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Abstract— Recurrent neural networks are typically consid-
ered as relatively simple architectures, which come along with
complicated learning algorithms. Most researchers focus on the
improvement of these algorithms. Our approach is different:
Rather than focusing on learning and optimization algorithms,
we concentrate on the design of the network architecture.

As we will show, many difficulties in the modeling of dynam-
ical systems can be solved with a pre-design of the network
architecture. We will focus on large networks with the task
of modeling complete high dimensional systems (e.g. financial
markets) instead of small sets of time series. Standard neural
networks tend to overfit like any other statistical learningsystem.
We will introduce a new recurrent neural network architecture in
which overfitting and the associated loss of generalizationabilities
is not a major problem. We will enhance these networks by
dynamical consistency.

I. I NTRODUCTION

Recurrent neural networks allow the identification of dy-
namical systems in form of high dimensional, nonlinear state
space models. They offer an explicit modeling of time and
memory and allow in principle to model any type of dynamical
systems [Hay94; MJ99; KK01]. The basic concept is as old
as the theory of artificial neural networks, so e.g. unfolding in
time of neural networks and related modifications of the back-
propagation algorithm can be found in [Wer74] and [RHW86].
Different types of learning algorithms are summarized in
the paper of Pearlmutter [Pearl95]. Nevertheless, over the
last 15 years most feedforward neural networks have been
predominantly applied to time series problems. The appealing
way of modeling time and memory in recurrent networks
is opposed to the apparent easier numerical tractability ofa
pattern recognition approach as represented by feedforward
neural networks. Still some researchers enhance the theory
of recurrent neural networks. Recent developments are sum-
marized in the books of Haykin [Hay94], Kolen and Kremer
[KK01], Soofi and Cao [SC02] and Medsker and Jain [MJ99].

Our approach differs from the outlined research directions
in a significant but at first sight non-obvious way. Instead
of focusing on algorithms, we put network architectures in
the foreground. We show, that the design of a network
architecture automatically implies the usage of an adjoint
solution algorithm for the parameter identification problem.
This correspondence between architecture and equations is
valid for simple as well as complex network architectures. The
underlying assumption is, that the associated parameter opti-
mization problem is solved by error backpropagation through
time, i.e. a shared weights extension of the standard error
backpropagation algorithm.

In our previous papers we discussed the modeling of dynam-
ical systems based on time-delay recurrent neural networks
[NZ98; ZN01]. We solved the system identification task by
unfolding in time, i. e. we transferred the temporal problem
into a spatial architecture, which can be handled by the error
backpropagation through time [RHW86; Hay94, p. 354-357
and p. 751-756]. Proceeding this way, we can enforce the
learning of the autonomous dynamics in an open system by
overshooting [ZN01, p.326-327]. Consequently our recurrent
neural networks not only learn from data but also integrate
prior knowledge and first principles into the modeling in form
of architectural concepts.

However, the question arises if the outlined neural networks
are a sufficient framework for the modeling of complex
nonlinear and high dimensional dynamical systems, which
can only be understood by analyzing the interrelationship of
different sub-dynamics. Our experiments indicate, that simply
scaling up the basic time-delay recurrent neural networks
by increasing the dimension of the internal state, results in
overfitting due to the high number of free parameters.

In this paper we present architectures which are feasible for
large recurrent neural networks. These architectures are based
on a redesign of the basic time-delay recurrent neural networks
[ZN01; Hay94, p. 322-323 and p. 739-747]. Remarkably, most
of the resulting networks cannot even be designed with a low
dimensional internal state (see sec. II). We further move from
an often arbitrary distinction between input and output to a
modeling of observables (see sec. III). In addition, we focus
on a consistency problem of traditional statistical modeling:
Typically one assumes, that the environment of the system
remains unchanged when the dynamics is iterated into the
future direction. We show, that this is a questionable statistical
assumption and solve the problem with a dynamical consistent
recurrent neural network (see sec. IV).

II. N ORMALIZATION OF RECURRENTNETWORKS

For discrete time grids a basic time-delay recurrent neural
network can be described with a state transition equationst

and output equationyt:

st+1 = tanh(Ast + c + But) state transition

yt = Cst output equation
(1)

The state transition equationst is a nonlinear combination of
the previous statest−1 and external influencesut using weight
matricesA andB and a biasc, which handles offsets in the
input variablesut. The network outputyt is computed from
the present statest employing matrixC. The network output is



therefore a nonlinear composition applying the transformations
A, B andC [ZN01; Hay94, p. 322-323 and p. 739-747]:

As a preparation for the development of large networks
we first separate the state equation of the basic time-delay
recurrent network (Eq. 1) into a past and a future part. In this
framework st is always regarded as the present time state.
All states sτ with τ ≤ t belong to the past part and those
with τ > t to the future part. The parameterτ is hereby
always bounded by the length of the unfolding in timem and
the length of the overshootingn (see [ZN01; ZNG02]). We
have τ ∈ {t − m, . . . , t + n} for all t ∈ {m, . . . , T − n}
with T as the total number of available data patterns. The
present time (τ = t) is included in the past part, as these state
transitions share the same characteristics. We get the following
representation of the optimization problem:

τ ≤ t : sτ+1 = tanh(Asτ + c + Buτ )

τ > t : sτ+1 = tanh(Asτ + c)

yτ = Csτ

T−n
∑

t=m

t+n
∑

τ=t−m

(yτ − yd
τ )2 → min

A,B,C,c

(2)

Using finite unfolding in time, these equations can be easily
transformed into a neural network architecture (see Fig. 1).
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Fig. 1. Unfolded recurrent neural network.

In this model, past and future iterations are consistent under
the assumption of a constant future environment. The difficulty
with this kind of recurrent neural network is the training with
backpropagation through time, because a sequence of different
connectors has to be balanced. The gradient computation is
not regular, i. e. we do not have the same learning behavior
for the weight matrices in the different time steps. Even the
training itself is unstable due to the concatenated matrices A,
B and C. As the training changes weights in all of these
matrices, different effects or tendencies – even opposing ones
– can influence them and may superpose. This implies, that
there results no clear learning direction or change of weights
from a certain backpropagated error. In our experiments we
found, that these problems become even more important for
the training of large recurrent neural networks.

Now the question arises, how to re-design the basic recur-
rent architecture (Eq. 2), such that the learning behavior and
the stability improves especially for large networks.

As a remedy, we propose the neural network of Eq. 3 which
incorporates besides the biasc only one connector type, the
matrix A. The resulting architecture is depicted in Fig. 2.
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Fig. 2. Normalized recurrent neural network.

We call this model a Normalized Recurrent Neural Network.
It avoids the stability and learning problems resulting from the
concatenation of the three matricesA, B andC. The modeling
is now solely focused on the transition matrixA. The matrices
between input and hidden as well as hidden and output layer
are fixed, i. e. they are not learned. This implies that all free
parameters – as they are combined in one matrix – are now
treated the same way by error backpropagation.

It is important to note, that the normalization or concen-
tration on only one single matrix is paid with an oversized
(high dimensional) internal state. At first view it seems, that
in this network architecture (Fig. 2) the external inputuτ is
directly connected to the corresponding outputyτ . This is not
the case, because we enlarge the dimension of the internal
statesτ , such that the inputuτ has no direct influence on
the outputyτ . Assuming that we have a number ofp network
outputs,q computational hidden neurons andr external inputs,
the dimension of the internal state would bedim(s) = p+q+r.

With the matrix[Id 0 0] we connect only the firstp neurons
of the internal statesτ to the output layeryτ . As this connector
is not trained, it can be seen as a fixed identity matrix of
appropriate size. Consequently, the neural network is forced
to generate thep outputs of the neural network at the firstp

components of the state vectorsτ .
Let us now focus on the lastr state neurons, which are used

for the processing of the external inputsuτ . The connector
[0 0 Id]T between the externalsuτ and the internal statesτ

is an appropriately sized fixed identity matrix. More precisely,



the connector is designed such that the inputuτ is connected
to the last state neurons. Recalling that the network outputs are
located at the firstp internal states, this composition avoids
a direct connection between input and output. It delays the
impact of the externalsuτ on the outputsyτ by at least one
time step.

To additionally support the internal processing and to in-
crease the network’s computational power, we add a number
of q hidden neurons between the firstp and the lastr state
neurons. This composition ensures, that the input and output
processing of the network is separated.

Besides the bias vectorc the state transition matrixA holds
the only tunable parameters of the system. MatrixA does not
only code the autonomous and the externally driven part of
the dynamics, but also the processing of the external inputs
uτ and the computation of the network outputsyτ .

Most remarkably, the normalized recurrent neural network
of Eq. 3 can only be designed as a large neural network. If
the internal state of the network is too small, the inputs and
outputs can not be separated, as the external inputs would at
least partially cover the internal states at which the outputs are
read out. Thus, the identification of the network outputs at the
first p internal states would become impossible.

Our experiments indicate, that recurrent neural networks
in which the only tunable parameters are located in a single
state transition matrix (e.g. Eq. 3) show a more stable training
behavior, even if the dimension of the internal state is very
large. Having trained the large network to convergence, many
weights of the state transition matrix will be dispensable
without affecting the functioning of the network. Unneeded
weights can be singled out by using a weight decay penalty
and standard pruning techniques (see e. g. [Hay94; NZ98]).

III. M ODELING THE DYNAMICS OF OBSERVABLES

In the normalized recurrent neural network (Eq. 3) we
consider inputs and outputs independently. This distinction
between externalsuτ and the network outputyτ is arbitrary
and mainly depends on the application or the view of the
model builder instead of the true underlying dynamical system.
Therefore, for the following model we take a different point
of view. We merge inputs and targets into one group of
variables, which we call observables. So we now look at
the model as a high dimensional dynamical system where
input and output represent the observable variables of the
environment. The hidden units stand for the unobservable part
of the environment, which nevertheless can be reconstructed
from the observations. By doing so, we arrive at an integrated
view of the dynamical system.

We implement this approach by replacing the externalsuτ

with the (observable) targetsyd
τ in the normalized recurrent

network. Consequently, the outputyτ and the external input
yd

τ have now identical dimensions.

τ ≤ t : sτ = tanh(Asτ−1 + c +
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The corresponding model architecture (Fig. 3) changes only
slightly in comparison to Fig. 2.
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Fig. 3. Normalized recurrent neural network modeling the dynamics of
observablesyd

τ .

Note, that due to the one step time delay between input
and output,yd

τ andyτ are not directly connected. Furthermore
it is important to understand, that we now take a totally
different view on the dynamical system. In contrast to Eq.
3, the network (Eq. 4) not only generates forecasts for the
dynamics of interest but also for all external observables
yd

τ . Consequently, the firstr state neurons are used for the
identification of the network outputs. They are followed byq

computational hidden neurons andr state neurons which read
in the external inputs.

IV. DYNAMICAL CONSISTENTNEURAL NETWORKS

An open dynamical system is partially driven by an au-
tonomous development and partially by external influences.
If the dynamics is iterated into the future, the developmentof
the system environment is unknown. Now, one of the standard
statistical paradigms is to assume, that the external influences
are not significantly changing in the future. This means, that
the expected value of a shift in an external inputyd

τ with
τ > t is zero per definition. For that reason we have so far
neglected the external inputsyd

τ in the normalized recurrent
neural network at all future time steps,τ > t, of the unfolding
(see Eq. 4).

Especially when we consider fast changing external vari-
ables with a high impact on the dynamics of interest, the latter
assumption is very questionable. In relation to Eq. 4 it even
poses a contradiction, as the observables are assumed to be
constant on the input, but fluctuate on the output side. Even



in case of a slowly changing environment, long-term forecasts
become doubtful. The longer the forecast horizon is, the more
the statistical assumption of a constant environment is violated.
A statistical model is therefore not consistent from a dynamical
point of view. For a dynamical consistent approach, one has
to integrate assumptions about the future development of the
environment into the modeling of the dynamics.

For that reason we propose a network that uses its own pre-
dictions as replacements for the unknown future observables.
The resulting dynamical consistent recurrent neural network,
DCRNN, is specified in Eq. 5:

τ ≤ t : sτ =





Id 0 0
0 Id 0
0 0 0



 tanh(Asτ−1 + c) +





0
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
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τ

τ > t : sτ =




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0 Id 0
Id 0 0



 tanh(Asτ−1 + c)

yτ = [Id 0 0] sτ

T−n
∑

t=m

t+n
∑

τ=t−m

(yτ − yd
τ )2 → min

A,c

(5)
The DCRNN is understood best by analyzing the structure

of the state vectorsτ . In the past (τ ≤ t) and future (τ > t)
the structure of the internal statesτ is

sτ =
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In the first r components of the state vector we have the
expectationsyτ , i.e. the predictions of the model. Theq
components in the middle of the vector represent the hidden
units hτ . They are responsible for the development of the
dynamics. In the lastr components of the vector we find in
the past (τ ≤ t) the observablesyd

τ , which the model receives
as external input. In the future (τ > t) the model replaces the
unknown future observables by its own expectationsyτ . This
replacement is modeled with two consistency matrices:

C≤ =

2

4

Id 0 0
0 Id 0
0 0 0

3

5 andC> =

2

4

Id 0 0
0 Id 0
Id 0 0

3

5 (7)

Let us explain one recursion of the state equation (Eq.
5) step by step: In the past (τ ≤ t) we start with a state
vector sτ−1, which has the structure of Eq. 6. This vector
is first multiplied with the transition matrixA. After adding
the biasc, the vector is sent through the nonlinearitytanh.
The consistency matrix then keeps the firstr + q components
(expectations and hidden states) of the state vector but deletes
(multiplication with zero) the lastr ones. These are finally
replaced by the observablesyd

τ , such thatsτ has again the

partitioning of Eq. 6. Note that in contrast to the normalized
recurrent neural network (Eq. 4) the observables are now added
to the state vector after the nonlinearity. This is important for
the consistency structure of the model.

The recursion of the future state transition (τ > t) differs
from the one in the past in terms of the structure of the
consistency matrix and the missing external input. The latter
is now replaced with an additional identity-block in the future
consistency matrixC> which maps the firstr components of
the state vector, the expectationsyτ , to its lastr components.
In doing so we get the desired partitioning ofsτ (Eq. 6) and
the model becomes dynamical consistent.

Fig. 4 illustrates the corresponding architecture. Note, that
the nonlinearity and the final calculation of the state vector
are separated and hence modeled in two different layers. This
follows from the dynamical consistent state equation (Eq. 5),
in which the observables are added separate from the nonlinear
component.
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Fig. 4. Dynamical Consistent Recurrent Neural Network (DCRNN). At
all future time steps of the unfolding the network uses its own forecasts as
substitutes for the unknown development of the environment.

Regarding the transition matrixA, we want to point out
that in a statistical consistent recurrent network (Eq. 4) the
matrix has to model the state transformation over time and
the merging of the input information. However, the network
is only triggered by the external drivers up to the present time
step t. In a dynamical consistent network we have forecasts
of the external influences, which can be used as future inputs.
Thus, the transition matrixA is always dedicated to the same
task: modeling the dynamics.

V. CONCLUSIONS

In this article we focused on high-dimensional and dynam-
ical consistent recurrent neural networks for the modelingof
open dynamical systems. These networks allow an integrated
view on real-world problems and consequently show better
generalization abilities. We concentrated the modeling ofthe
dynamics on one single transition matrix and also enhanced
from a simple statistical to a dynamical consistent handling of
missing input information in the future part. The networks are
now able to map integrated dynamical systems (e. g. coherent
financial markets) instead of only a small set of time series.
Remarkably, these recurrent neural networks do not only
provide superior forecasts, but also a deeper understanding
of the underlying dynamical system.



Current applications for dynamical consistent neural net-
works are financial and commodity market price forecasts.

Further research is done on a combination of dynami-
cal consistency and error correction neural networks, ECNN
[ZNG02]. ECNN use an error correction mechanism for a
quantification of the model’s misfit and as indicator of short-
term effects or external shocks. We expect that dynamical
consistent recurrent neural networks with error correction will
further improve the ability of the identification and forecasting
of complex and high-dimensional dynamical systems.
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