
Neural Encoding: Firing Rates and

Spike Statistics

• Dayan and Abbott (2001) Chapter 1

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks
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Background: Dirac δ Function

• Dirac δ function has the following propreties:Z
dtδ(t) = 1Z

dt′δ(t− t′)f(t′) = f(t)

and it will be used a lot in the following.
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Spike Trains

• Action potentials can be represented as a sequence of spike

timing:

ti, i = 1, 2, 3, ..., n, and

0 ≤ ti ≤ T
• The spike sequence can be represented as:

ρ(t) =
nX
i=1

δ(t− ti)

• For any well-behaved function h(t),

nX
i=1

h(t− ti) =

Z ∞
−∞

dτh(τ)ρ(t− τ).
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Firing Rate

“Firing rate” can mean many different quantities.

• Spike count rate is defined as

r =
n

T
=

1

T

Z T

0
dτρ(τ),

where n spikes occured within a time interval of 0 ≤ t ≤ T ,

which is the entire trial period of a single trial.

• Trial average 〈z〉 means the average of the same quantity z at

the same time point over multiple trials.

• Firing rate is defined as

r(t) =
1

∆t

Z t+∆t

t
dτ〈ρ(τ)〉.

• Spiking probability within interval (t, t+ ∆t) is r(t)∆t.
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Average Neural Response and Firing Rate

• Average neural response can be represented in terms of firing

rate: Z
dτh(τ)〈ρ(t− τ)〉 =

Z
dτh(τ)r(t− τ)

• Average firing rate over multiple trials can then be defined as:

〈r〉 =
〈n〉
T

=
1

T

Z T

0
dτ〈ρ(τ)〉 =

1

T

Z T

0
dt r(t).
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Summary of Different Firing Rates

• Single trial, entire trial duration:

r =
n

T
=

1

T

Z T

0
dτρ(τ).

• Multiple trials, short time interval:

r(t) =
1

∆t

Z t+∆t

t
dτ〈ρ(τ)〉.

• Multiple trials, entire trial duration:

〈r〉 =
〈n〉
T

=
1

T

Z T

0
dτ〈ρ(τ)〉 =

1

T

Z T

0
dt r(t).

6

Measuring Firing Rates

• A: spikes

• B: Binned count

• C: Sliding window

• D: Sliding Gaussian

kernel

• E: Sliding causal kernel
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Measuring Firing Rates w/ Sliding Windows

• Fixed-size sliding window

rapprox(t) =

nX
i=1

w(t− ti), where

w(t) =

8<: 1/∆t if−∆t/2 ≤ t < ∆t/2

0 otherwise.

It can also be written as

rapprox(t) =

Z ∞
−∞

dτw(τ)ρ(t− τ)

which is a linear filter with kernelw.
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Measuring Firing Rates w/ Sliding Windows (II)

• The equation below is basically a convolution of spike train with a

kernel function:

rapprox(t) =

Z ∞
−∞

dτw(τ)ρ(t− τ).

Compare to the definition of a convolution:

(f∗g)(t) =

Z ∞
−∞

dτf(τ)g(t−τ) =

Z ∞
−∞

dτf(t−τ)g(τ).

• A smooth window function (or kernel)w can be used (here, a

Gaussian):

w(τ) =
1√

2πσw
exp

„
− τ2

2σ2
w

«
,

where the std of the Gaussian σw controls the window size.

9

Measuring Firing Rates w/ Sliding Windows (III)

• Instead of looking at both sides of a time point t, we can also look

at only spikes in the past.

w(τ) = [α2τ exp(−ατ)]+,

where 1/α determines the temporal resolution of the estimate,

and

[z]+ =

8<: z if x ≥ 0

0 otherwise

This kernel is called a causal kernel.

• Note thatw(t− ti) is summed up, so any spikes in the future

will have a negative value plugged intow(·).
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Tuning Curve: V1, Gaussian

• Neurons are sensitive to stimulus attributes s: denote by s.

• The neural response tuning curve is a function of s is

〈r〉 = f(s).

• A typical example is that of V1 neurons (figure above), a Gaussian tuning

curve:

f(s) = rmax exp

„
− 1

2

„
s− smax

σf

«2«
.

11

Tuning Curve: M1, cos

• Motor cortex neurons:

f(s) = r0 + (rmax − r0) cos(s− smax),

where s is the arm reach angle, and r0 the baseline response

and rmax the max response.

• f(s) reaches min at 2r0 − rmax, which can be a negative

value, which should not exist, so:

f(s) = [r0 + (rmax − r0) cos(s− smax)]+.
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Tuning Curve: V1, sigmoid

• V1 disparity-sensitive neurons:

f(s) =
rmax

1 + exp
`
(s1/2 − s)/∆s

´ .
where s is disparity and s1/2 is where disparity response is half

the max.
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Tuning Curves: Spike-Count Variability

• Tuning curves gives average firing rate, but do not describe the

spike count variability around the mean firing rate 〈r〉 = f(s)

across trials.

• Spike-count rate can be from a probability distribution where

f(s) is the mean.

• The variabilty is considered to be noise:

– Noise distribution independent of f(s): additive noise.

– Noise distribution proportional to f(s): multiplicative noise.
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Stimuli that Makes a Neuron to Fire

• Weber’s law: “just noticeable” difference in stimulus, ∆s, has the

property:
∆s

s
= constant.

• Fechner’s law: Noticeable differences set the scale for perceived

stimulus intensities. Perceived intensity of stimulus of absolute

intensity s varies as log s.

• Zero mean stimulus: Z T

0
dt
s(t)

T
= 0

• Averages:

– Over the same input, across trials: 〈·〉.
– Over different inputs: usually averaged over time as a single

long stimulus. 15

Periodic Stimuli

• Given stimulus s(t) from interval 0 ≤ t ≤ T , we can replicate

with a phase shift of τ .Z T

0
dt h(s(t+τ)) =

Z T+τ

τ
dt h(s(t)) =

Z T

0
dth(s(t))| {z }

Holds when s(T + τ) = s(τ) for any τ

.

16



Spike-Triggered Average

• Average stimulus (over trials), τ before spike occurred:

C(τ) =

*
1

n

nX
i=1

s(ti − τ)

+
≈ 1

〈n〉

*
nX
i=1

s(ti − τ)

+
.
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Spike Triggered Average and Stimulus-Response

Correlation

• Spike-triggered average can be represented as:

C(τ) =
1

〈n〉
Z T

0
dt 〈ρ(t)〉s(t−τ) =

1

〈n〉
Z T

0
dt r(t)s(t−τ).

• The firing-rate stimulus correlation function is:

Qrs(τ) =
1

T

Z T

0
dt r(t)s(t+ τ).

Thus,

C(τ) =
1

〈r〉Qrs(−τ).

18

Spike Triggered Average Example

• Neuron of the electrosensory lateral-line lobe of the weakly

electric fish Eigenmannia.

• Input I , spikes, and spike-triggered average shown.
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Stimulus Autocorrelation and White-Noise Stimuli

• White noise stimulus: any one time point of the stimulus is

uncorrelated with any other time point.

• Stimulus autocorrelation function:

Qss(τ) =
1

T

Z T

0
dt s(t)s(t+ τ).

• For white noise stimulus,

Qss(τ) =

8<: 0 if − T/2 < τ < T/2, τ 6= 0

σ2
sδ(τ) if τ = 0

,

where σ2
s is the stimulus variance.
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Multiple-Spike-Triggered Averages

• Instead of a single spike, you can look for stimuli triggering a

pattern of spikes.

• Blowfly H1 neuron data are shown above.
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Spike-Train Statistics

• The probability density of a random variable z is p[z].Z ∞
−∞

dz p[z] = 1.

• Probability of z taking a value between a and b:

P [a ≤ z ≤ b] =

Z b

a

dz p[z].

• For small ∆x,

P [x ≤ z ≤ x+ ∆x] ≈ p[x]∆x.

• Probability of spike sequence given prob. density of spikes

p[t1, t2, ..., tn] and a short interval ∆t:

P [t1, t2, ..., tn] = p[t1, t2, ..., tn](∆t)
n
.
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Stochastic Process

• Point process: stochastic process that generates a sequence of

events, like action potentials.

• Probability of an event at time t is usually dependent on all past

events.

• Renewal process: current event only depends on immediate past

event so that intervals between successive events are

independent.

• Poisson process: All events are statistically independent.

– Homogenous: firing rate is constant over time.

– Inhomogeneous: firing rate is dependent on time.
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Poisson Distribution

• Poisson experiment:

– Number of events in one time interval is independent of that in another

non-overlapping interval.

– Probability of a single event during a short interval is proportional to

the length of the interval, and is independent of events outside that

interval.

– Probability that more that one event can occur in a very short interval

is negligable.

• The numberX of outcomes in such an experiment (in a specific time

interval) has the Poisson distribution.

• Binomial random variable with distribution b(x;n, p) approaches Poisson

distribution as n→∞, p→ 0, and µ = np stays fixed.

Ref: Walpole and Myers, Probability and Statistics for Engineers and Scientists, 3rd ed. Macmillan (1985)
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Poisson Distribution (II)

• The number of events n in a given interval T is

PT [n] =
exp(−µ)µn

n!
,

where µ is the average number of events in that interval. Note, if firing rate

is r and the interval is T , µ = rT .

• The probability of an ordered sequence of spikes is:

P [t1, t2, ..., tn] = n!PT [n]

„
∆t

T

«n

.
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Properties of Poission Distribution

• Variance and mean of spike count is the same:

σ2
n = 〈n2〉 − 〈n〉2 = rT = µ.

• Fano factor:
σ2
n

〈n〉
is 1 for homogeneous Poisson process.

• Coefficient of variation:

CV =
σ2
n

〈τ〉 ,

is 1 for homogeneous Poisson process (τ is the interspike

interval).
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Interspike Interval

• Probability of two successive spikes at ti and ti+1 with

ti + τ ≤ ti+1 ≤ ti + τ + ∆t is

– No spike within τ (interspike interval) and,

– Spike witin a short period ∆t immediately following that.

P [ti+τ ≤ ti+1 ≤ ti+τ+∆t] = r∆t|{z}
Firing within ∆t

No spike within τz }| {
exp(−rτ) .

• Mean and variance of interspike interval:

〈τ〉 =

Z ∞
0

dτ τr exp(−rτ) =
1

r
.

σ2
τ =

Z ∞
0

dτ τ2r exp(−rτ)− 〈τ〉2 =
1

r2
.
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Spike-Train Auto- and Crosscorrelation Function

• ISI distribution describes τ between two successive spikes.

• Generalizing this to times between any two pair of spikes in a

spike train is spike-train autocorrelation function:

Qρρ(τ) =
1

T

Z T

0
dt 〈(ρ(t)− 〈r〉) (ρ(t+ τ)− 〈r〉) .

Property:

Qρρ(τ) = Qρρ(−τ).

• Do the above across two spike trains to get the crosscorrelation

function.
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Auto- and Crosscorrelation Histogram

• Lagm.

• Number of spike-pairs with distance withinm± 1/2∆t: Nm.

• NormalizeNm by the number of intervals in each bin n2∆t/T

and duration of trial T :

Hm =
Nm − n2∆t/T

T
.
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Comparison of Poisson Model and Data

• Fano factor and ISI distribution show close match between

Poisson model and experimental data.
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Neuronal Response Variability

• Poission model does not account for neuronal repsonse variability

in in vivo (alive animal) experiments as compared to in vitro (in

isolated tissue).
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The Neural Code

• How is information coded by spikes?

• A matter of intense debate: Rate coding or temporal coding?

• Other perspectives: Independent or dependent spikes?

– Independent-spike code

– Correlation code

– Independent-neuron code

– Synchrony and oscillations
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