartesian spatial frame, which is easily rotated to further 

explore the possible significance of orientation, for example due to field 

anisotropies, a slightly downshifted harmonic spectrum of important timescales is 

revealed (Figure 21 g-i (bottom row)), as is to be expected due to the dominant 

high-frequency content due to Jupiter's orbit (1/11.85a). 

At this point, considering the properties of terrestrial polar position wave 

structure in more detail is constructive (Figure 22). 

 
 (a)   (b) 

  
 (c) (d) 

    
Figure 22.  (a) Polar position motion (deviation from a standard reference in 
arcseconds(")) during the interval 1849-2007.  The lower density of dots at the left end of 
the plot is due to the half-as-frequent measurements before 1890.  The horizontal grid-
spacing of the plot draws attention to features of the group wave structure.  Note the 
apparent phase-shift somewhere near 1930.  (b) Resonance curve depicting the 
theoretical acoustic relationship between polar position group-wave & the terrestrial 
Chandler period.  (c) 3 year moving standard deviation of the cross-correlation of polar 
position x direction with polar position y direction.  This highlights the group-wave period 
of ~6.4a to ~6.5a.  (d) Group-wave structure manufactured using acoustic theory to 
demonstrate the interference (via superposition) of an annual sinusoidal wave and the 
resonance of that annual wave with a sinusoidal wave that has a period of 6.4375a. 
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The period of ~6.4a, which seems to be a feature shared by SI & polar 

motion structure, prompted a new line of investigation, the very earliest results of 

which are summarized in Figure 23, which reveals a relationship involving a 

striking phase concordance (after 1935) & rough anti-concordance (before 1920) 

on either side of a transitional interval centred near 1930, which is roughly 

coincident with a similar time-window given special attention by Vondrak (1999) 

due to a phase-reversal of Earth's Chandler wave over this interval.  Ongoing 

investigation of this provocative relationship, although at a preliminary stage, is 

yielding insights which are consistent with the early insights presented here. 

 
A period of about 6.4a has shown up many times in the present study.  

6.4 years is, for example, roughly: 

1) a multiple or factor of many of the best-lags discovered via even a very 

crude initial time-integrated-relationship exploration.  See Figure 1b. 

2) the fourth harmonic of the best-lag for the time-integrated cross-correlation 

function of several study variables with <PPT>.  For example, at the 11a 

timescale, for <aa>11a:  25.75a / 4.  See the bright bands angling down 

towards ~26a in Figure 12, Figure 11c, & the bottom row of Table 4. 

3) the fourth & eighth harmonics of the best-lags, at noteworthy timescales, 

for the time-integrated cross-correlation function of several study 

variables with <XTMax>.  For example, at the 11a timescale, for <aa>11a:  

51.5a / 8.  See the bright bands over ~25a & ~50a in Figure 14a,b,&c and 

also see <XTMax> in Figure 6c. 
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(a) 

(b) 

(c) 

Figure 23.  Standardized (a) polar position & SIn(4) derivative series for n=0,1,2,3  
(1891-2005) and 3.25a-moving-standard-deviation of Px & Py along with the function 
zSI''(4)2 - zSI'''(4)2 for the intervals (b) 1935-2000 & (c) 1890-1955, drawing attention a 
striking phase concordance (after 1935) & rough anti-concordance (before 1920) on 
either side of a transitional interval centred near 1930, which is roughly coincident with a 
similar time-window given special attention by Vondrak (1999) due to a phase-reversal 
of Earth's Chandler wave over this interval.  The SI(4) curve with low-frequency Uranus-
Neptune (UN) & Saturn-Neptune (SN) influences removed is included on plots as an 
alternate means of drawing attention to the ~6.4a timing of beats. 
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4) twice the best-lag for the cross-correlation of Agassiz, BC monthly average 

diurnal temperature range with monthly geomagnetic aa index 

(unsmoothed).  See first row of Table 3, Figure 6d, & Figure 10c. 

5) the best-lag (or a harmonic thereof) for a variety of other relationships 

investigated during the course of this study, for example several involving 

solar system orbital inertial characterizations.  For one example, see 

<XTR> in Figure 24d. 

6) the period of the polar position group wave, the resonance period of the 

Earth's Chandler wobble with the Earth's annual wobble, & the oscillatory 

period of the 3-year moving standard deviation of the auto- & cross-

correlation functions for all possible crosses of Px & Py (confirmed 

spectrally).  See Figures 22 & 23. 

7) the seemingly fundamental mode (confirmed spectrally) that shows up in 

the harmonic spectrum of a variety of characterizations of solar system 

orbital inertia, which, upon very detailed preliminary investigation, seems 

to fall roughly between the 25th (6.59a) & 26th (6.34a) harmonics of the 

orbital period of Neptune (164.79a).  See Figures 21 & 23. 

8) the resonance period of pairs of roughly annual-to-biennial timescale solar 

periodicities, which seem related, on average perhaps, over epochs, 

according to the acoustic identity BP(T/k,T/(k+1)) = T (where BP denotes 

beat period) with T = ~6.4a in the present case.  For example:  

BP(3.2a,2.13a), BP(2.13a,1.6a), & BP(1.6a,1.28a).  (Relevant references:  

Mursula et al. 2003, 2004, & 1999; Javaraiah 2003; Charvatova 2007; 

Kato et al. 2003; Krivova & Solanki 2002). 

 



  54 

It is worth noting that Yndestad (2006) interprets periodicities such as 

25a, 50a, & 75a as being related to lunar nodal harmonics.  Insights stemming 

from the present study raise the issue of possible confounding.  Gross' findings 

(2005) regarding polar motion leave questions regarding the drivers of the 

atmospheric & oceanic pressures and Landscheidt (1999) did find correlations 

between solar OAM and the terrestrial southern oscillation index, which is based 

on atmospheric pressures over the ocean & related to global climate patterns.  

Disentangling possibly-shared harmonics, possibly stemming from mutual 

influences, will require further investigation. 

Finally, the results of time-integrated cross-correlation analyses involving 

<SI(4)> are summarized in Figures 24-26.  <SI(4)> appears to be strongly related 

to <Py> and to also be relatively strongly related to <aa> & <XTR> across a wide 

range of timescales over the interval 1891-2005.  Analogous to what has been 

reported with respect to relationships explored above, <TMin> exhibits a tight lag 

pattern and <TMean> is considerably weaker than <TMin> in its <SI(4)> 

relationship, while <XTMax> is even weaker.  A picture of a seemingly-related 

group of variables is emerging.  It is worth noting that <SIy(4)> exhibits 

exceptionally high time-integrated cross-correlations with <Py> above the 1a 

timescale, along with a striking 0 best-lag at all timescales (Figure 26). 

Some of the strong relationships found may be coincidental, but while 

they do not necessarily reflect real physical linkages, further investigation, along 

at least some of the lines introduced & explored above, seems warranted. 
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(a) 

 

(b) 

 
 (c)   (d) 

 
Figure 24.  Time-integrated cross-correlation analysis (1891-2005) summary for a fourth-
moment solar system jovian-planet orbital inertia characterization <SI(4)>w with a 
selection of study variables <V>w (where w = smoothing bandwidth in years). 
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<SI(4)> with 

(a) <TMean> (b) <XTR> (c) <PPT> 

 
Figure 25.  Time-integrated cross-correlation (1891-2005) of <SI(4)>w with Agassiz, BC 
(a) average monthly temperature <TMean>w, (b) monthly extreme temperature range 
<XTR>w = <XTMax-XTMin>w, and (c) average monthly precipitation <Log2(PPT+1)>w, 
(where w = smoothing bandwidth). 

 
 

 
Figure 26.  Time-integrated cross-correlation analysis (1891-2005) summary for 
<SIy(4)>w with <Py>w, (where w = smoothing bandwidth). 
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Atmospheric CO2 

The strongest time-integrated cross-correlations found for <CO2> (Figure 

27) give cause for a cautionary note.  Any monotone time series with a short 

record length (Figure 28) is susceptible to exhibiting high correlations with any 

other time series that are non-undulating over the short era.  The weakest time-

integrated cross-correlations with <CO2> (1958-2005) were for study time series 

that oscillate, such as sunspot number <R>.  Even the sunspot number envelope 

oscillates during the period for which modern <CO2> measurements are 

available; hence the lower time-integrated cross-correlations with <CO2> in 

comparison with, for example, <CRF>, another fairly sharply oscillating series, 

which shows a strengthening in its relationship with <CO2> at the 22a timescale 

as oscillations associated with the Hale solar cycle are smoothed over. 

The strong time-integrated relationship between <CO2> & the polar 

position y-direction and the exceptionally strong time-integrated relationship 

between <CO2> & the y-direction of the fifth-moment solar system orbital inertia 

characterization <SIy(5)>, while interesting, may indicate nothing about physical 

linkages.  For the purposes of the present study, no strong conclusions are being 

drawn regarding <CO2>, but it does appear reasonable to suggest that minimum 

temperatures at Agassiz, BC are more strongly related to & more tightly 

synchronized with <CO2> than are maximum temperatures at sub-Hale 

timescales. 
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(a) 

 
 (b)  (c) 

 
Figure 27.  Summary of time-integrated cross-correlation analysis (1958-2005) for a 
selection of study variables <V>w with atmospheric carbon dioxide concentration <CO2>w 
(where w = smoothing bandwidth in years). (a) Cross-correlations for Lag = Best Lag.  (b)  
Focus on lower timescales & a subset of variables from (a).  (c) Best Lags (in months).  
Minimum temperature summaries appear more strongly related to & more tightly 
synchronized with <CO2>w than are their maximum temperature analogs at sub-Hale 
timescales.  <Py>w appears more strongly related to <CO2>w than is <TMin>w, but this 
may be coincidental.  The high <CO2>w correlation with <CRF>w centred at the 22a 
timescale is worthy of note and <XTMax>w peaks in its relationship with <CO2>w at 
around the same timescale.  By far the most striking feature of this group of plots is the 
cross-correlation of over 0.99 between <CO2>w & <SIy(5)>w across all timescales right 
down to the grain (1 month), with a best-lag of 0 across the board; however, this strong 
coincidence may reflect absolutely nothing about physical linkages (see text). 
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Figure 28.  Monthly atmospheric CO2 concentration at Mauna Loa (1958-2008) with 
annual average superimposed. 
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Conclusions 

Temperature patterns at Agassiz, BC over the interval 1891-2005 show a 

relationship with geomagnetic aa index at the timescale of the solar Schwabe 

(~11a) cycle.  A few of the highlights are as follow: 

1) Indices of average monthly temperature range, which can be expressed as 

differences or as ratios of absolute temperatures, are the temperature 

variables that show the strongest time-integrated relationship with 

geomagnetic aa index across all investigated timescales. 

2) Average monthly minimum temperature shows the tightest lag pattern in its 

time-integrated relationship with geomagnetic aa index. 

Terrestrial polar motion, indices of solar system orbital inertia, & 

geomagnetic aa index are more strongly related to average monthly temperature 

ranges & minima at Agassiz, BC over the interval 1891-2005 than to means 

across all investigated timescales. 

Terrestrial polar motion shows a very strong time-integrated relationship 

with an index of solar system orbital inertia over the interval 1891-2005 across all 

super-annual timescales and, more generally, further investigation may be 

warranted in light of a variety of striking features of relationships involving solar 

system orbital inertia and terrestrial polar motion, including seemingly-related 

non-random best-lag patterns which appear in the time-integrated relationships 

of Agassiz, BC monthly weather summaries. 

Further investigation may also be warranted with regards to the following 

noteworthy findings: 

1) Atmospheric carbon dioxide concentrations appear to have a stronger 

time-integrated relationship with Agassiz, BC average minimum monthly 
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temperatures than with average monthly maximum temperatures at sub-

Hale timescales over the study interval for which carbon dioxide data is 

available, 1958-2005. 

2) Average monthly precipitation at Agassiz, BC shows a time-integrated 

relationship with geomagnetic aa index over the interval 1891-2005 if lags 

of about 25 years are entertained. 

3) Agassiz, BC extreme maximum monthly temperature shows a strong time-

integrated relationship with both cosmic ray flux and an indicator of solar 

system orbital inertia over the study interval for which cosmic ray flux data 

is available, 1953-2005, at both the solar Schwabe (~11a) & Hale (~22a) 

timescales. 

Closing Remarks 

Improvements to climate models depend in part upon deepening 

understanding of complex natural climate variation.  Even if some of the findings 

of the present study are ephemeral, epoch-dependent, &/or site-specific, they 

may provide important clues about solar-terrestrial-climate harmonics and 

dynamics more generally. 
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