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Abstract - In this paper, we first briefly recall some of our 
key results on best approximation in F. These include not 
only expansions about the origin of H, but also some 
recent work on expansions about isolated singularities 
(poles) of f which lead to radial basis functions. We also 
briefly point out some of the differences between our 
approach and other similar so-called “kernel-based” 
approaches, such as the support vector machine (SVM). 
We then move on to general models, based on F, of 
recurrent neural networks, with and without feedback. In 
particular, we discuss two specific applications, namely, to 
nonlinear prediction and to nonlinear digital filter design. 
 
 
 

SUMMARY 
 

In this paper we highlight the role that a Reproducing 
Kernel Hilbert Space (RKHS) F, introduced by us in the late 
1970’s (see [3]), can play in the modeling, identification, and 
design of recurrent neural networks. 

The space F, and more specifically F(H), is a RKHS of 
analytic functionals on a separable Hilbert Space H (over the 
field C  of complex numbers). F constitutes a weighted 
Fock Space, a generalization of the conventional symmetric 
Fock Space, the state space of non-self interacting Boson 
fields in quantum filed theory.  

In our earlier work [1] [2], we introduced F to represent 
the input-output maps f of large-scale nonlinear dynamical 
systems, and we showed how such a representation leads to 
elegant solutions to the problems of optimal modeling, 
identification, and design of large-scale nonlinear dynamical 
systems, subject to input-output training data constraints and 
under the assumption of ellipsoidal models in F for the prior 
uncertainty in f. 

Then in 1990, we showed how the above formulation 
could be ported to the arena of neural networks (see [3].) 

One of the remarkable features of this approach is that a 
“neural structure” naturally appears in the solution of the 
underlying non-parametric (infinite-dimensional) 
optimization problems. In other words, it is not forced a-
priori on the formulation of these problems, as, for example, 
in the case of the error back propagation algorithm. 

The second feature is that, on one hand, the representation  
of f is very general. It allows one to describe, exactly or 
approximately, a very large class of nonlinear systems. On 
the other hand, it enables f, as a member of F, to be processed 
by linear operations, such as the orthogonal projection, 
pertaining to Hilbert spaces.  

Finally our approach enables one to benefit from the 
conceptual and computational advantages offered by the 
availability of a Reproducing Kernel for F that can be 
constructed according to a given application. 

In this paper, we first briefly recall some of our key results 
on best approximation in F. These include not only 
expansions about the origin of H, but also some recent work 
on expansions about isolated singularities (poles) of f which 
lead to radial basis functions. The three different types of 
expansions are described below. 

Since members f of F are analytic functionals on H, they 
can be expressed as abstract power series (Volterra functional 
series) in elements x  of H converging in an appropriate 
region Ω  in H. Specifically, such a power series can be 

Either (a) an expansion about the origin of H (abstract 
McLaurin series). 
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where 0 ( ) (0)f x f=  and ( ), 0nf x n > , denotes the Hilbert-
Schmidt (H-S) homogeneous polynomial of degree n in 
elements of H evaluated at x . 

Or (b) an expansion about a point 0x  of H (Taylor 
series): 
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where 0 0

0 ( ) ( )f x x f x− =  and 0( )nf x x−  is defined in the 

same way as (1) with x  replaced by 0( )x x− . 
Or (c) an expression about a finite number M of points 
, 1, , ,ix i M= L  considered to be isolated singularities 



(poles) of f: 
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In each of the above three cases, F can be made a RKHS 

by endowing it with an appropriate scalar product and 
equipping it with a Reproducing Kernel that correctly reflects 
the prior uncertainty in the kernels nf  or more generally 

, 1, ,
inf i M= L . 
 
We then move on to general models, based on F, of 

recurrent neural networks, with and without feedback. In 
particular, we discuss two specific applications, namely, to 
nonlinear prediction and to nonlinear digital filter design. 
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