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ABSTRACT

In this paper, the computational performance of a Spiking Feed-forward Neural Network (SFNN) is in-
vestigated based on a brain-inspired Intrinsic Plasticity (IP) mechanism, which is a membrane potential
adaptive tuning scheme used to change the intrinsic excitability of individual neuron. This learning rule
has the ability of regulating neural activity in a relative homeostatic level even if the external input of a
neuron is extremely low or extremely high. The effectiveness of IP on SFNN model has been studied and
evaluated through the MNIST handwritten digits classification. The training of network weights starts
from a conventional artificial neural network by backpropagation and then the rate-based neurons are
transformed into spiking neuron models with IP learning. Our results show that both over-activation and
under-activation of neuronal response which commonly exist during the computation of neural networks
can be effectively avoided. Without loss of accuracy, the calculation speed of SFNN with IP learning is
extremely higher than that of the other models. Besides, when the input intensity and data noise are
taken into account, both of the learning speed and accuracy of the model can be greatly improved by the
application of IP learning. This biologically inspired SFNN model is simple and effective which may give
insights for the optimization of neural computation.

© 2019 Published by Elsevier B.V.

1. Introduction

In recent decade years, with the rapid development of theories
and applications in brain science, spiking neural networks (SNNs)
are proposed and have become increasingly attractive due to its
advantages of high nonlinear approximation capability and low
computation consumption. Although analog artificial neural net-
works with deep learning can achieve high classification accuracy
on many computational applications, the huge number of neurons
and complicate algorithms require massive computing power and
energy. To overcome the large computational cost of deep network
in artificial neural networks, spiking deep networks (SDNs), i.e.
deep neural networks with spiking neurons have been proposed
recently. SDNs present high performance for solving various prob-
lems, they not only achieve powerful computing capability and
high accuracy, but also gain high processing speed and low compu-
tational cost [1-3]. Besides, SDNs have the potential to be directly
applied to event-based computing systems, i.e. the neuromorphic
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circuits which have been shown to be significantly more energy-
efficient than conventional ones [4]. It has become an increasingly
attractive field for researchers and engineers [5-8]. In [9], Rossum
et al. modeled the propagation of neural activities through a feed-
forward network consisting of integrate-and-firing (I&F) neurons.
They found that firing activities are transmitted linearly layer by
layer, with a time delay proportional to the synaptic time constant.
In [10] the authors discussed the convergence problem of leaky
integrate-and firing (LIF) neuron model based on spiking recurrent
networks with constant external inputs, and suggested that precise
spatiotemporal sequences of spikes may be useful for information
encoding and processing in biological neural networks. Further,
in [11], Jin et al. also exhibited another spiking recurrent network
that performed fast winner-take-all computations, which aimed to
reducing the inter-spike intervals of the neurons.

Since traditional training algorithms (i.e. Error Back Propa-
gation) of rate-based analog neural networks cannot be directly
used for SNNs. Some specific algorithms have been proposed for
obtaining a well-trained SNN. Similar to the BP learning rule,
Bohte et al. derived a supervised learning method (SpikeProp) for
spike response model (SRM) [12]. In [13], the authors introduced
a new error-backpropagation mechanism based on SNN training
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algorithm, which treats the membrane potentials of spiking neu-
rons as differentiable signals, where discontinuities at spike times
are only considered as noise. Other backpropagation-inspired
learning rules have also been proposed, e.g., [14-18]. On the other
hand, unsupervised learning with respect to neural synaptic plas-
ticity, especially the spike-timing-dependent-plasticity (STDP), has
also been broadly studied. According to STDP, synapses through
which a presynaptic spike arrived before (respectively after) a
postsynaptic one are reinforced (respectively depressed) [19].
Inspired by the success and popularity of reinforcement learning,
Kheradpisheh et al. proposed a reward modulated STDP (R-STDP)
method to train the convolutional SNN for object recognition, and
it demonstrated that R-STDP outperforms STDP on various image
datasets [20].

However, the applications of the above SNNs models are very
limited compared with the broadly used deep learning rate-based
neural networks (ANNs). Directly converting the ANNs to be SNNs
could be more effective and convenient for applications. But the
conversion from analog neural networks to event-driven spiking
neurons may cause the cost of performance losses. Errors are
mostly caused by the over-activation of neural responses to in-
put data. The probability of converting the well-trained rate-based
ANNSs to their SNN counterparts via directly mapping the connec-
tion weights was firstly proposed by [21,22]. OConnor et al. pre-
sented a mathematical framework and algorithm for converting a
conventional deep belief model trained offline into the event-based
spiking DBNs, and shows the application of the framework with
such as real visual and auditory inputs from neuromorphic sen-
sors [21]. By this approach, one can train the tailored ANN model
through mature optimization algorithms, such as stochaotic gra-
dient descent (SGD), Adam, and so on. And then, simply convert
it to its corresponding SNN version. In [23] the authors extended
the conversion method of [22] to reduce the performance loss dur-
ing the conversion, further, they also proposed a set of optimiza-
tion techniques for spiking convolutional neural networks (SCNNs)
and spiking feed-forward neural networks (SFNNs), including us-
ing rectified linear units (ReLUs) with no bias during training and
weight normalization method. Compared with previous approaches
based on SNNs, these optimization techniques boost the computa-
tion performance that perform the state-of-art both in high accu-
racy and low latency. Despite the outstanding performance in [23],
it should be noted that it is still time consuming and difficult to
reach the optimal performance. Thus it is essential to find the right
balance of spiking thresholds, input weight and input firing rates.
More systematically, Rueckauer et al. introduced more conversion
methods for some ANN operators to their SNN counterparts [24].
Further works of deep neural networks (DNNs) to spiking DNNs
conversion have also been done, such as [25,26].

Actually, in neuroscience, it has been confirmed that a single
neuron can adaptively change its intrinsic excitability to fit vari-
ous synaptic inputs by the activity of their voltage-gated channels
[27,28]. This adaption of neuronal intrinsic excitability, called in-
trinsic plasticity (IP), has been hypothesized to keep the mean fir-
ing activity of neuronal population in a homeostatic level which is
effective to maximize the information entropy [29-31]. That is, IP
can change the intrinsic excitability of individual neuron by adap-
tively turning the firing threshold. This adaptive adjustment of the
neuronal input-output response online is crucial for efficient infor-
mation processing. In [32], Marion et al. showed that IP is able to
adapts reservoir computing with very constrained topologies and
make the networks more robust. However, IP learning is not in-
volved in most of current studies on computational modeling of
neural network.

Therefore, inspired by this biologically discovered learning rule,
we present a novel neural network model by combining the
IP learning scheme with spiking feed-forward neural networks

(SFNNs) in this paper. Experimental results tested on MNIST
database show that compared with the networks without IP, both
the learning speed and robustness of computation accuracy are
obviously improved. A neuron with IP mechanism will weaken
its excitability when the input is boosted and strengthen its ex-
citability when the input is deprived. Thus, the neuron can stay
at a homeostatic state no matter the synaptic input unexpected
strongly increases or decreases, which protects the neuron activ-
ity against to an extremely high or low level. In this way, both
over-activation and under-activation of neuronal response can be
effectively avoided in time and ensure the accuracy of computa-
tion. This adaptive adjustment of spiking threshold is simple and
effective, with no need to turn the right balance of parameters.
The remaining of this paper is organized as follows.
Section 2 introduces the FNNs based on spiking neuron model
(LIF model), and the corresponding IP mechanism for SNNs.
Section 3 demonstrates the dataset benchmark used in this paper,
as well as the SFNN construction method. Section 4 implements
the experiment constructed on both normal MNIST dataset and
MNIST dataset with different input intensity and noise inten-
sity. Influences of key parameters are also fully investigated and
analyzed. Section 5 discusses the findings and conclusions.

2. Model description

Based on the mathematical framework for converting a con-
ventional deep neural networks into spiking neural networks in
[21,23], training of spiking deep networks can start from a conven-
tional ANN trained with back propagation and then transform the
rate-based neuron model into spiking neuron model. In the follow-
ing two subsections, feed-forward neural network for training pro-
cess and spiking feed-forward neural network for testing process
will be described in detail, which produce the rate-based FNN and
spiking FNN (SFNN) respectively.

2.1. Feed-forward neural network for training process

In feed-forward neural networks (FNNs), neurons of the pre-
ceding layer are fully connected to the subsequent layer, while
no intra-layer connections are established. FNNs have been exten-
sively applied in image classification, trend prediction, scene label-
ing and other tasks. Nowadays, another most popular application
of FNNs is acting as the final output layer of convolutional neural
networks (CNNs), where higher-level feature extraction is achieved
by the convolutional layers, pooling layers and normalization lay-
ers. In conventional FNNs, or named the rate-based FNNs, neu-
rons are linear static units which directly sums the weighted input
signals from previous layer and passes the obtained value to the
following layer. For image classification problems, activation func-
tions of rectified linear unit (ReLU) and softmax have been widely
used for intermediate feature processing in hidden layers and im-
age classification in output layer, respectively.

Nair and Hinton [33] presented that the stage function rectified
linear units (ReLUs) greatly accelerate the convergence of stochas-
tic gradient descent compared to the sigmoid/tanh functions due
to its linear, non-saturating form. And considering the enhance-
ment of ReLUs to computation performance for object recognition
and face verification, we use ReLUs in our networks during the
training process. A typical mathematical description is given as

X = max(0, > w;jx;) (M
J

where x; is the activation of unit i, w; is the weight connecting
unit j in the preceding layer to unit i in the current layer, and x; is
the activation of unit j in the preceding layer. It should be noted
that the variable x; in SFNNs represents the spike event of neuron
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Fig. 1. Schematic diagram of converting an artificial neural network into a spiking neural network. (D: Training an analog FNN with ReLU activation function based on
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Fig. 2. Conversion from image pixels into spike streams. (D): Vectorize the 2828 image pixels into 784 input neurons with two states of firing or no firing. The “white line”
in spike streams denotes a spike event at current time step, while the “black line” denotes no spike generated. 2): Generate spike streams with Poisson distribution, where

the firing frequency of spike stream is proportional to the image intensity.

j at a certain time step, which implies that x; =1 if a spike gen-
erated by neuron j, otherwise x; = 0. and x; is the synaptic current
input produced by its presynaptic.

2.2. Spiking feed-forward neural network with intrinsic plasticity for
testing process

Unlike the traditional FNNs, spiking feed-forward neural net-
works (SFNNs) only process signal in the format of spiking events.
Fig. 1 shows a schematic diagram of image classification conducted
by a SENN framework. In the data preprocessing stage, image pix-
els are firstly reshaped to a vector, and then converted into a se-
quence of spike streams, which are used to feed into the input
layer of SFNNs. Fig. 2 shows the conversion process where each
image pixel is converted into a spike stream by using the Poisson
distribution method [23,34]. The firing frequency of spike stream
is proportional to the image intensity.

The Leaky Integrate-and-Fire (LIF) model [35] is used in this
paper, which was described to be computationally effective for
neural activities and widely deployed in artificial computational
neuroscience. LIF model can be given as the differential equation,

dv(t)
g
where V(t) denotes the membrane potential of a single neuron.
Vrest denotes the resting membrane potential. The time constant

T, is the product of membrane resistance Rp and membrane
capacitance Cp. I(t) is the sum of all inputs from pre-synaptic

= Vrest = V(£) + Rl (£) (2)

neurons. Each LIF neuron is stimulated by the activity of its
pre-synaptic connected neurons.

N
HOED I SRGRTa (3)
i=1

The variable ¢ means the ¢th layer of neural network. S;(t) rep-
resents the spiking of neuron i at time t. S;(t) = 1 if this neuron
generates a spike, otherwise S;(t) = 0. When a neuron generates a
spike, its membrane potential will be reset to Vys in the next step.

A spiking IP learning rule for IF neuron model is proposed in
[36]. This IP rule depends on Dirac delta function, which had the
format of

drC 1
T gy = e -yI+ B8 -yI
drR
Togr = —-tR+y—-B(1-y) (4)

where 7;, denotes the relative integration resolution of the IF
model and the IP mechanism, B is a scale factor. 1C =1/Cp, 'R =
1/Rm, and the output in response to the input I of a neuron can be
described as

y=n) 8t-t¥) (5)
f

where §(t — (V) is Dirac delta function representing a spike fired
at time tY) and 7 indicates the strength of spike. The tuning curve
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of an IF neuron can be shifted due to the changing of two param-
eters rC and rR, which regulate the slope and threshold of the re-
sponse curve.

The discrete version of synaptic current input I;?> (k) and neuron
membrane potential update can be written as

N
19 (k) = ;s;fH (k) - wh™! (6)
and
1

AV (k) = m(vre‘st —V(k—=1) +Rn(k—-1I(k)) (7)
, the output at time step k, y(k) is

yky =nY_8(tk) -t (k) (8)

f

According to (4), the parameters of 7,(k) and Ry (k) can be up-
dated by the IP rule:

tm(k) = 1/rC(k)rR(k)

Rm(k) = 1/rR(k) 9)
where
ArC(k) = l(* —y(oI) + B(1 — (k))I(k))
T \rck—1) Y
AR = - (-1R(k— 1)+ y(k) ~ B(1 y (k) (10)
p

3. Material and method
3.1. Dataset

To verify the proposed IP method, a series of experiments on
the pattern recognition have been conducted based on the MNIST
benchmark. MNIST is a widely used digit character database for
machine learning which consists of 60,000 training samples and
10,000 test samples. Each sample is a handwriting digit from O to
9 with the pixel size of 28 x 28, where the pixel is valued by gray
value of 0-255.

Besides the normal MNIST dataset which is used to test
the learning speed and accuracy, manually processed MNIST test
datasets are also used to test the robustness of the proposed IP
method. We perform two treatments on the test dataset by chang-
ing the exposure degree of the input test images or adding noise
with different types and different intensities to the test images,
including uniform noise, Gaussian noise, Rayleigh noise, gamma
noise, and salt&pepper noise.

3.2. SENN model construction

Based on the mathematical framework and experiment results
for converting a conventional deep neural networks into spiking
neural networks which proposed by [21,23-25], training of spik-
ing deep networks can start from a conventional ANN trained with
back propagation and then transform the rate-based neuron model
into spiking neuron model. As shown in Fig. 1, we construct the
SENN by the following several steps:

1) Construct a deep fully connected network with 4 layers of
scale 784-1200-1200-10, which consists of one input layer (784
neuron nodes), two hidden layers (1200 neuron nodes per layer),
and an output layer (10 neuron nodes with each node represents
one of the ten digit classes); Apply the ReLU model as the acti-
vation functions of neurons in hidden layers and softmax in the
output layer;

2) Set the bias to be 0 and train the conventional analog FNN
via BP training rule;

Table 1

List of parameter values.
Parameter Value Parameter Value
Ven 1 Viest 0
B 0.6 n 0.5
Tip 20 R 2
rC 2

3) Replace the ReLU units with the LIF model in the hidden lay-
ers and directly map the weights from the well-trained analog FNN
network to the spiking network;

4) Add IP mechanism to the LIF units during the test stage.

The computational performance in terms of learning speed and
classification accuracy are compared between SFNN with IP rule
(SFNN-IP) and SFNN without IP rule (SFNN-nolP) under different
input firing rates. Besides, we also study the computational per-
formance of SFNN-nolIP and SFNN-nolIP on ill-exposed dataset and
noisy dataset, respectively. It is known that ill-posed and noisy im-
ages are usually difficult to be accurately and reliably classified es-
pecially when the model is not been well-trained with these ill-
posed datasets. Thus, it is meaningful to develop robust algorithms
or models for recognizing disturbed images. Initial values of some
important parameters are listed in Table 1, and the detailed inves-
tigations on parameters selection are discussed in Section 4.4.

4. Experimental results
4.1. Classification performance on normal dataset

4.1.1. Convergence speed

The calculation speed, as well as the learning speed, refers to
the time taken by SNN to recognize the image pattern that carried
by the input signal. It can be also considered as the convergence
time for SNN to the homeostatic state of spiking activity. It is be-
lieved that shorter convergence time to homeostatic state means
the faster learning speed, thus networks can respond more quickly
to the input signals, which is critical for computational tasks with
high real-time requirements. Normalization methods, such as batch
normalization [37], are popular for accelerating training process
and improving computing accuracy of analog neural networks. For
spiking networks, In [23] the authors proposed model-based and
data-based normalization methods for achieving fast classifying
while maintaining high accuracy during the test (inference) stage.
Similar as the experiments conducted in [23], in this paper the
well-trained weights of ReLU network are directly transferred to a
spiking IF network. However, instead of using the model-based or
data-based normalization to avoid over-activation, here IP mech-
anism is applied to the IF units during the testing procedure to
self-adjust the balance of input intensity and output firing rate.
Fig. 3 compares the computational performance of several mod-
els, i.e. SFNN with or without IP learning, and SFNN normalized by
the two methods proposed in [23]. We can see that without loss of
accuracy, the time required to achieve the final accuracy of SFNN-
IP is significantly shorter than SFNN-noIP and the models based
on data and model normalization. The effects of firing rate of the
input layer (called input firing rate in the following content) on
performance of the spiking neural networks are also investigated
in Fig. 4. We can see that SFNN-IP shows faster convergence speed
than SFNN-nolP without loss of accuracy, especially for the case of
low input firing rate.

In order to examine the influence of hidden layer numbers on
the computational performance, we tested deeper SFNN models
with three and four hidden layers under the structure of 784-
1200-1200-800-10 and 784-1200-1200-800-800-10. The classifica-
tion accuracy of FNNs with 2, 3, 4 hidden layers before converting
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Fig. 3. Comparisons of classification performance on MNIST dataset between the
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Table 2
Computational performance comparisons between SFNN-IPs and SFNN-nolP with
two, three and four hidden layers, respectively.

Network size Model Accuracy Time
2 hidden layers SFNN-nolP 96.8% 26 ms
SENN-IP 97.0% 14 ms
3 hidden layers SFNN-nolP 98.2% 29 ms
SFNN-IP 98.3% 18 ms
4 hidden layers SFNN-nolP 98.4% 34 ms
SFNN-IP 98.4% 21 ms

to the SFNN are 97.2%, 98.4% and 98.6%, respectively. As shown in
Table 2, we can see that computational accuracy and convergence
time for both SFNN-IP and SFNN-nolP increase slightly with the in-
crease of hidden layers. Since the change is not obvious, SFNN with
two hidden layers is enough for this computational task.

4.1.2. Firing rates

The spiking activities during the initial 100 ms in the hidden
layers and output layer are shown in Fig. 5(a)-(c). It can be seen
that the time of output response appears much earlier than the
SFNN-noIP network, which means that the convergence speed is
greatly accelerated (see the red vertical lines in Fig. 5). Due to the
self-adjusting of firing threshold in the IP learning, single unit has

the ability of adapting its intrinsic excitability to its synaptic inputs
dynamically. Therefore during the initial stage, the whole popula-
tion can be quickly triggered to make responses which contributing
to the significant acceleration of recognition speed. Note that there
is almost no neural response for the SFNN-nolIP network when in-
put rate is extremely weak (for example 20 Hz) within the initial
100ms, but IP learning can effectively avoid this non-activation of
neural response to weak input.

Moreover, Fig. 4 implies that high input firing rate (for example
2000 Hz) can accelerate the learning speed of both SFNN-nolP
and SFNN-IP models. However, as shown in the subsequent exper-
iments for the ill-conditioned test data, the robustness of the spik-
ing network with high input firing rate is reduced. With high input
firing rates, SFNN turns to be more sensitive to image intensity
and noise disturbance. To further confirm this point, the influence
of input firing rate, image intensity and noise robustness on the
recognition performance are investigated in the following content.

4.1.3. 1R and rC of IP

Here we investigate the variation of the key variables rR and rC
in the IP learning rule. Fig. 6 shows the rR and rC of a single neu-
ron which is driven by a random sparse spiking trains and an ex-
ternal current input. It should be pointed out that event-triggered
signal in Fig. 6 is an example for showing the dynamic process
of rR and rC. The practical variations of rR and rC for MNIST im-
age classification task are shown in Fig. 7, where the “Layer2” and
“Layer3” denote the two hidden layers of SFNN (the network struc-
ture is 784-1200-1200-10, but only 400 hidden neuron states are
represented), and “Output” is the output layer (10 neuron states).
From Fig. 7 we can see that the values of rR decrease while the
values of rC increases for both of the hidden layers and the out-
put layer. The updating of rR and rC can be simplified by using the
last state of rR and rC according to the degraded dynamics with no
spiking response output y and no external input current I, which is
formulated as

L ac_ 1
Pdt T rC
drR
tyg = —TR—B (1)

Based on 11, it is known that if the initial values of rR and rC are
greater than 0, and 7;, >0, B >0, then rR will converge to a fixed
value, while rC will continuously increase over time. It should be
noted that the variations of the rR, rC in Figs. 6 and 7 are con-
sistent with the results in 11. On the other hand, it is important
to notice that in the output layer, both of rR and rC of the out-
put neuron which represented the image class evolves significantly
different from the other neurons. It is the remarkable dynamical
changes of the corresponding output neuron which significantly
contribute to the quick convergence process during the test stage
of the SFNNs.

4.2. Classification performance on ill-exposed dataset

The problem of inconsistency between the feature distributions
of the test dataset and training dataset is a common phenomenon
in some practical applications. For example, in the same scene,
the overall pixel brightness of the image taken in the dark night
is significantly lower than that taken in the strong sunlight. If a
neural network model is trained for image recognition tasks us-
ing image samples taken from normal light brightness, it can not
work well for recognizing images taken under different light con-
ditions. In the vast majority of engineering applications, it is neces-
sary to sample the training dataset so that to cover all the cases as
much as possible, or use complex normalization techniques which
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Fig. 5. Firing activities of the hidden layers and output layer of SFNN-IP and SFNN-nolP with different input firing rates (20 Hz, 200 Hz, 2000 Hz). The red vertical lines
represent the start time of output response. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

based on prior statistical knowledge to regulate the input distri-
bution [38-41]. But unfortunately, it is usually resource-costly or
even impossible to achieve.

Under this situation, it is valuable to obtain an effective model
or algorithm which has the ability to maintain a stable computa-
tional performance. Here we investigate the influence of IP learn-
ing on the computational performance of SFNN for image recog-
nition with different exposure degrees. The normal “pure” MNIST
dataset is used for the training process, while the test dataset is
ill-exposed with different exposure degrees. Results are as shown
in Fig. 8. Here the exposure degree or the image brightness is
adjusted by changing the values of image pixels from —0.5 and 0.5.

That is, if the image is underexposed, the values of all pixels after
normalization are adjusted to be O if the value is less than 0.4915.
For over exposure, the values of all pixels are adjusted to be 1 if it
is larger than 0.7717. Examples of images with different exposure
degree are also shown in Fig. 8. We can see that in all of the test
cases, both of the learning speed and accuracy of SFNN can be sig-
nificantly improved through the IP mechanism. This result further
confirms that the IP learning can effectively avoid both over-
activation and non-activation, thus broadening the input condition.

Further, it should be noted that unlike the effect of input fir-
ing rate shown in Fig. 4 which seems to be a positive correla-
tion between the input firing rate and classification performance in
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Fig. 6. Dynamical variations of R (left) and rC (right) of a single neuron driven by a random spiking train and a fixed input current I.
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Fig. 8. Influence of image exposure degrees on the classification performance of SFNN-noIP and SFNN-IP with different input rates.

terms of both learning speed and accuracy, the computational per-
formance on overexposed dataset at input firing rate of 2000 Hz
is under-performed compared with the other cases. It indicates
that too high input firing rate will cause over-activation and re-
duce classification accuracy. A suitable input firing rate seems to
be necessary for the optimal performance.

4.3. Classification performance on noisy dataset

Noise commonly exists in sample data due to external distur-
bance or measurement error. Despite some literature demonstrated
that appropriate intensity of noise is benefit for enhancing the
generalization capability of the machine learning models, it is still
an undeniable fact that too much noise will seriously weaken the
models’ performance. Thus, learning robustness has always been
an important comprehensive indicator for the evaluation of com-
putational capability.

Here, we use a well-trained SFNN model on normal “pure”
MNIST training dataset and test its classification performance on
noisy dataset. Five different types of noise are considered (as
shown in Fig. 9), including gaussian noise, uniform noise, rayleigh
noise, gamma noise and salt-and-pepper noise, which exist widely
in engineering practice. Here image signal-to-noise ratio (SNR)
is used for characterizing the intensity ratio between image and
noise, which is calculated by

YUY XL )2 )
Y Y G )~y )2

where x(i, j), and y(i, j) denote the original image and disturbed
image respectively for the pixel (i, j) of image. M and N are the
pixel numbers. In our experiments, classification performance of
SFNN-noIP and SFNN-IP are investigated based on the ill-posed
dataset with the SNR value of —3 db.

SNR(x,y) = 10logm( (12)

Gaussian noise. Gaussian noise is also known as normal noise
which means the statistical property obeys the normal distribution
with zero mean and variance 92. § = 0.33465 leads to the signal-
to-noise ratio (SNR) value of —3 db.

Uniform noise. Uniform noise it also another common form of
noise, it can be written as

z=o+ (B -a)u(0,1) (13)

where u(0, 1) is uniformly distributed between 0 and 1. « =0, 8 =
0.5793 leads to the SNR value of —3 db.

Rayleigh noise. The mathematical formulation of rayleigh noise
is

z=a+ B+/—In[1 —u(0,1)]
and @ =0, B = 0.33417 leads to the SNR value of —3 db.

Gamma noise. Gamma noise is superimposed by n exponentially
distributed noises, it can be described by

(14)

Z=21+2+---+2y (15)

where z; = —Lin[1 -~ u(0,1)]. And it should be noted that if n =
1, the gamma noise turns into exponential noise. n =4, @ = 18.78
leads to the SNR value of —3 db.

Salt-and-Pepper noise. Salt-and-Pepper Noise is represented as
sparsely occurring white and black pixels, which can be generated
by sharp or sudden disturbances in the image signal. The noise
probability of 6% of “salt” and “pepper” also leads to the SNR value
of -3 db.

Classification performances on the above mentioned noisy
datasets are presented in Fig. 10, where Accuracy and Time de-
note the final convergent classification accuracy and convergence
time reaching to the final classification accuracy, respectively. From
these figures we can see that the IP rule can also promote the ro-
bustness of spiking neural networks, which is independent of the
noise type. This is significantly meaningful to real-time and noise
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Fig. 9. Noisy images with different noise distribution.
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Fig. 10. The classification accuracy and convergence time of SFNN-nolIP and SFNN-
IP based on different noisy test datasets.

interfered applications. Note that for most cases, too high input fir-
ing rate i.e. 2000 Hz leads to low classification accuracy. Besides,
the recognition performance of our model on MNIST dataset with
different intensity of the salt&pepper noise is also compared with
an event-driven feed-forward categorization model which is intro-
duced in [42]. Comparison results shown in Table 3 demonstrate
that our method can achieve higher classification accuracy than
the model proposed in [42].

4.4. Parameters selection

The advantages of IP learning on speed acceleration and robust-
ness of the computational performance of Spiking Feed-Forward

Table 3
Classification accuracy comparison between our method and [42] on salt&pepper
noise added MNIST test dataset.

Noise density 0 0.05 0.1 0.2 0.3 0.5

Method in [42](%) 913 89.6 87.4 81.2 73.8 47.1
Our Method(%) 97.2 96.1 95.0 89.5 77.2 55.8
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Fig. 11. Computational performance of SFNN-IPs with different 7;,, where 8 and n
are set to be 0.6 and 0.5, respectively.

Neural Networks (SFNN) have been investigated in detail, how-
ever, value selection of several key parameters can also signifi-
cantly influence the computational performance. In the following,
three important parameters, i.e. the relative integration resolution
Tjp and the scale factor B of the IP mechanism (see Eq. (4)), and
the strength of spiking output 7 are investigated in detail.

4.4.1. The relative integration resolution t;, of IP learning

Fig. 11 shows the computational performance of SFNN-IP with
different values of t;,. We can see that when 7 is very small (i.e.
0.1), the classification accuracy drops quickly after reaching the
peak value. As the value of t increases, the classification accu-
racy can converge into a stable state. Besides, too large value of
T will dramatically slow down the updating process of IP learn-
ing. Fig. 12 shows that spiking frequencies of both hidden layers
increases with the increase of 7;,, then fall into a relative homeo-
static state. Therefore, the parameter 7 is set as 20 in this paper.

4.4.2. The scale factor S of IP learning

Fig. 13 shows that computational accuracy of SFNN-IP drops
quickly when B is greater than 1, while the performance curves
for B values in the range of (0, 1) are almost coincident. It should
be noted that when beta is 0, the mathematical formulation (4) of
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Fig. 12. Firing activities of the two hidden layers of SFNN-IP during the initial 100ms, with different values of 7;,.
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Fig. 13. Computational performance of SFNN-IPs with different 8, where 7, and n
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Fig. 14. Computational performance of SFNN-IPs with different , where 7;, and B
are set to be 20 and 0.6, respectively.

IP can be simplified as

. arC 1
Pdt T rC
drR

In this paper, the parameter f is set as 0.6.

4.4.3. The strength n of spiking output

In Fig. 14, we compare the computational performance of SFNN-
IP for different 1 values. It can be seen that SFNN-IP performs well
in terms of learning speed and classification accuracy when 7 is
less than 1. In this paper the parameter 7 is set as 0.5.

activation of neural responses to input data. Thus it is essential to
find the right balance of spiking thresholds, input weight and in-
put firing rates. In this paper, it is achieved by using the Intrinsic
plasticity (IP) which is a self-adjusting mechanism of single unit
with the ability of changing its intrinsic excitability to adapt its
synaptic input dynamically. We focused on the effects of IP rule
for spiking neural networks. By a series of experiments, we found
that IP rule had the ability to guarantee the network classification
accuracy at a high level, and meanwhile, the network convergence
speed was dramatically improved. Besides, when the exposure de-
gree and noise of input data are taken into account, both of the
learning speed and accuracy of the model can be greatly improved
by the application of IP learning. With the application of IP learn-
ing, the average firing rates of the whole network can be main-
tained in a reasonable scope even if the input is extremely weak
or strong or interfered by noise. The robustness enhancement is
quite important for achieving stable and high computational per-
formance of neural networks. And the most attractive characteris-
tic of this method is that the enhancement of both accuracy and
computing speed can be achieved in a simple and effective way,
without tuning the right balance of lots of parameters.

Declarations of interest

None.

Acknowledgments

This paper is supported by the National Natural Science Foun-
dation of China (no. 61473051), and Natural Science Foundation of
Chongqing (no. cstc2016jcyjA0015).



112 A. Zhang, H. Zhou and X. Li et al./Neurocomputing 365 (2019) 102-112

References

[1] B. Han, A. Senqupta, K. Roy, On the energy benefits of spiking deep neural
networks: A case study, in: International Joint Conference on Neural Networks,
2016, pp. 971-976.

[2] B. Han, A. Ankit, A. Ankit, K. Roy, Cross-layer design exploration for ener-
gy-quality tradeoffs in spiking and non-spiking deep artificial neural networks,
[EEE Trans. Multi-Scale Comput. Syst. (2017). 1-1

[3] A.P. Johnson, J. Liu, A.G. Millard, et al., Homeostatic fault tolerance in spiking
neural networks: a dynamic hardware perspective, IEEE Trans. Circuits Syst. |
(2017) 1-13.

[4] M. Sharad, C. Augustine, G. Panagopoulos, K. Roy, Proposal for neuromorphic
hardware using spin devices, Comput. Sci. (2012).

[5] C.Hausler, M.P. Nawrot, M. Schmuker, A spiking neuron classifier network with
a deep architecture inspired by the pfactory system of the honeybee, in: Pro-
ceedings of International IEEE/EMBS Conference on Neural Engineering, IEEE,
2011, pp. 4361-4362.

[6] P. Panda, K. Roy, Unsupervised regenerative learning of hierarchical features in
spiking deep networks for object recognition, in: Proceedings of International
Joint Conference on Neural Networks, IEEE, 2016, pp. 885-900.

[7] M. Cernak, A. Lazaridis, A. Asaei, P.N. Garner, Composition of deep and spiking
neural networks for very low bit rate speech coding, Sci. China Math. 22 (10)
(1979) 1109-1113.

[8] A. Sengupta, M. Parsa, B. Han, K. Roy, Probabilistic deep spiking neural systems
enabled by magnetic tunnel junction, IEEE Trans. Electron Dev. 22 (10) (2016)
2963-2970.

[9] M.CW. van Rossum, G.G. Turrigiano, S.B. Nelson, Fast propagation of firing
rates through layered networks of noisy neurons, J. Neurosci. 22 (5) (2002)
1956-1966.

[10] D.Z. Jin, Fast convergence of spike sequences to periodic patterns in recurrent
networks, Phys. Rev. Lett. 89 (20) (2002).

[11] D.Z. Jin, H.S. Seung, Fast computation with spikes in a recurrent neural net-
work, Phys. Rev. E - Stat. Phys. Plasmas Fluids Rel. Interdiscip. Top. 65 (5)
(2002) 4.

[12] S.M. Bohte, J.N. Kok, H. La Poutré, Error-backpropagation in temporally en-
coded networks of spiking neurons, Neurocomputing 48 (1-4) (2002) 17-37.

[13] J.H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural networks using
backpropagation, Front. Neurosci. 10 (NOV) (2016) arXiv:1608.08782.

[14] B. Schrauwen, J. Van Campenhout, Backpropagation for Population-Temporal
Coded Spiking Neural Networks, in: The 2006 IEEE International Joint Confer-
ence on Neural Network Proceedings, IEEE, 2006, pp. 1797-1804.

[15] S. McKennoch, T. Voegtlin, L. Bushnell, Spike-Timing error backpropagation in
theta neuron networks, Neural Comput. 21 (1) (2009) 9-45.

[16] S.M. Bohte, Error-Backpropagation in Networks of Fractionally Predictive Spik-
ing Neurons, in: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol-
ume 6791 LNCS, 2011, pp. 60-68.

[17] J. Yang, W. Yang, W. Wu, A remark on the error-backpropagation learning algo-
rithm for spiking neural networks, Appl. Math. Lett. 25 (8) (2012) 1118-1120.

[18] Y. Wu, L. Deng, G. Li, ]J. Zhu, L. Shi, Spatio-temporal backpropagation for
training high-performance spiking neural networks, Front. Neurosci. 12 (MAY)
(2018) arXiv:1706.02609.

[19] S.R. Kheradpisheh, M. Ganjtabesh, S.J. Thorpe, T. Masquelier, STDP-based spik-
ing deep convolutional neural networks for object recognition, Neural Netw.
99 (2018) 56-67 arXiv:1611.01421.

[20] M. Mozafari, S.R. Kheradpisheh, T. Masquelier, A. Nowzari-Dalini, M. Gan-
jtabesh, First-spike-based visual categorization using reward-modulated STDP,
IEEE Trans. Neural Netw. Learn.Syst. 29 (12) (2018) 6178-6190 arXiv:1705.
09132.

[21] P. O’Connor, D. Neil, S.C. Liu, T. Delbruck, M. Pfeiffer, Real-time classification
and sensor fusion with a spiking deep belief network, Frontiers in Neuro-
science 7 (7) (2013) 1-13.

[22] Y. Cao, Y. Chen, D. Khosla, Spiking deep convolutional neural networks for
energy-Efficient object recognition, Int. J. Comput. Vis. 113 (1) (2015) 54-66
arXiv:1502.05777.

[23] PU. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, M. Pfeiffer, Fast-classifying, high-
-accuracy spiking deep networks through weight and threshold balancing, in:
Proceedings of International Joint Conference on Neural Networks, IEEE, 2015,
pp. 1109-1113.

[24] B. Rueckauer, LA. Lungu, Y. Hu, M. Pfeiffer, S.C. Liu, Conversion of continuous-
valued deep networks to efficient event-driven networks for image classifica-
tion, Front. Neurosci. 11 (DEC) (2017) 1-12.

[25] B. Rueckauer, S.C. Liu, Conversion of analog to spiking neural networks using
sparse temporal coding, Proc. IEEE Int. Symp.Circuits Syst. 2018-May (2018).

[26] S. Kim, S. Park, B. Na, S. Yoon, Spiking-YOLO: spiking neural network for real-
time object detection, arXiv:1903.06530 (2019).

[27] N.S. Desai, L.C. Rutherford, G.G. Turrigiano, Plasticity in the intrinsic excitability
of cortical pyramidal neurons, Nature Neurosci. 2 (1999) 515-520.

[28] W. Zhang, D.J. Linden, The other side of the engram: experience driven changes
in neuronal intrinsic excitabilit, Nature Rev. Neurosci. 4 (2003) 885-900.

[29] B. Schrauwena, M. Wardermanna, D. Verstraetena, ].J. Steilb, D. Stroobandt,
Improving reservoirs using intrinsic plasticity, Neurocomputing 13 (6) (2008)
1159-1171.

[30] P. Joshi, J. Triesch, Rules for information maximization in spiking neurons us-
ing intrinsic plasticity, in: Proceedings of International Conference on Machine
Learning, 2009, pp. 1456-1461.

[31] P. Koprinkova-Histova, On effects of IP improvement of ESN reservoirs for re-
flecting of data strcture, in: Proceedings of International Conference on Ma-
chine Learning, 2015, pp. 26-30.

[32] M. Wardermann, JJ. Steil, D. Stroobandt, Improving reservoirs using intrinsic
plasticity, Neurocomputing 4 (2008) 885-900.

[33] V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann ma-
chines, in: Proceedings of International Conference on Machine Learning, 2010,
pp. 26-30.

[34] Y. Cao, Y. Chen, D. Khosla, Spiking deep convoloutional neural networks for
energy-efficient object recognition, Int. J. Comput. Vis. 13 (6) (2014) 1-13.

[35] L.E. Abbott, Lapicque’s introduction of the integrate-and-fire model neuron,
Brain Res. Bull 13 (6) (1999) 303-304.

[36] C. Li, Y. Li, A review on synergistic learning, IEEE Access 4 (2016) 119-134.

[37] S. loffe, C. Szegedy, Batch normalization: accelerating deep network training
by reducing internal covariate shift, Int. Conf. Mach. Learn. 37 (2015) 448-456.

[38] G. Chakraborty, B. Chakraborty, A novel normalization technique for unsuper-
vised learning in ANN, IEEE Trans. Neural Netw. 11 (2000) 253-257.

[39] H. Zhang, H. Lin, Y. Li, Impacts of feature normalization on optical and SAR
data fusion for land use/land cover classification, IEEE Geosci. Remote Sens.
Lett. 12 (2015) 1061-1065.

[40] Y.H. Kim, H. Kim, S.W. Kim, H.Y. Kim, SJ. Ko, Illumination normalisation us-
ing convolutional neural network with application to face recognition, Elec-
tron. Lett. 53 (2017) 399-401.

[41] P. Sane, R. Agrawal, Pixel normalization from numeric data as input to neu-
ral networks, in: International Conference on Wireless Communications, Signal
Processing and Networking, 2017, pp. 2221-2225.

[42] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, H. Tang, Feedforward catego-
rization on AER motion events using cortex-like features in a spiking neural
network, IEEE Trans. Neural Netw. Learn. Syst. 26 (9) (2015) 1963-1978.

Anguo Zhang was born in Hefei city, Anhui province,
China in 1990. He received his Bachelor degree and Mas-
ter degree in control engineering from Chongqing Uni-
versity, Chongqing in 2012 and 2016, respectively. Since
2018, he has been a researcher and senior engineer in
the Research Institute of Ruijie, Ruijie Networks Co., Ltd.
His research interest includes machine learning, artificial
neural networks, control theory and applications, and in-
telligent communication networks.

Hongjun Zhou received his Bachelor degree and Mas-
ter degree in Mathematics from Jilin University, China,
in 2003 and 2006, respectively. He got the Ph.D. degree
from Hong Kong Polytechnic University, Hong Kong, in
2012. He is currently a full-time lecturer in the School of
Economics and Business Administration, Chongqing Uni-
versity, Chongqing, China. His research interests include
computational mathematics, financial applications of arti-
ficial neural networks.

Xiumin Li received the Bachelor degree in Automation
from Taiyuan University of Technology, China, in 2005,
the Master degree in Automation from Tianjin University,
China, in 2007, and the Ph.D. degree from Hong Kong
Polytechnic University, Hong Kong, in 2011. She is cur-
rently a full-time associate professor in the College of
Automation, Chongging University, Chongqing, China. Her
research interests include computational neuroscience,
neurodynamic analysis, neural network modeling, and
their implications to intelligent computing.

Wei Zhu (JUI LANG CHU) received the B.S. degree in
electromechanics from Harbin Institute of Technology in
2006, Harbin, China and the Ph.D. degree in Instrumen-
tation Science from University of Science and Technology
of China, Hefei, China in 2011. He continued his post-
doctoral research on neurological disease assistant diag-
nosis in National University of Singapore, Singapore. He is
currently a Senior Researcher in Ruijie Networks, Fuzhou,
China and the team leader of Artificial Intelligence and
Computer Vision. His current research interests include
machine learning, computer vision and neurology.


https://www.researchgate.net/publication/334703842

