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a b s t r a c t 

In this paper, the computational performance of a Spiking Feed-forward Neural Network (SFNN) is in- 

vestigated based on a brain-inspired Intrinsic Plasticity (IP) mechanism, which is a membrane potential 

adaptive tuning scheme used to change the intrinsic excitability of individual neuron. This learning rule 

has the ability of regulating neural activity in a relative homeostatic level even if the external input of a 

neuron is extremely low or extremely high. The effectiveness of IP on SFNN model has been studied and 

evaluated through the MNIST handwritten digits classification. The training of network weights starts 

from a conventional artificial neural network by backpropagation and then the rate-based neurons are 

transformed into spiking neuron models with IP learning. Our results show that both over-activation and 

under-activation of neuronal response which commonly exist during the computation of neural networks 

can be effectively avoided. Without loss of accuracy, the calculation speed of SFNN with IP learning is 

extremely higher than that of the other models. Besides, when the input intensity and data noise are 

taken into account, both of the learning speed and accuracy of the model can be greatly improved by the 

application of IP learning. This biologically inspired SFNN model is simple and effective which may give 

insights for the optimization of neural computation. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

In recent decade years, with the rapid development of theories

and applications in brain science, spiking neural networks (SNNs)

are proposed and have become increasingly attractive due to its

advantages of high nonlinear approximation capability and low

computation consumption. Although analog artificial neural net-

works with deep learning can achieve high classification accuracy

on many computational applications, the huge number of neurons

and complicate algorithms require massive computing power and

energy. To overcome the large computational cost of deep network

in artificial neural networks, spiking deep networks (SDNs), i.e.

deep neural networks with spiking neurons have been proposed

recently. SDNs present high performance for solving various prob-

lems, they not only achieve powerful computing capability and

high accuracy, but also gain high processing speed and low compu-

tational cost [1–3] . Besides, SDNs have the potential to be directly

applied to event-based computing systems, i.e. the neuromorphic
∗ Corresponding author. 

E-mail addresses: anrial@live.cn (A. Zhang), hjzhou@cqu.edu.cn (H. Zhou), 

xmli@cqu.edu.cn (X. Li), ruilangzhu@icloud.com (W. Zhu). 
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0925-2312/© 2019 Published by Elsevier B.V. 
ircuits which have been shown to be significantly more energy-

fficient than conventional ones [4] . It has become an increasingly

ttractive field for researchers and engineers [5–8] . In [9] , Rossum

t al. modeled the propagation of neural activities through a feed-

orward network consisting of integrate-and-firing (I&F) neurons.

hey found that firing activities are transmitted linearly layer by

ayer, with a time delay proportional to the synaptic time constant.

n [10] the authors discussed the convergence problem of leaky

ntegrate-and firing (LIF) neuron model based on spiking recurrent

etworks with constant external inputs, and suggested that precise

patiotemporal sequences of spikes may be useful for information

ncoding and processing in biological neural networks. Further,

n [11] , Jin et al. also exhibited another spiking recurrent network

hat performed fast winner-take-all computations, which aimed to

educing the inter-spike intervals of the neurons. 

Since traditional training algorithms (i.e. Error Back Propa-

ation) of rate-based analog neural networks cannot be directly

sed for SNNs. Some specific algorithms have been proposed for

btaining a well-trained SNN. Similar to the BP learning rule,

ohte et al. derived a supervised learning method (SpikeProp) for

pike response model (SRM) [12] . In [13] , the authors introduced

 new error-backpropagation mechanism based on SNN training
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lgorithm, which treats the membrane potentials of spiking neu-

ons as differentiable signals, where discontinuities at spike times

re only considered as noise. Other backpropagation-inspired

earning rules have also been proposed, e.g., [14–18] . On the other

and, unsupervised learning with respect to neural synaptic plas-

icity, especially the spike-timing-dependent-plasticity (STDP), has

lso been broadly studied. According to STDP, synapses through

hich a presynaptic spike arrived before (respectively after) a

ostsynaptic one are reinforced (respectively depressed) [19] .

nspired by the success and popularity of reinforcement learning,

heradpisheh et al. proposed a reward modulated STDP (R-STDP)

ethod to train the convolutional SNN for object recognition, and

t demonstrated that R-STDP outperforms STDP on various image

atasets [20] . 

However, the applications of the above SNNs models are very

imited compared with the broadly used deep learning rate-based

eural networks (ANNs). Directly converting the ANNs to be SNNs

ould be more effective and convenient for applications. But the

onversion from analog neural networks to event-driven spiking

eurons may cause the cost of performance losses. Errors are

ostly caused by the over-activation of neural responses to in-

ut data. The probability of converting the well-trained rate-based

NNs to their SNN counterparts via directly mapping the connec-

ion weights was firstly proposed by [21,22] . OConnor et al. pre-

ented a mathematical framework and algorithm for converting a

onventional deep belief model trained offline into the event-based

piking DBNs, and shows the application of the framework with

uch as real visual and auditory inputs from neuromorphic sen-

ors [21] . By this approach, one can train the tailored ANN model

hrough mature optimization algorithms, such as stochaotic gra-

ient descent (SGD), Adam, and so on. And then, simply convert

t to its corresponding SNN version. In [23] the authors extended

he conversion method of [22] to reduce the performance loss dur-

ng the conversion, further, they also proposed a set of optimiza-

ion techniques for spiking convolutional neural networks (SCNNs)

nd spiking feed-forward neural networks (SFNNs), including us-

ng rectified linear units (ReLUs) with no bias during training and

eight normalization method. Compared with previous approaches

ased on SNNs, these optimization techniques boost the computa-

ion performance that perform the state-of-art both in high accu-

acy and low latency. Despite the outstanding performance in [23] ,

t should be noted that it is still time consuming and difficult to

each the optimal performance. Thus it is essential to find the right

alance of spiking thresholds, input weight and input firing rates.

ore systematically, Rueckauer et al. introduced more conversion

ethods for some ANN operators to their SNN counterparts [24] .

urther works of deep neural networks (DNNs) to spiking DNNs

onversion have also been done, such as [25,26] . 

Actually, in neuroscience, it has been confirmed that a single

euron can adaptively change its intrinsic excitability to fit vari-

us synaptic inputs by the activity of their voltage-gated channels

27,28] . This adaption of neuronal intrinsic excitability, called in-

rinsic plasticity (IP), has been hypothesized to keep the mean fir-

ng activity of neuronal population in a homeostatic level which is

ffective to maximize the information entropy [29–31] . That is, IP

an change the intrinsic excitability of individual neuron by adap-

ively turning the firing threshold. This adaptive adjustment of the

euronal input-output response online is crucial for efficient infor-

ation processing. In [32] , Marion et al. showed that IP is able to

dapts reservoir computing with very constrained topologies and

ake the networks more robust. However, IP learning is not in-

olved in most of current studies on computational modeling of

eural network. 

Therefore, inspired by this biologically discovered learning rule,

e present a novel neural network model by combining the

P learning scheme with spiking feed-forward neural networks
SFNNs) in this paper. Experimental results tested on MNIST

atabase show that compared with the networks without IP, both

he learning speed and robustness of computation accuracy are

bviously improved. A neuron with IP mechanism will weaken

ts excitability when the input is boosted and strengthen its ex-

itability when the input is deprived. Thus, the neuron can stay

t a homeostatic state no matter the synaptic input unexpected

trongly increases or decreases, which protects the neuron activ-

ty against to an extremely high or low level. In this way, both

ver-activation and under-activation of neuronal response can be

ffectively avoided in time and ensure the accuracy of computa-

ion. This adaptive adjustment of spiking threshold is simple and

ffective, with no need to turn the right balance of parameters. 

The remaining of this paper is organized as follows.

ection 2 introduces the FNNs based on spiking neuron model

LIF model), and the corresponding IP mechanism for SNNs.

ection 3 demonstrates the dataset benchmark used in this paper,

s well as the SFNN construction method. Section 4 implements

he experiment constructed on both normal MNIST dataset and

NIST dataset with different input intensity and noise inten-

ity. Influences of key parameters are also fully investigated and

nalyzed. Section 5 discusses the findings and conclusions. 

. Model description 

Based on the mathematical framework for converting a con-

entional deep neural networks into spiking neural networks in

21,23] , training of spiking deep networks can start from a conven-

ional ANN trained with back propagation and then transform the

ate-based neuron model into spiking neuron model. In the follow-

ng two subsections, feed-forward neural network for training pro-

ess and spiking feed-forward neural network for testing process

ill be described in detail, which produce the rate-based FNN and

piking FNN (SFNN) respectively. 

.1. Feed-forward neural network for training process 

In feed-forward neural networks (FNNs), neurons of the pre-

eding layer are fully connected to the subsequent layer, while

o intra-layer connections are established. FNNs have been exten-

ively applied in image classification, trend prediction, scene label-

ng and other tasks. Nowadays, another most popular application

f FNNs is acting as the final output layer of convolutional neural

etworks (CNNs), where higher-level feature extraction is achieved

y the convolutional layers, pooling layers and normalization lay-

rs. In conventional FNNs, or named the rate-based FNNs, neu-

ons are linear static units which directly sums the weighted input

ignals from previous layer and passes the obtained value to the

ollowing layer. For image classification problems, activation func-

ions of rectified linear unit (ReLU) and softmax have been widely

sed for intermediate feature processing in hidden layers and im-

ge classification in output layer, respectively. 

Nair and Hinton [33] presented that the stage function rectified

inear units (ReLUs) greatly accelerate the convergence of stochas-

ic gradient descent compared to the sigmoid/tanh functions due

o its linear, non-saturating form. And considering the enhance-

ent of ReLUs to computation performance for object recognition

nd face verification, we use ReLUs in our networks during the

raining process. A typical mathematical description is given as 

 i = max (0 , 
∑ 

j 

w i j x j ) (1)

here x i is the activation of unit i, w ij is the weight connecting

nit j in the preceding layer to unit i in the current layer, and x j is

he activation of unit j in the preceding layer. It should be noted

hat the variable x j in SFNNs represents the spike event of neuron
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Fig. 1. Schematic diagram of converting an artificial neural network into a spiking neural network. 1 ©: Training an analog FNN with ReLU activation function based on 

classical Back Propagation learning rule. 2 ©: Test stage with the replacement of the ReLU neuron model with spiking neuron model, and input images are transferred into 

spike streams. 

Fig. 2. Conversion from image pixels into spike streams. 1 ©: Vectorize the 28 ∗28 image pixels into 784 input neurons with two states of firing or no firing. The “white line”

in spike streams denotes a spike event at current time step, while the “black line” denotes no spike generated. 2 ©: Generate spike streams with Poisson distribution, where 

the firing frequency of spike stream is proportional to the image intensity. 
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j at a certain time step, which implies that x j = 1 if a spike gen-

erated by neuron j , otherwise x j = 0 . and x i is the synaptic current

input produced by its presynaptic. 

2.2. Spiking feed-forward neural network with intrinsic plasticity for 

testing process 

Unlike the traditional FNNs, spiking feed-forward neural net-

works (SFNNs) only process signal in the format of spiking events.

Fig. 1 shows a schematic diagram of image classification conducted

by a SFNN framework. In the data preprocessing stage, image pix-

els are firstly reshaped to a vector, and then converted into a se-

quence of spike streams, which are used to feed into the input

layer of SFNNs. Fig. 2 shows the conversion process where each

image pixel is converted into a spike stream by using the Poisson

distribution method [23,34] . The firing frequency of spike stream

is proportional to the image intensity. 

The Leaky Integrate-and-Fire (LIF) model [35] is used in this

paper, which was described to be computationally effective for

neural activities and widely deployed in artificial computational

neuroscience. LIF model can be given as the differential equation, 

τm 

dV (t) 

dt 
= V rest − V (t) + R m 

I(t) (2)

where V ( t ) denotes the membrane potential of a single neuron.

V rest denotes the resting membrane potential. The time constant

τm 

is the product of membrane resistance R m 

and membrane

capacitance C m 

. I ( t ) is the sum of all inputs from pre-synaptic
eurons. Each LIF neuron is stimulated by the activity of its

re-synaptic connected neurons. 

 

φ
j 
(t) = 

N ∑ 

i =1 

S 
φ−1 

i 
(t) · w 

φ−1 

ji 
(3)

The variable φ means the φth layer of neural network. S i ( t ) rep-

esents the spiking of neuron i at time t . S i (t) = 1 if this neuron

enerates a spike, otherwise S i (t) = 0 . When a neuron generates a

pike, its membrane potential will be reset to V rest in the next step.

A spiking IP learning rule for IF neuron model is proposed in

36] . This IP rule depends on Dirac delta function, which had the

ormat of 

τip 

drC 

dt 
= 

1 

rC 
− yI + β(1 − y ) I 

ip 

drR 

dt 
= −rR + y − β(1 − y ) (4)

here τ ip denotes the relative integration resolution of the IF

odel and the IP mechanism, β is a scale factor. r C = 1 /C m 

, r R =
 /R m 

, and the output in response to the input I of a neuron can be

escribed as 

 = η
∑ 

f 

δ(t − t ( f ) ) (5)

here δ(t − t ( f ) ) is Dirac delta function representing a spike fired

t time t ( f ) and η indicates the strength of spike. The tuning curve
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Table 1 

List of parameter values. 

Parameter Value Parameter Value 

V th 1 V rest 0 

β 0.6 η 0.5 

τ ip 20 rR 2 

rC 2 
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f an IF neuron can be shifted due to the changing of two param-

ters rC and rR , which regulate the slope and threshold of the re-

ponse curve. 

The discrete version of synaptic current input I 
φ
j 
(k ) and neuron

embrane potential update can be written as 

 

φ
j 
(k ) = 

N ∑ 

i =1 

S 
φ−1 

i 
(k ) · w 

φ−1 

ji 
(6) 

nd 

V (k ) = 

1 

τm 

(k − 1) 
( V rest − V ( k − 1) + R m 

(k − 1) I(k ) ) (7) 

 the output at time step k, y ( k ) is 

 (k ) = η
∑ 

f 

δ(t(k ) − t ( f ) (k )) (8) 

According to (4) , the parameters of τm 

( k ) and R m 

( k ) can be up-

ated by the IP rule: 

τm 

(k ) = 1 /r C(k ) r R (k ) 

 m 

(k ) = 1 /rR (k ) (9) 

here 

rC(k ) = 

1 

τip 

(
1 

rC(k − 1) 
− y (k ) I(k ) + β(1 − y (k )) I(k ) 

)

rR (k ) = 

1 

τip 
( −rR (k − 1) + y (k ) − β(1 − y (k )) ) (10) 

. Material and method 

.1. Dataset 

To verify the proposed IP method, a series of experiments on

he pattern recognition have been conducted based on the MNIST

enchmark. MNIST is a widely used digit character database for

achine learning which consists of 60,0 0 0 training samples and

0,0 0 0 test samples. Each sample is a handwriting digit from 0 to

 with the pixel size of 28 × 28, where the pixel is valued by gray

alue of 0–255. 

Besides the normal MNIST dataset which is used to test

he learning speed and accuracy, manually processed MNIST test

atasets are also used to test the robustness of the proposed IP

ethod. We perform two treatments on the test dataset by chang-

ng the exposure degree of the input test images or adding noise

ith different types and different intensities to the test images,

ncluding uniform noise, Gaussian noise, Rayleigh noise, gamma

oise, and salt&pepper noise. 

.2. SFNN model construction 

Based on the mathematical framework and experiment results

or converting a conventional deep neural networks into spiking

eural networks which proposed by [21,23–25] , training of spik-

ng deep networks can start from a conventional ANN trained with

ack propagation and then transform the rate-based neuron model

nto spiking neuron model. As shown in Fig. 1 , we construct the

FNN by the following several steps: 

1) Construct a deep fully connected network with 4 layers of

cale 784-1200-1200-10, which consists of one input layer (784

euron nodes), two hidden layers (1200 neuron nodes per layer),

nd an output layer (10 neuron nodes with each node represents

ne of the ten digit classes); Apply the ReLU model as the acti-

ation functions of neurons in hidden layers and softmax in the

utput layer; 

2) Set the bias to be 0 and train the conventional analog FNN

ia BP training rule; 
3) Replace the ReLU units with the LIF model in the hidden lay-

rs and directly map the weights from the well-trained analog FNN

etwork to the spiking network; 

4) Add IP mechanism to the LIF units during the test stage. 

The computational performance in terms of learning speed and

lassification accuracy are compared between SFNN with IP rule

SFNN-IP) and SFNN without IP rule (SFNN-noIP) under different

nput firing rates. Besides, we also study the computational per-

ormance of SFNN-noIP and SFNN-noIP on ill-exposed dataset and

oisy dataset, respectively. It is known that ill-posed and noisy im-

ges are usually difficult to be accurately and reliably classified es-

ecially when the model is not been well-trained with these ill-

osed datasets. Thus, it is meaningful to develop robust algorithms

r models for recognizing disturbed images. Initial values of some

mportant parameters are listed in Table 1 , and the detailed inves-

igations on parameters selection are discussed in Section 4.4 . 

. Experimental results 

.1. Classification performance on normal dataset 

.1.1. Convergence speed 

The calculation speed, as well as the learning speed, refers to

he time taken by SNN to recognize the image pattern that carried

y the input signal. It can be also considered as the convergence

ime for SNN to the homeostatic state of spiking activity. It is be-

ieved that shorter convergence time to homeostatic state means

he faster learning speed, thus networks can respond more quickly

o the input signals, which is critical for computational tasks with

igh real-time requirements. Normalization methods, such as batch

ormalization [37] , are popular for accelerating training process

nd improving computing accuracy of analog neural networks. For

piking networks, In [23] the authors proposed model-based and

ata-based normalization methods for achieving fast classifying

hile maintaining high accuracy during the test (inference) stage.

imilar as the experiments conducted in [23] , in this paper the

ell-trained weights of ReLU network are directly transferred to a

piking IF network. However, instead of using the model-based or

ata-based normalization to avoid over-activation, here IP mech-

nism is applied to the IF units during the testing procedure to

elf-adjust the balance of input intensity and output firing rate.

ig. 3 compares the computational performance of several mod-

ls, i.e. SFNN with or without IP learning, and SFNN normalized by

he two methods proposed in [23] . We can see that without loss of

ccuracy, the time required to achieve the final accuracy of SFNN-

P is significantly shorter than SFNN-noIP and the models based

n data and model normalization. The effects of firing rate of the

nput layer (called input firing rate in the following content) on

erformance of the spiking neural networks are also investigated

n Fig. 4 . We can see that SFNN-IP shows faster convergence speed

han SFNN-noIP without loss of accuracy, especially for the case of

ow input firing rate. 

In order to examine the influence of hidden layer numbers on

he computational performance, we tested deeper SFNN models

ith three and four hidden layers under the structure of 784-

200-1200-800-10 and 784-1200-1200-800-800-10. The classifica- 

ion accuracy of FNNs with 2, 3, 4 hidden layers before converting



106 A. Zhang, H. Zhou and X. Li et al. / Neurocomputing 365 (2019) 102–112 

Fig. 3. Comparisons of classification performance on MNIST dataset between the 

models of SFNN-noIP, SFNN-IP and SFNN with data and model normalization 

method proposed in [23] . 

Fig. 4. Comparisons of the learning speed and accuracy between SFNN-noIP and 

SFNN-IP with the input rate of 20 Hz, 200 Hz and 2000 Hz. 

Table 2 

Computational performance comparisons between SFNN-IPs and SFNN-noIP with 

two, three and four hidden layers, respectively. 

Network size Model Accuracy Time 

2 hidden layers SFNN-noIP 96.8% 26 ms 

SFNN-IP 97.0% 14 ms 

3 hidden layers SFNN-noIP 98.2% 29 ms 

SFNN-IP 98.3% 18 ms 

4 hidden layers SFNN-noIP 98.4% 34 ms 

SFNN-IP 98.4% 21 ms 
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to the SFNN are 97.2%, 98.4% and 98.6%, respectively. As shown in

Table 2 , we can see that computational accuracy and convergence

time for both SFNN-IP and SFNN-noIP increase slightly with the in-

crease of hidden layers. Since the change is not obvious, SFNN with

two hidden layers is enough for this computational task. 

4.1.2. Firing rates 

The spiking activities during the initial 100 ms in the hidden

layers and output layer are shown in Fig. 5 (a)–(c). It can be seen

that the time of output response appears much earlier than the

SFNN-noIP network, which means that the convergence speed is

greatly accelerated (see the red vertical lines in Fig. 5 ). Due to the

self-adjusting of firing threshold in the IP learning, single unit has
he ability of adapting its intrinsic excitability to its synaptic inputs

ynamically. Therefore during the initial stage, the whole popula-

ion can be quickly triggered to make responses which contributing

o the significant acceleration of recognition speed. Note that there

s almost no neural response for the SFNN-noIP network when in-

ut rate is extremely weak (for example 20 Hz) within the initial

00ms, but IP learning can effectively avoid this non-activation of

eural response to weak input. 

Moreover, Fig. 4 implies that high input firing rate (for example

0 0 0 Hz) can accelerate the learning speed of both SFNN-noIP

nd SFNN-IP models. However, as shown in the subsequent exper-

ments for the ill-conditioned test data, the robustness of the spik-

ng network with high input firing rate is reduced. With high input

ring rates, SFNN turns to be more sensitive to image intensity

nd noise disturbance. To further confirm this point, the influence

f input firing rate, image intensity and noise robustness on the

ecognition performance are investigated in the following content. 

.1.3. rR and rC of IP 

Here we investigate the variation of the key variables rR and rC

n the IP learning rule. Fig. 6 shows the rR and rC of a single neu-

on which is driven by a random sparse spiking trains and an ex-

ernal current input. It should be pointed out that event-triggered

ignal in Fig. 6 is an example for showing the dynamic process

f rR and rC . The practical variations of rR and rC for MNIST im-

ge classification task are shown in Fig. 7 , where the “Layer2” and

Layer3” denote the two hidden layers of SFNN (the network struc-

ure is 784-1200-1200-10, but only 400 hidden neuron states are

epresented), and “Output” is the output layer (10 neuron states).

rom Fig. 7 we can see that the values of rR decrease while the

alues of rC increases for both of the hidden layers and the out-

ut layer. The updating of rR and rC can be simplified by using the

ast state of rR and rC according to the degraded dynamics with no

piking response output y and no external input current I , which is

ormulated as 

τip 

drC 

dt 
= 

1 

rC 

ip 

drR 

dt 
= −rR − β (11)

ased on 11 , it is known that if the initial values of rR and rC are

reater than 0, and τ ip > 0, β > 0, then rR will converge to a fixed

alue, while rC will continuously increase over time. It should be

oted that the variations of the rR, rC in Figs. 6 and 7 are con-

istent with the results in 11 . On the other hand, it is important

o notice that in the output layer, both of rR and rC of the out-

ut neuron which represented the image class evolves significantly

ifferent from the other neurons. It is the remarkable dynamical

hanges of the corresponding output neuron which significantly

ontribute to the quick convergence process during the test stage

f the SFNNs. 

.2. Classification performance on ill-exposed dataset 

The problem of inconsistency between the feature distributions

f the test dataset and training dataset is a common phenomenon

n some practical applications. For example, in the same scene,

he overall pixel brightness of the image taken in the dark night

s significantly lower than that taken in the strong sunlight. If a

eural network model is trained for image recognition tasks us-

ng image samples taken from normal light brightness, it can not

ork well for recognizing images taken under different light con-

itions. In the vast majority of engineering applications, it is neces-

ary to sample the training dataset so that to cover all the cases as

uch as possible, or use complex normalization techniques which
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Fig. 5. Firing activities of the hidden layers and output layer of SFNN-IP and SFNN-noIP with different input firing rates (20 Hz, 200 Hz, 20 0 0 Hz). The red vertical lines 

represent the start time of output response. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ased on prior statistical knowledge to regulate the input distri-

ution [38–41] . But unfortunately, it is usually resource-costly or

ven impossible to achieve. 

Under this situation, it is valuable to obtain an effective model

r algorithm which has the ability to maintain a stable computa-

ional performance. Here we investigate the influence of IP learn-

ng on the computational performance of SFNN for image recog-

ition with different exposure degrees. The normal “pure” MNIST

ataset is used for the training process, while the test dataset is

ll-exposed with different exposure degrees. Results are as shown

n Fig. 8 . Here the exposure degree or the image brightness is

djusted by changing the values of image pixels from −0.5 and 0.5.
hat is, if the image is underexposed, the values of all pixels after

ormalization are adjusted to be 0 if the value is less than 0.4915.

or over exposure, the values of all pixels are adjusted to be 1 if it

s larger than 0.7717. Examples of images with different exposure

egree are also shown in Fig. 8 . We can see that in all of the test

ases, both of the learning speed and accuracy of SFNN can be sig-

ificantly improved through the IP mechanism. This result further

onfirms that the IP learning can effectively avoid both over-

ctivation and non-activation, thus broadening the input condition.

Further, it should be noted that unlike the effect of input fir-

ng rate shown in Fig. 4 which seems to be a positive correla-

ion between the input firing rate and classification performance in
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Fig. 6. Dynamical variations of rR (left) and rC (right) of a single neuron driven by a random spiking train and a fixed input current I . 

Fig. 7. The variations of rR and rC of the two hidden layers and the output layer during the IP learning in SFNN-IP for different input images (digits 0, 1, and 2). 
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Fig. 8. Influence of image exposure degrees on the classification performance of SFNN-noIP and SFNN-IP with different input rates. 
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erms of both learning speed and accuracy, the computational per-

ormance on overexposed dataset at input firing rate of 20 0 0 Hz

s under-performed compared with the other cases. It indicates

hat too high input firing rate will cause over-activation and re-

uce classification accuracy. A suitable input firing rate seems to

e necessary for the optimal performance. 

.3. Classification performance on noisy dataset 

Noise commonly exists in sample data due to external distur-

ance or measurement error. Despite some literature demonstrated

hat appropriate intensity of noise is benefit for enhancing the

eneralization capability of the machine learning models, it is still

n undeniable fact that too much noise will seriously weaken the

odels’ performance. Thus, learning robustness has always been

n important comprehensive indicator for the evaluation of com-

utational capability. 

Here, we use a well-trained SFNN model on normal “pure”

NIST training dataset and test its classification performance on

oisy dataset. Five different types of noise are considered (as

hown in Fig. 9 ), including gaussian noise, uniform noise, rayleigh

oise, gamma noise and salt-and-pepper noise, which exist widely

n engineering practice. Here image signal-to-noise ratio (SNR)

s used for characterizing the intensity ratio between image and

oise, which is calculated by 

NR (x, y ) = 10 log 10 

( ∑ M 

i =1 

∑ N 
j=1 x (i, j) 2 ∑ M 

i =1 

∑ N 
j=1 (x (i, j) − y (i, j)) 2 

)
(12)

here x ( i, j ), and y ( i, j ) denote the original image and disturbed

mage respectively for the pixel ( i, j ) of image. M and N are the

ixel numbers. In our experiments, classification performance of

FNN-noIP and SFNN-IP are investigated based on the ill-posed

ataset with the SNR value of −3 db. 
Gaussian noise. Gaussian noise is also known as normal noise

hich means the statistical property obeys the normal distribution

ith zero mean and variance θ2 . θ = 0 . 33465 leads to the signal-

o-noise ratio (SNR) value of −3 db. 

Uniform noise. Uniform noise it also another common form of

oise, it can be written as 

 = α + (β − α) u (0 , 1) (13)

here u (0, 1) is uniformly distributed between 0 and 1. α = 0 , β =
 . 5793 leads to the SNR value of −3 db. 

Rayleigh noise. The mathematical formulation of rayleigh noise

s 

 = α + β
√ 

−ln [1 − u (0 , 1)] (14) 

nd α = 0 , β = 0 . 33417 leads to the SNR value of −3 db. 

Gamma noise. Gamma noise is superimposed by n exponentially

istributed noises, it can be described by 

 = z 1 + z 2 + · · · + z n (15)

here z i = − 1 
α ln [1 − u (0 , 1)] . And it should be noted that if n =

 , the gamma noise turns into exponential noise. n = 4 , α = 18 . 78

eads to the SNR value of −3 db. 

Salt-and-Pepper noise. Salt-and-Pepper Noise is represented as

parsely occurring white and black pixels, which can be generated

y sharp or sudden disturbances in the image signal. The noise

robability of 6% of “salt” and “pepper” also leads to the SNR value

f −3 db. 

Classification performances on the above mentioned noisy

atasets are presented in Fig. 10 , where Accuracy and Time de-

ote the final convergent classification accuracy and convergence

ime reaching to the final classification accuracy, respectively. From

hese figures we can see that the IP rule can also promote the ro-

ustness of spiking neural networks, which is independent of the

oise type. This is significantly meaningful to real-time and noise
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Fig. 9. Noisy images with different noise distribution. 

Fig. 10. The classification accuracy and convergence time of SFNN-noIP and SFNN- 

IP based on different noisy test datasets. 

 

 

 

 

 

 

 

 

 

Table 3 

Classification accuracy comparison between our method and [42] on salt&pepper 

noise added MNIST test dataset. 

Noise density 0 0.05 0.1 0.2 0.3 0.5 

Method in [42] (%) 91.3 89.6 87.4 81.2 73.8 47.1 

Our Method (%) 97.2 96.1 95.0 89.5 77.2 55.8 

Fig. 11. Computational performance of SFNN-IPs with different τ ip , where β and η

are set to be 0.6 and 0.5, respectively. 
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interfered applications. Note that for most cases, too high input fir-

ing rate i.e. 20 0 0 Hz leads to low classification accuracy. Besides,

the recognition performance of our model on MNIST dataset with

different intensity of the salt&pepper noise is also compared with

an event-driven feed-forward categorization model which is intro-

duced in [42] . Comparison results shown in Table 3 demonstrate

that our method can achieve higher classification accuracy than

the model proposed in [42] . 

4.4. Parameters selection 

The advantages of IP learning on speed acceleration and robust-

ness of the computational performance of Spiking Feed-Forward
eural Networks (SFNN) have been investigated in detail, how-

ver, value selection of several key parameters can also signifi-

antly influence the computational performance. In the following,

hree important parameters, i.e. the relative integration resolution

ip and the scale factor β of the IP mechanism (see Eq. (4) ), and

he strength of spiking output η are investigated in detail. 

.4.1. The relative integration resolution τ ip of IP learning 

Fig. 11 shows the computational performance of SFNN-IP with

ifferent values of τ ip . We can see that when τ is very small (i.e.

.1), the classification accuracy drops quickly after reaching the

eak value. As the value of τ increases, the classification accu-

acy can converge into a stable state. Besides, too large value of

will dramatically slow down the updating process of IP learn-

ng. Fig. 12 shows that spiking frequencies of both hidden layers

ncreases with the increase of τ ip , then fall into a relative homeo-

tatic state. Therefore, the parameter τ is set as 20 in this paper. 

.4.2. The scale factor β of IP learning 

Fig. 13 shows that computational accuracy of SFNN-IP drops

uickly when β is greater than 1, while the performance curves

or β values in the range of (0, 1) are almost coincident. It should

e noted that when beta is 0, the mathematical formulation (4) of
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Fig. 12. Firing activities of the two hidden layers of SFNN-IP during the initial 100ms, with different values of τ ip . 

Fig. 13. Computational performance of SFNN-IPs with different β , where τ ip and η

are set to be 20 and 0.5, respectively. 

Fig. 14. Computational performance of SFNN-IPs with different η, where τ ip and β

are set to be 20 and 0.6, respectively. 
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P can be simplified as 

ip 

drC 

dt 
= 

1 

rC 
− yI 

ip 

drR 

dt 
= −rR + y (16) 

In this paper, the parameter β is set as 0.6. 

.4.3. The strength η of spiking output 

In Fig. 14 , we compare the computational performance of SFNN-

P for different η values. It can be seen that SFNN-IP performs well

n terms of learning speed and classification accuracy when η is

ess than 1. In this paper the parameter η is set as 0.5. 
. Conclusion 

Although analog deep learning networks can achieve high clas-

ification accuracy on computational tasks, they can not be directly

pplied to event-based computing systems, i.e. the neuromorphic

ircuits. Deep spiking neural networks, which have been shown

o be significantly more energy-efficient than conventional ones

4] , are trying to solve the problem. However, the conversion from

nalog neural networks to event-driven spiking neurons cause the

ost of performance losses. Errors are mostly caused by the over-

ctivation of neural responses to input data. Thus it is essential to

nd the right balance of spiking thresholds, input weight and in-

ut firing rates. In this paper, it is achieved by using the Intrinsic

lasticity (IP) which is a self-adjusting mechanism of single unit

ith the ability of changing its intrinsic excitability to adapt its

ynaptic input dynamically. We focused on the effects of IP rule

or spiking neural networks. By a series of experiments, we found

hat IP rule had the ability to guarantee the network classification

ccuracy at a high level, and meanwhile, the network convergence

peed was dramatically improved. Besides, when the exposure de-

ree and noise of input data are taken into account, both of the

earning speed and accuracy of the model can be greatly improved

y the application of IP learning. With the application of IP learn-

ng, the average firing rates of the whole network can be main-

ained in a reasonable scope even if the input is extremely weak

r strong or interfered by noise. The robustness enhancement is

uite important for achieving stable and high computational per-

ormance of neural networks. And the most attractive characteris-

ic of this method is that the enhancement of both accuracy and

omputing speed can be achieved in a simple and effective way,

ithout tuning the right balance of lots of parameters. 
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