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Abstract— Two Computational Intelligence techniques, neu-
ral networks-based Multivariate Time Series Model Mining
(MVTSMM) and Genetic Programming (GP), have been used
to explore the possible relationship between solar activity
and temperatures in Central England for the 1721 to 1967
period. Data driven analysis of multivariate, heterogeneous and
incomplete time series are needed in order to understand the
extreme complexity of the climate machinery and to detect the
possible relative contribution of influencing processes, like the
Sun, whose decadal and centennial role in the climate is still
debated.

Experiments were carried out using each one of these
techniques and their combination. Time-lag spectra obtained
by means of MVTSMM seems to indicate time stamps of
some of the relevant Earth-climate and solar variations on
the temperature record. The equations provided by GP ap-
proximated analytically the relative contribution of particular
solar activity time-lags. These preliminary results, even if they
still are insufficient to support or discredit possible physical
mechanisms, are interesting and encouraging to explore more
in that direction.

I. I NTRODUCTION

Humans have always tried to find ways to forecast the
whims of weather and climate. When sunspot observations
became well established, it was natural to look for solar
causes. W. Herschel, in 1801, was the first to spot the
relationship and publish it [6]. Since then, a large number
of scientists have refined the search. The Sun is, no doubt,
the source of the Earth’s climate but it acts through a complex
network of intermediate mechanisms, which make the finding
of simple relationships extremely difficult. Today, since the
arrival of satellites, there is a fair knowledge of climate the
world over, but it is difficult to understand the precise role
of basic contributions such as oceans and the Sun itself.

In the past, the only readily available measurement of the
Sun’s activity was counting the variable number of spots
which appear on its surface, something that could only
be reliably done after Galileo in 1613. During 1843 H.
Schwabe observed the evolution of sunspots and suggested
the presence of the 11 year cycle bearing his name. Five
years later, J. R. Wolf devised the daily index of sunspots
activity which remains the mainly one in use. At the turn of
the 20-th Century, E. W. Maunder discovered a period -from
1645 to 1715- with very low sunspot activity -the Maunder
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Minimum. In Europe, by the end of the medieval times,
winter temperatures dropped down so much that, in 1939,
Matthes coined for that period the rather informal term of
”Little Ice Age”. Such period, whose universality is under
ongoing discussion, has been repeatedly put in relationship
with the Maunder Minimum, establishing the basis for a large
research effort on the solar-climate link.

However, there are a number of difficulties: the scarcity
and reliability of past climate data (many are just proxies),
the difficult reconstruction of long sunspots records, the
assumption of a direct relationship with sunspots (but they
are also a proxy of the Sun’s activity), and the difficulty
of establishing clear cut First-Principles approaches. So, it
is unsurprising that most simulation models usually avoid
the inclusion of some external climate forcing mechanisms
and instead put the emphasis on well known climate-related
processes. Meanwhile, solar physicists have been pointing
to the extraordinary activity of magnetic solar ejections
for the last half century. Some even say the activity is
without precedent in the last ten thousand years [31] [24],
but others disagree [22]. The current accepted knowledge
about the present climate change implies a major role of the
anthropogenic activities [8] while also acknowledging the
presence of natural causes, with the Sun leading them.

New research is now focusing on first principles ex-
planations for external forcing mechanisms, as they not
only may be of relevance to the future of climate but
already are of the highest importance for our satellites, the
space exploration and many Earth based systems. Two main
and complementary lines of research seem very promising:
the electric circuitry of the ionosphere-atmosphere-Earth’s
surface system [26] and its modulation via cosmic rays
activity [25], both affected by the solar activity and both
affecting the processes of cloud formation and hence all the
climatic system. But, apart from theoretical considerations,
an important issue is to try to extract more information from
the available data.

The maximum common length of monthly climatic and
solar data available reaches back to 1659, but probably only
yearly aggregated values can be used with some confidence
[19]. Computational intelligence techniques have been ex-
tensively applied to the analysis of both Earth’s temperature
and Solar Sunspots data. Preferred techniques have been
neural networks ([32], [9], [18], [33], [16], [17] and many
others), but most studies analyze these data separately (with
some exceptions like [34] and [14]). Other computational
intelligence methods like genetic programming (GP) were
first introduced in [30]. The case of genetic programming



is interesting because it produces models in the form of
analytical functions, which are very familiar to experts from
climatological and astronomic communities.

This paper explores the use of two computational in-
telligence techniques: neural networks-based time series
model mining and model discovery of analytic functions
(via genetic programming), for mining relationships between
measured temperatures on earth and solar activity. These
techniques are applied independently and then combined,
complementing each other. This is a promising approach
for determining potential relationships among several time-
series of different complex processes. The neural networks-
based time series model mining (MVTSMM) focuses on
extracting information about the inner structure of the series,
whereas in genetic programming explicit analytic functions
are constructed as function approximations describing the
data. It could very helpful to determine and quantify the
relative contribution of natural and anthropogenic causes
behind present climatic change. Hopefully it would be done
some day.

II. DATA

The longest available instrumental temperature record is
the one compiled by Manley [15] for central England, which
dates backs to 1772 for mean daily data and to 1659 for mean
monthly data. Maximum and minimum daily data are also
available, beginning in 1878. The record is built from inland
representative stations, a roughly triangular area enclosed by
Bristol, Lancashire and London, resembling most of them
the records from stations of the rural lowlands areas (100-
200 m in height) of Staffordshire, Shropshire and North
Warwickshire. Extreme care was put by Manley on location;
avoiding frost-hollows or windswept ridges, trying to find
”the most probable mean temperature” of a group of well-run
stations of the midlands countries, and making adjustmentsto
century old monthly means in order to bring them to modern
standards. Since 1974 the data have been adjusted to allow
for urban warming. The uncertainty had been assessed since
1878 [19]. Accordingly, this study focusses on the analysis
of mean annual time series instead of monthly means. This
choice takes into account the possible delays in climate
response to solar activity and the intrinsic difficulties in
handling larger amounts of data within the present analytical
approach.

The CET data are made available by the British At-
mospheric Data Center. The CET 1721-1967 record of
mean yearly temperatures is shown in Fig.1 (top). These
temperature data have been analyzed in relationship to the
solar activity as expressed by the Group Sunspot Numbers
(GSN) during the same period of time, Fig.1 (bottom). The
sunspots index introduced by Wolf in 1848 is a combination
of counting sunspots groups and individual spots. He made
a reconstruction of the series till 1700, using historical ob-
servations. Today his index, which is often called the Zurich
Sunspot Numbers, is published daily by the Sunspot Index
Data Center in Belgium. A new index, the Group Sunspots
Numbers, has recently been introduced [7],[3] based solely

on sunspot groups, allowing more precise reconstructions of
historic conditions while extending the records back to 1610.
From 1848 on, both indexes are nearly identical. This paper
uses GSN.

III. M ULTIVARIATE TIME SERIESMODEL M INING

The purpose of model mining in complex data coming
from heterogeneous, multivariate, time varying processes
[27], [28], [29] is to discover dependency models. A model
expresses the relationship between values of a previously
selected time series (the target), and a subset of the past
values of the entire set of series. Different classes of func-
tional models may be considered, in particular, a generalized
non-linear auto-regressive (AR) model

ST (t) = F
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whereST (t) is the target signal at timet, Si is the i-th
time series,n is the total number of signals,pi is the number
of time lag terms from signali influencingST (t), �i,k is the
k-th lag term corresponding to signali (k ∈ [1, pi]), andF
is the unknown function describing the process.

The classical approaches in time series mostly consider
univariate, homogeneous (real-valued) time series without
missing values [2], [23], [21]. Conventional multivariate
approaches are complex and have difficulties in handling
heterogeneity, imprecision and incompleteness. A hybrid
soft-computing algorithm for these kinds of problems using
heterogeneous neural networks and genetic algorithms was
introduced in [27], in the spirit of [20]. It requires the
simultaneous determination of:(i) the number of required
lags for each series,(ii) the particular lags within each series
carrying the dependency information, and(iii) the prediction
function. A requirement on functionF is to minimize a
suitable prediction error measure. The Multivariate Time
Series Model Mining procedure (MVTSMM) is based on:
(a) exploration of a subset of the model space with a genetic
algorithm, and (b) use of a similarity-based neuro-fuzzy
system representation for the unknown prediction function
F. The process implies a search in the space of neuro-
fuzzy networks (Fig.2). This approach is usually applied ona
sliding time-window so that an exploration of the structureof
the multivariate series can be made, using the mined models
as indicator of internal changes within the process. One way
of describing the results is to compute the weighted lag
importance function, whose general form is

ℒw(t, �p,q) =

∑card(ℳ̂)
i=1 �(�p,q,ℳ̂i(t)) ⋅ f(ℳ̂i(t))

∑card(ℳ̂)
i=1 f(ℳ̂i)(t)

(2)

whereℳ̂ is the set of discovered models for a given window,
card(ℳ̂) is its cardinality,ℳ̂i(t) ∈ ℳ̂ is the i-th model
found at timet, �(�p,q,ℳ̂i(t)) is the boolean membership
function of lag �p,q ( from Eq.1 ) with respect toℳ̂i(t),
and f(ℳ̂i(t)) is a strictly positive model quality measure
(fitness) onℳ̂.



Fig. 1. Central England Temperatures (CET) and Group SunspotNumbers (GSN) in the period1721 − 1967. The vertical line at1888 indicates the
division between the training and validation sets (75% for training and25% for validation).

Fig. 2. Multivariate Time Series Model Miner System (MVTSMM). The arc
(left) is a parallel genetic algorithm evolving populations of similarity-based
hybrid neural networks. The binary strings encode dependency patterns for
the target signal. For each, a hybrid neural network is constructed and trained
with a fast algorithm. The network represents the predictionfunction, and
is applied to an independent validation set. The best models are collected.

IV. GENETIC PROGRAMMING

Analytic functions are among the most important building
blocks for modeling, and are a classical way of expressing
knowledge, which has a long history of usage in science.
From a data mining perspective, direct discovery of general
analytic functions poses enormous challenges because of the
(in principle) infinite size of the search space.

Within computational intelligence, genetic programming
techniques aim at evolving computer programs, which ulti-
mately are functions. Genetic Programming (GP) introduced
in [10] and further elaborated in [11], [12] and [13], is
an extension of the Genetic Algorithm. GP starts with a
set of randomly created computer programs. This initial
population goes through a domain-independent breeding pro-
cess over a series of generations. It employs the Darwinian
principle of survival of the fittest with operations similar
to those occurring naturally, like sexual recombination of
entities (crossover), occasional mutation, duplication and

gene deletion. A computer program is understood as an
entity that receives inputs, performs computations which
transform these inputs and produces some output in a finite
amount of time. The operations include arithmetic computa-
tion (possibly involving many other functions), conditionals,
iterations, recursions, code reuse and other kinds of informa-
tion processing organized into a hierarchy. GP combines the
expressive high level symbolic representations of computer
programs with the search efficiency of the genetic algorithm.
For a given problem, this process often results in a computer
program which solves it exactly, or if not, at least provides
a fairly good approximation.

There are several approaches to GP leading to a plethora
of variants (and implementations) and a discussion about
their relative merits, drawbacks and properties is beyond
the scope of this paper. One of these GP techniques is
the Gene Expression Programming (GEP) [4], [5]. GEP
individuals are nonlinear entities of different sizes and shapes
(expression trees) encoded as strings of fixed length. For
the interplay of the GEP chromosomes and the expression
trees (ET), GEP uses an unambiguous translation system to
transfer the language of chromosomes into the language of
expression trees and vise versa. The structural organization of
GEP chromosomes allows a functional genotype/phenotype
relationship, as any modification made in the genome always
results in a syntactically correct ET or program. The set
of genetic operators applied to GEP chromosomes always
produces valid ETs. The chromosomes in GEP itself are
composed of genes structurally organized in a head and
a tail [4]. The head contains symbols that represent both
functions (elements from a function set F) and terminals
(elements from a terminal set T), whereas the tail contains
only terminals. Therefore, two different alphabets occur at
different regions within a gene. For each problem, the length
of the headℎ is chosen, whereas the length of the tailt is a
function of ℎ, and the number of arguments of the function
with the largest arity. The length of the tail is evaluated given
by t = ℎ(n − 1) + 1. As an evolutionary algorithm GEP



defines its own set of crossover, mutation and other operators
[5].

V. EXPERIMENTAL SETTINGS

The length of the CET and GSN data in the 1721-
1967 period is247 and from these samples training and
validation matrices were constructed using25 predictor vari-
ables from both. LetCET (t) be the observed value of
CET at time t; accordingly, the set of predictor variables
was formed as the following lagged variables:GSN(t −
25), GSN(t−24), ⋅ ⋅ ⋅ , GSN(t−1), CET (t−25), CET (t−
24), ⋅ ⋅ ⋅ , CET (t − 1), thus making a total of50 predictor
variables. In all experiments the training set contained75%
of the data whereas the remaining25% was put aside for
validation. Accordingly, the number of training samples was
167 and the number of validation samples55.

Different types of experiments were made with the above
described data:

Exp.1 Model mining via Genetic Programming using the
training and validation matrices with the50 original
predictor variables.

Exp.2 MVTSMM exploration of the bivariate GSN-CET
series:

a using a single observation window cover-
ing the entire length of the series, in order
to characterize the process as a whole.

b sliding a window of smaller length (101
sampling points), in order to explore the
finer structure of the process and detect
potential model changes over time.
For both Exp.2.a and Exp.2.b suites, the
lag importance function (Eq.2) was com-
puted. In the case of Exp.2.a, a subset
of more relevant predictor variables (time
lags) were derived.

Exp.3 Model mining via Genetic Programming using
training and validation matrices containing only the
selected lags from Exp.2.a as predictor variables.

All genetic programming experiments were conducted us-
ing the GEP technique described in Section.VI-A with a fixed
Function set given by{+,−, ∗, xy, ex, ln(x)}. Experiments
of the Exp.1 suite used the parameters shown in Table.I. In
total the Exp.1 suite contained62, 208 evolutionary compu-
tation runs.

In the MVTSMM exploration a group of parameters define
on one hand the kind of genetic algorithm to use, and on the
other hand, the specificities of the similarity-based neural
network model to use [27], [28]. Among these parameters,
the type of similarity function, the number of responsive
neurons in the hidden layer, etc. play an important role.
This is because the network is designed to produce only
a coarse estimate of the target, with a training scheme that
doesn’t iterate over the training set and therefore is extremely
fast. This is a requirement imposed by the fact that the
genetic algorithm evolves populations of such networks. The
similarity functions used in the neuron model at the hidden

TABLE I

EXPERIMENTAL SETTINGS FOR THEGENETIC PROGRAMMING RUNS

CORRESPONDING TO THEEXP.1 SUITE (62, 208 RUNS).

Parameter values

seed {3292, 19257, 27576}
generations {200, 1000, 2000}
population size {200, 300, 400}
inversion prob {0.1, 0.2}
mutation prob {0.044, 0.06}
num genes {5, 8, 12}
gene head size {8, 12, 15}
is transposition {0.1, 0.2}
ris transposition {0.1, 0.2}
one point recomb {0.3, 0.5}
two point recomb {0.3, 0.5}
gene recomb {0.1, 0.2}
gene transposition {0.1 , 0.2}

layer are derived from well known distance functions by the
transformations = 1/(1 + d), wheres is a similarity and
d is a distance function. The experimental settings used for
the MVTSMM runs corresponding to the Exp.2.a suite are
shown in Table.II. In this case, the entire signal is covered
by a single exploration window characterizing the process as
a whole and it provides a one-dimensional lag importance
function (Eq.2).

TABLE II

EXPERIMENTAL SETTINGS FOR THEMVTSMM RUNS CORRESPONDING

TO THE EXP.2.A SUITE.

Parameter values

ResponsiveHiddenNeurons {3, 4, 5}
SimilarityFunction {euclidean, clark, canberra}
NumberOfGenerations {100, 250, 500}
PopulationSize {50, 100, 200}
RandomSeed {324, 280887, 160587}
CrossoverOperator {One− Point, Two− Point,

Uniform}
GeneticAlgorithm {Simple,Deme}
NumberPopulations {4}
SelectionScheme {Rank,RouletteWℎeel,

Tournament}
CrossoverProbability {0.6, 0.7, 0.8}
MutationProbability {0.01, 0.02, 0.04}

With the purpose of exploring the inner structure of the
time varying process, a window of length101 (less than one
half of that of the GSN and CET records), was slid along
the series. Such a window length (101) is a compromise
between a large window in which there are enough training
and validation samples and a small enough that enables the
detection of changes in time. The experimental settings used
for the MVTSMM runs corresponding to the Exp.2.b suite
are shown in Table.III. In this case, the entire signal is
covered by a collection of exploration windows, providing a
two-dimensional lag importance function (image spectrum)
(according to Eq.2).

In order to assess the ability of the set of relevant lags
obtained from Exp.2.a, new training and validation matrices
were derived from the original GSN and CET data, this time
using only those lags as predictor variables. The derivation



TABLE III

EXPERIMENTAL SETTINGS FOR THEMVTSMM RUNS CORRESPONDING

TO THE EXP.2.B SUITE.

Parameter values

ResponsiveHiddenNeurons {3, 4, 5}
SimilarityFunction {euclidean, clark, canberra}
NumberOfGenerations {500}
PopulationSize {200}
RandomSeed {3498, 39245}
CrossoverOperator {One− Point}
GeneticAlgorithm {Deme}
NumberPopulations {4}
SelectionScheme {Tournament}
CrossoverProbability {0.6, 0.8}
MutationProbability {0.01, 0.02, 0.04}

of the set of relevant lags was made by thresholding the
lag importance function with values around one half of its
maximum and then retaining those lags with importance
equal or greater than the threshold value. The threshold
values used were0.5 and 0.6. Table.IV shows the set of
parameters used for the Exp.3 suite. In this case, a more
modest exploration of the model search space using GP was
made, leading to only396 GP runs.

TABLE IV

EXPERIMENTAL SETTINGS FOR THEGENETIC PROGRAMMING RUNS

CORRESPONDING TO THEEXP.3 SUITE (396 RUNS).

Parameter values

seed {3293, 19257, 27579, 29001, 11881,
23, 1931, 9501, 3451, 7391, 7001}

generations {2000}
population size {400}
inversion prob {0.1, 0.2}
mutation prob {0.044, 0.06}
num genes {5, 8, 12}
gene head size {8, 12, 15}
is transposition {0.1}
ris transposition {0.1}
one point recomb {0.3}
two point recomb {0.3}
gene recomb {0.1}
gene transposition {0.1}

The fitness function used by both GP and MVTSMM was,
in all cases, classical Root Mean Squared Error (RMSE). It

is defined asRMSE =

√∑
n

i=1
(Pi−Ti)2

n
wherePi and Ti

are the predicted and target values for thei-th observation
respectively andn is the number of samples.

VI. RESULTS

A. Exp.1 suite

In this suite, all models potentially involve the original
50 predictor variables. At a post-processing stage, the set of
62, 208 GP models obtained was filtered for those which:
i) contain variables related with solar activity (i.e. GSN
terms in the model expressions),ii) have Pearson correlation
coefficients statistically significant at the� = 0.5 confidence
level for both the training and the validation sets.

Finally, the filtered models were sorted according to their
RMSE for the training set and anensemblemodel was
constructed (by simple averaging) with the three top models.
The behavior of the ensemble model is shown in Fig.3 The
ensemble model falls short at describing the observed CET
values. This is not surprising, as solar activity is only oneof
the very many factors controlling Earth’s temperature. What
is interesting is that a kind ofbackgroundsignal is obtained,
which (for both the training and the validation set, this one
never seen by the GP model), significantly correlates with
the observations. Table.V. The correlations are not high and
clearly not enough to derive far reaching inferences, but their
statistical significance is at least suggestive.

TABLE V

RMSE AND CORRELATION COEFFICIENT FOR THE ENSEMBLE OF

EXPERT MODELS CORRESPONDING TOEXP.1 AND EXP.3 SUITES.

CRITICAL rc AT THE � = 0.5 CONFIDENCE LEVEL. TRAINING SET:

rc = 0.1516 (D.F=165). CRITICAL rc FOR THE VALIDATION SET

rc = 0.2735 (D.F=53).(*) INDICATES SIGNIFICANCE AT THE� = 0.5

CONFIDENCE LEVEL.

RMSE
Experiment Training validation Number of

suite predictor variables

Exp.1 0.54929 0.54859 50
Exp.3 0.57345 0.56005 10

Correlation Coefficient

Exp.1 0.385 (*) 0.345 (*) 50
Exp.3 0.197 (*) 0.321 (*) 10

B. Exp.2.a suite

The one-dimensional lag-importance function for all mod-
els resulting from Exp.2.a is shown in Fig.4 (for the
GSN and CET series). In order to select a subset of

Fig. 4. Lag Importance Spectrum corresponding to the single-window ex-
periment covering the entire observation record. Top: GSN Lag Importance
Spectrum (ℒw(t, �p,q) functions)). Horizontal axis is the time lag in years,
Bottom half: CET spectrum. Each of them contains25 lags.

more relevant lags, thresholds (Ts) with values 0.5 and
0.6 were applied to the lag importance functions. The re-
sulting subsets of relevant lags obtained withTs = 0.5



Fig. 3. Comparisson of the observed CET record with an ensembleof experts model derived from the three best models obtained with GP under the
experimental settings of Table.I and50 predictor variables. The vertical line divides the training and the validation sets. The correlations between the CET
values and the Ensemble model for both the training and the validation sets were statistically significant at the� = 0.5 confidence level.

were gsn : {1, 3, 6, 7, 15, 16, 17, 21, 23, 24, 25} and cet :
{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 17, 19, 20, 22, 23, 25} for a to-
tal of 28 predictor variables. The subsets obtained withTs =
0.6 were gsn : {3, 6, 7, 17, 24} and cet : {1, 15, 17, 23} for
a total of10 predictor variables. They represent a reduction
factor of0.56 and0.2 with respect to the original number of
50 predictor variables.

C. Exp.2.b suite

The two-dimensional lag importance function correspond-
ing to the joint analysis of the CET and GSN series with
MVTSMM and the parameter settings from Table.III is
shown in Fig.5. Calendar time is on the x-axis and time
lag value on the y-axis. The relative importance of the
different time-lags is expressed by grey levels on the image
(spectrum). For each spectrum the maximum time-lag is 25,
increasing towards the top. MVTSMM has clearly produced
a more textured structure for the GSN time-lags, leaving CET
time-lags in a sort of non-differenciable noisy state. These
changes are expressed in the mean RMSE function as well
(Fig.5 top), indicating that the structure of the process does
change with time. The presence of solar cycles 2 (1766-1775)
and 4 (1784-1798) seem to still be present on the explanation
of CET data until 1807. The end of the Dalton minimum
(1790-1820) is also well marked. During 1843-1853, GSN
time-lags 5, 12 and 24 seem to be the preferred, almost
exclusivelly, while this is not the case for other periods. It
seems that the GSN contribution to the CET data explanation,
according MVTSMM analysis, follows a rather complex
and changing pattern. Its interpretation and possible physical
meaning, however, are outside the scope of the present paper.

D. Exp.3 suite

The subset of10 lags derived from Exp.2.a when the
threshold of0.6 is applied to the 1-D lag importance func-
tion, were used for a smaller series of GP model mining
experiments. Model selection was made using the criteria
described in VI-A and two models were found at the end of

the process.

[296]

T (t) =k1 + Tt−17 + ln(2 ∗ Tt−15) + ln(ln(ln(Tt−1)))

−ln(St−17 + St−16 − Tt−15 + St−24 ∗ Tt−1

−St−3 ∗ Tt−1 + eTt−17) (3)
[385]

T (t) =k2 + ln(ln(((k4 − St−16) + (T 2
t−15 − St−24))))

+Tt−1 + ln(Tt−1) + k3 + ln(Tt−15)− Tt−1

wherek1 = 6.439965, k2 = 6.954522, k3 = −3.966609,
k4 = 237.173277. The numbered brackets on top of the
models are only identifiers.

A model ensemble using those of Eq. 3 was constructed by
simple average. Its behavior is shown in Fig.6 and Table.V.
Although its correlation values are smaller than those of
the ensemble obtained in Exp.1, they are also statistically
significant. The RMSE values are only slightly larger, and
again, it is interesting to observe that the model space
explored here is considerably smaller (only10 predicting
variables were used). Note that from them only7 variables
(a further reduction) are included in the ensemble model
(gsn : {3, 16, 17, 24}, and cet : {1, 15, 17}). Interestingly,
they correspond to peak locations in the Lag Importance
Spectra of Exp.2a (Fig. 5), not only to values above the0.6
threshold. The peaks are particularly well expressed in the
GSN series, which is a proxy of solar activity. These results
indicate that the chosen lags carry meaningful information.

VII. C ONCLUSIONS

As the world’s largest temperature record, CET data has
been subjected to intense research [1]. In spite of that, we
believe that the techniques used in this paper could open
a window to new possibilities for exploration. These are
very preliminary results emerging from data mining of a
very complex problem, which requires further investigation.
Although suggestive, the connection of the results with real
physical processes remains uncertain in spite of their very
promising character. The models obtained are only function
approximations which seem to be valid exploration tools for



Fig. 5. Top: mean RMSE for the models mined by MVTSMM for the corresponding period. Bottom: Lag importance spectra (ℒw(t, �p,q) functions)).
Horizontal axis is time in years, vertical axis is the lag withrespect to the current time position. The dotted line separates the two spectra. Upper half:
GSN spectrum. Lower half: CET spectrum. Each of them contains25 lags.

Fig. 6. Comparison of the observed CET record with an ensemble of experts model derived from the two statistically significant models obtained with GP
under the experimental settings of Table.III and only10 predictor variables, selected according to a threshold of0.6 applied to the lag importance function
obtained with MVTSMM. The vertical line divides the training and the validation sets. The correlations between the CET values and the Ensemble model
for both the training and the validation sets were statistically significant at the� = 0.5 confidence level.

orienting further work. The use of these and other com-
putational techniques on different suspected process-related
data (with cross-checking), could provide new and interesting
momenta in the global warming issue. The results obtained
here are suggestive, but preliminary and further research is
necessary. They should not be used to prove or disprove the
possible physical mechanisms behind global warming.
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