Dynamical Consistent Recurrent Neural Networks

Hans-Georg Zimmermann, Ralph Grothmann, Anton M. Scharer Christoph Tietz
Siemens AG, Corporate Technology, Information & CommutiicaDivision, Dept. of Neural Computation
HansGeorg.Zimmermann@siemens.com

Abstract— Recurrent neural networks are typically consid- In our previous papers we discussed the modeling of dynam-
ered as relatively simple architectures, which come along ith jcal systems based on time-delay recurrent neural networks
complicated learning algorithms. Most researchers focus ro the [NZ98; ZNO1]. We solved the system identification task by
improvement of these algorithms. Our approach is different o .

Rather than focusing on learning and optimization algorithms, _unfoldmg 'n time, _" €. we transferred the temporal problem
we concentrate on the design of the network architecture. into a spatial architecture, which can be handled by thererro

As we will show, many difficulties in the modeling of dynam- backpropagation through time [RHW86; Hay94, p. 354-357
ical systems can be solved with a pre-design of the network and p. 751-756]. Proceeding this way, we can enforce the
architecture. We will focus on large networks with the task learning of the autonomous dynamics in an open system by

of modeling complete high dimensional systems (e.g. finamati .
markets) instead of small sets of time series. Standard neat overshooting [ZNO1, p.326-327]. Consequently our requrre

networks tend to overfit like any other statistical learning system. neural networks not only learn from data but also integrate
We will introduce a new recurrent neural network architecture in ~ prior knowledge and first principles into the modeling inrfor
which overfitting and the associated loss of generalizatioabilities  of architectural concepts.
is not a major problem. We will enhance these networks by  However, the question arises if the outlined neural neteork
dynamical consistency. . .
are a sufficient framework for the modeling of complex

nonlinear and high dimensional dynamical systems, which
can only be understood by analyzing the interrelationsliip o

Recurrent neural networks allow the identification of dydifferent sub-dynamics. Our experiments indicate, thaipdy
namical systems in form of high dimensional, nonlinearestagcaling up the basic time-delay recurrent neural networks
space models. They offer an explicit modeling of time anly increasing the dimension of the internal state, results i
memory and allow in principle to model any type of dynamicaverfitting due to the high number of free parameters.
systems [Hay94; MJ99; KKO1]. The basic concept is as old In this paper we present architectures which are feasible fo
as the theory of artificial neural networks, so e.g. unfaidim large recurrent neural networks. These architecturesasedo
time of neural networks and related modifications of the backn a redesign of the basic time-delay recurrent neural mésvo
propagation algorithm can be found in [Wer74] and [RHW86]ZN01; Hay94, p. 322-323 and p. 739-747]. Remarkably, most
Different types of learning algorithms are summarized iof the resulting networks cannot even be designed with a low
the paper of Pearlmutter [Pearl95]. Nevertheless, over thgnensional internal state (see sec. Il). We further mowenfr
last 15 years most feedforward neural networks have beam often arbitrary distinction between input and output to a
predominantly applied to time series problems. The appgalimodeling of observables (see sec. Ill). In addition, we focu
way of modeling time and memory in recurrent networken a consistency problem of traditional statistical mautgli
is opposed to the apparent easier numerical tractabilitg ofTypically one assumes, that the environment of the system
pattern recognition approach as represented by feedfdrwggmains unchanged when the dynamics is iterated into the
neural networks. Still some researchers enhance the thefanyre direction. We show, that this is a questionable stiatil
of recurrent neural networks. Recent developments are swmgsumption and solve the problem with a dynamical congisten
marized in the books of Haykin [Hay94], Kolen and Kremerecurrent neural network (see sec. 1V).
[KKO1], Soofi and Cao [SC02] and Medsker and Jain [MJ99].

Our approach differs from the outlined research directions |- NORMALIZATION OF RECURRENTNETWORKS
in a significant but at first sight non-obvious way. Instead For discrete time grids a basic time-delay recurrent neural
of focusing on algorithms, we put network architectures R€tWOrk can be described with a state transition equatjon
the foreground. We show, that the design of a netwoﬁpd output equatio::
architecture automatically implies the usage of an adjoint s:11 = tanh(As; + ¢+ Buy) state transition
solution algorithm for the parameter identification proble ) @
This correspondence between architecture and equations is ¥ = Cs output equation
valid for simple as well as complex network architecturdse T The state transition equation is a nonlinear combination of
underlying assumption is, that the associated parameter ofhe previous state, ; and external influencas using weight
mization problem is solved by error backpropagation thfougnatricesA and B and a bias:, which handles offsets in the
time, i.e. a shared weights extension of the standard ermoput variablesu;. The network outpuy, is computed from
backpropagation algorithm. the present statg employing matrixC'. The network output is

I. INTRODUCTION



therefore a nonlinear composition applying the transfaiona As a remedy, we propose the neural network of Eqg. 3 which

A, B andC [ZNO1; Hay94, p. 322-323 and p. 739-747]:  incorporates besides the biasonly one connector type, the
As a preparation for the development of large networkaatrix A. The resulting architecture is depicted in Fig. 2.

we first separate the state equation of the basic time-delay

recurrent network (Eq. 1) into a past and a future part. s thi 0
framework s; is always regarded as the present time state. _ ;. s» = tanh(As,_1+c+ | 0 |ur)
All states s, with 7 < t belong to the past part and those Id
with 7 > ¢ to the future part. The parameteris hereby
always bounded by the length of the unfolding in timeand >t sy = tanh(As,_1+c¢)
the length of the overshooting (see [ZNO1; ZNG02]). We )
haver € {t —m,...,t+ n} forall ¢t € {m,..., T —n} yr = [Id00]s,
with T as the total number of available data patterns. The
present time{ = t) is included in the past part, as these state Ton tn D .
transitions share the same characteristics. We get thanfioky Z Z (yr —y7)” — min
. Ac

t=m t=t—m

representation of the optimization problem:

T<t: S$r4+1 = tanh(As; 4+ ¢+ Bu,)
T>t: Sr+1 = tanh(A4s; +¢)

Yr = Cs; 2
T—n t+n

YD -y - i

Using finite unfolding in time, these equations can be easily
transformed into a neural network architecture (see Fig. 1)

Fig. 2. Normalized recurrent neural network.

We call this model a Normalized Recurrent Neural Network.
It avoids the stability and learning problems resultingnirthe
concatenation of the three matricés B andC. The modeling
is now solely focused on the transition matrlx The matrices
between input and hidden as well as hidden and output layer
are fixed, i. e. they are not learned. This implies that ak fre
parameters — as they are combined in one matrix — are now
treated the same way by error backpropagation.

It is important to note, that the normalization or concen-
tration on only one single matrix is paid with an oversized
In this model, past and future iterations are consisteneundhigh dimensional) internal state. At first view it seemstth

the assumption of a constant future environment. The difficuin this network architecture (Fig. 2) the external input is

with this kind of recurrent neural network is the trainingthwi directly connected to the corresponding outpyit This is not

backpropagation through time, because a sequence ofatiffetthe case, because we enlarge the dimension of the internal

connectors has to be balanced. The gradient computatiorstgte s, such that the input:, has no direct influence on

not regular, i. e. we do not have the same learning behavibe outputy.. Assuming that we have a numberphetwork

for the weight matrices in the different time steps. Even thautputs,g computational hidden neurons anéxternal inputs,

training itself is unstable due to the concatenated magtie the dimension of the internal state woulddien(s) = p+g+r.

B and C. As the training changes weights in all of these With the matrix[Id 0 0] we connect only the firgt neurons

matrices, different effects or tendencies — even opposirgg o of the internal state, to the output layey. . As this connector

— can influence them and may superpose. This implies, tl@tnot trained, it can be seen as a fixed identity matrix of

there results no clear learning direction or change of weighappropriate size. Consequently, the neural network isefbrc

from a certain backpropagated error. In our experiments W@ generate the outputs of the neural network at the figst

found, that these problems become even more important fmmponents of the state vecter.

the training of large recurrent neural networks. Let us now focus on the laststate neurons, which are used
Now the question arises, how to re-design the basic rectwr the processing of the external inpuis. The connector

rent architecture (Eqg. 2), such that the learning behavior af0 0 Id]” between the externals, and the internal state.

the stability improves especially for large networks. is an appropriately sized fixed identity matrix. More pretys

Fig. 1. Unfolded recurrent neural network.



the connector is designed such that the inpuis connected
to the last state neurons. Recalling that the network ositne 0
located at the firsp internal states, this composition avoids ;. s» = tanh(As,_1+c+ | 0 |yd)
a direct connection between input and output. It delays the Id o
impact of the externals, on the outputsy, by at least one
time step. T>t: sr = tanh(A4s;_1+¢)
To additionally support the internal processing and to in- (4)
crease the network’s computational power, we add a number Yr [1d 0 0]s,
of ¢ hidden neurons between the figstand the last- state Ten tin
neurons. This composition ensures, that the input and outpu Z Z (yr — y)?
processing of the network is separated. T

Besides the bias vecterthe state transition matri4 holds . . .
: The corresponding model architecture (Fig. 3) changes only
the only tunable parameters of the system. Mattidoes not . : . :
sI]LghtIy in comparison to Fig. 2.

only code the autonomous and the externally driven part ©
the dynamics, but also the processing of the external inputs
u, and the computation of the network outpyts

Most remarkably, the normalized recurrent neural network
of Eg. 3 can only be designed as a large neural network. [flia00]
the internal state of the network is too small, the inputs and
outputs can not be separated, as the external inputs would &
least partially cover the internal states at which the otstjpoe [0 [0 [0
read out. Thus, the identification of the network outputhat t

first p internal states would become impossible. @ @ @

Our experiments indicate, that recurrent neural networks
in which the only tu_nable parameters are located in a S_m % 3. Normalized recurrent neural network modeling thexaiyics of
state transition matrix (e.g. Eq. 3) show a more stableitrgin observableg/?.
behavior, even if the dimension of the internal state is very
large. Having trained the large network to convergenceyman Note, that due to the one step time delay between input
weights of the state transition matrix will be dispensablgnd output;yf andy, are not directly connected. Furthermore
without affecting the functioning of the network. Unneedefl is important to understand, that we now take a totally
weights can be singled out by using a weight decay penalijfferent view on the dynamical system. In contrast to Eq.
and standard pruning techniques (see e. g. [Hay94; NZ98]B, the network (Eq. 4) not only generates forecasts for the
dynamics of interest but also for all external observables
y?. Consequently, the first state neurons are used for the
I1l. M ODELING THE DYNAMICS OF OBSERVABLES identification of the network outputs. They are followed gy
computational hidden neurons andtate neurons which read

in the external inputs.
In the normalized recurrent neural network (Eq. 3) we

consider inputs and outputs independently. This distmcti  1V. DYNAMICAL CONSISTENTNEURAL NETWORKS

between externals. and the network outpuy- is arbitrary  An open dynamical system is partially driven by an au-
and mainly depends on the application or the view of thgnomous development and partially by external influences.
model builder instead of the true underlying dynamicaleyst |f the dynamics is iterated into the future, the developnuént
Therefore, for the following model we take a different poinghe system environment is unknown. Now, one of the standard
of view. We merge inputs and targets into one group @fatistical paradigms is to assume, that the external infle®
variables, which we call observables. So we now look @fe not significantly changing in the future. This meanst tha
the model as a high dimensional dynamical system whefg expected value of a shift in an external ingdt with
input and output represent the observable variables of the. ; is zero per definition. For that reason we have so far
environment. The hidden units stand for the unobservabte pﬁeg|ected the external inpuﬁ in the normalized recurrent
of the environment, which nevertheless can be reconsttucigyral network at all future time steps;> t, of the unfolding
from the observations. By doing so, we arrive at an integlrat@see Eq. 4).
view of the dynamical system. Especially when we consider fast changing external vari-
We implement this approach by replacing the extermals ables with a high impact on the dynamics of interest, theldatt
with the (observable) targetg’ in the normalized recurrent assumption is very questionable. In relation to Eq. 4 it even
network. Consequently, the outpyt and the external input poses a contradiction, as the observables are assumed to be
y? have now identical dimensions. constant on the input, but fluctuate on the output side. Even

— min
A,c
t=m T=t—m




in case of a slowly changing environment, long-term forecagatrtitioning of Eq. 6. Note that in contrast to the normalize

become doubtful. The longer the forecast horizon is, theemaecurrent neural network (Eq. 4) the observables are nowadd

the statistical assumption of a constant environment isted. to the state vector after the nonlinearity. This is imparfan

A statistical model is therefore not consistent from a dyitain the consistency structure of the model.

point of view. For a dynamical consistent approach, one hasThe recursion of the future state transition % ¢) differs

to integrate assumptions about the future developmenteof filom the one in the past in terms of the structure of the

environment into the modeling of the dynamics. consistency matrix and the missing external input. Thefatt
For that reason we propose a network that uses its own pienow replaced with an additional identity-block in theure

dictions as replacements for the unknown future obsersableonsistency matrixC~. which maps the first components of

The resulting dynamical consistent recurrent neural né¢wothe state vector, the expectatiops to its lastr components.

DCRNN, is specified in Eq. 5: In doing so we get the desired partitioning ©f (Eq. 6) and
the model becomes dynamical consistent.
(7d 0 0] 0 Fig. 4 illustrates the corresponding architecture. Ndiaf t
7<t: s, = | 0Id0| tanh(ds,_;+c)+ | 0 | y¢ the nonlinearity and the final calculation of the state vecto
0 00 Id are separated and hence modeled in two different layers. Thi
B N follows from the dynamical consistent state equation (Bg. 5
[Id 0 0] in which the observables are added separate from the nanline
T>t: s, = |0 Id0| tanh(As,_1+¢) component.
| Id 0 0|
yr = [Id00] s,
T—n t+n
S Y -y —min
t=m 7=t—m Ase [" [0
(5) 1 1d
The DCRNN is understood best by analyzing the structure @ @
of the state vectos,. In the past £ < t) and future ¢ > ¢)
the structure of the internal state is Fig. 4. Dynamical Consistent Recurrent Neural Network (INDR. At
all future time steps of the unfolding the network uses itsndarecasts as
yr expectations substitutes for the unknown development of the environment
hr hidden states
57 = { r<t: yd } - { r<t: observat@onS} () Regarding the transition matriX, we want to point out
T>t yr T >t: expectations that in a statistical consistent recurrent network (Eq.h® t

In the firstr components of the state vector we have tH@atrix has to model the state transformation over time and
expectationsy,, i.e. the predictions of the model. The the merging of the input information. However, the network
components in the middle of the vector represent the hiddirPnly triggered by the external drivers up to the preseneti

units h,. They are responsible for the development of the€Pt. In a dynamical consistent network we have forecasts
dynamics. In the last components of the vector we find inof the external influences, which can be used as future inputs

the past £ < t) the observableg?, which the model receives Thus, the transition matrid is always dedicated to the same
—= T i . .

as external input. In the future > ¢) the model replaces the 12Sk: modeling the dynamics.

unknown future observables by its own expectatigpnsThis

replacement is modeled with two consistency matrices: V. CONCLUSIONS

In this article we focused on high-dimensional and dynam-

Id 0 0 Id 0 0 ical consistent recurrent neural networks for the modetifg
C<= 8 Iod 8 andCs = Iod Iod 8 open dynamical systems. These networks allow an integrated

view on real-world problems and consequently show better
Let us explain one recursion of the state equation (Egeneralization abilities. We concentrated the modelinghef

5) step by step: In the past (< t) we start with a state dynamics on one single transition matrix and also enhanced

vector s-_1, which has the structure of Eq. 6. This vectofrom a simple statistical to a dynamical consistent hargtif

is first multiplied with the transition matrixd. After adding missing input information in the future part. The networks a

the biasc, the vector is sent through the nonlinearignh. now able to map integrated dynamical systems (e. g. coherent

The consistency matrix then keeps the first ¢ components financial markets) instead of only a small set of time series.

(expectations and hidden states) of the state vector batedel Remarkably, these recurrent neural networks do not only

(multiplication with zero) the last ones. These are finally provide superior forecasts, but also a deeper understgndin

replaced by the observabled, such thats, has again the of the underlying dynamical system.



Current applications for dynamical consistent neural ndPearl95] Pearlmatter BGradient Calculations for Dynamic
works are financial and commodity market price forecasts. Recurrent Neural Networks: A survyem: IEEE Transac-
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