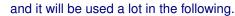
Neural Encoding: Firing Rates and Spike Statistics

• Dayan and Abbott (2001) Chapter 1


Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

Background: Dirac δ Function

• Dirac δ function has the following propreties:

 $\int dt \delta(t) = 1$

$$\int dt' \delta(t-t') f(t') = f(t)$$

Spike Trains

1

• Action potentials can be represented as a sequence of spike timing:

$$t_i, i$$
 = 1, 2, 3, ..., n , and $0 < t_i < T$

• The spike sequence can be represented as:

$$\rho(t) = \sum_{i=1}^{n} \delta(t - t_i)$$

• For any well-behaved function h(t),

$$\sum_{i=1}^{n} h(t-t_i) = \int_{-\infty}^{\infty} d\tau h(\tau) \rho(t-\tau).$$

2

Firing Rate

"Firing rate" can mean many different quantities.

• Spike count rate is defined as

$$r = \frac{n}{T} = \frac{1}{T} \int_0^T d\tau \rho(\tau),$$

where n spikes occured within a time interval of $0 \le t \le T$, which is the entire trial period of a single trial.

- Trial average $\langle z \rangle$ means the average of the same quantity z at the same time point over multiple trials.
- Firing rate is defined as

$$\mathbf{r}(t) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} d\tau \langle \rho(\tau) \rangle.$$

• Spiking probability within interval $(t, t + \Delta t)$ is $\mathbf{r}(t)\Delta t$.

Average Neural Response and Firing Rate

• Average neural response can be represented in terms of firing rate:

$$\int d\tau h(\tau) \langle \rho(t-\tau) \rangle = \int d\tau h(\tau) \mathbf{r}(t-\tau)$$

• Average firing rate over multiple trials can then be defined as:

$$\langle r \rangle = \frac{\langle n \rangle}{T} = \frac{1}{T} \int_0^T d\tau \langle \rho(\tau) \rangle = \frac{1}{T} \int_0^T dt \, \mathbf{r}(t).$$

Summary of Different Firing Rates

• Single trial, entire trial duration:

$$r = \frac{n}{T} = \frac{1}{T} \int_0^T d\tau \rho(\tau).$$

• Multiple trials, short time interval:

$$\mathbf{r}(t) = \frac{1}{\Delta t} \int_{t}^{t+\Delta t} d\tau \langle \rho(\tau) \rangle.$$

• Multiple trials, entire trial duration:

$$\langle r \rangle = \frac{\langle n \rangle}{T} = \frac{1}{T} \int_0^T d\tau \langle \rho(\tau) \rangle = \frac{1}{T} \int_0^T dt \, \mathbf{r}(t).$$

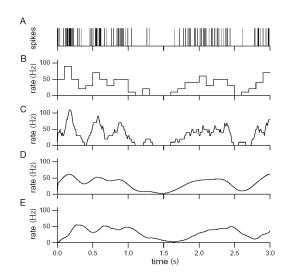
6

Measuring Firing Rates w/ Sliding Windows

• Fixed-size sliding window

$$\mathbf{r}_{\mathrm{approx}}(t) = \sum_{i=1}^{n} w(t-t_i), \text{ where}$$

$$w(t) = \left\{ \begin{array}{ll} 1/\Delta t & \mbox{if} -\Delta t/2 \leq t < \Delta t/2 \\ 0 & \mbox{otherwise.} \end{array} \right.$$


It can also be written as

$$\mathbf{r}_{\rm approx}(t) = \int_{-\infty}^{\infty} d\tau w(\tau) \rho(t-\tau)$$

which is a linear filter with kernel w.

Measuring Firing Rates

5

- A: spikes
- B: Binned count
- C: Sliding window
- D: Sliding Gaussian kernel
- E: Sliding causal kernel

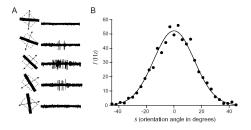
Measuring Firing Rates w/ Sliding Windows (II)

• The equation below is basically a convolution of spike train with a kernel function:

$$r_{approx}(t) = \int_{-\infty}^{\infty} d\tau w(\tau) \rho(t-\tau).$$

Compare to the definition of a convolution:

$$(f*g)(t) = \int_{-\infty}^{\infty} d\tau f(\tau)g(t-\tau) = \int_{-\infty}^{\infty} d\tau f(t-\tau)g(\tau).$$


• A smooth window function (or kernel) w can be used (here, a Gaussian):

$$w(\tau) = \frac{1}{\sqrt{2\pi}\sigma_w} \exp\left(-\frac{\tau^2}{2\sigma_w^2}\right),\,$$

where the std of the Gaussian σ_w controls the window size.

9

Tuning Curve: V1, Gaussian

- Neurons are sensitive to stimulus attributes s: denote by s.
- The neural response tuning curve is a function of \boldsymbol{s} is

$$\langle r \rangle = f(s).$$

• A typical example is that of V1 neurons (figure above), a Gaussian tuning curve:

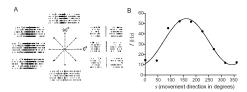
$$f(s) = r_{\max} \exp\left(-\frac{1}{2}\left(\frac{s - s_{\max}}{\sigma_f}\right)^2\right).$$

Measuring Firing Rates w/ Sliding Windows (III)

• Instead of looking at both sides of a time point *t*, we can also look at only spikes in the past.

$$w(\tau) = [\alpha^2 \tau \exp(-\alpha \tau)]_+,$$

where $1/\alpha$ determines the temporal resolution of the estimate, and


$$[z]_{+} = \begin{cases} z & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

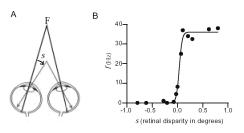
This kernel is called a *causal* kernel.

• Note that $w(t - t_i)$ is summed up, so any spikes in the future will have a negative value plugged into $w(\cdot)$.

10

Tuning Curve: M1, cos

• Motor cortex neurons:


$$f(s) = r_0 + (r_{\max} - r_0)\cos(s - s_{\max}),$$

where s is the arm reach angle, and r_0 the baseline response and r_{\max} the max response.

• f(s) reaches min at $2r_0 - r_{max}$, which can be a negative value, which should not exist, so:

$$f(s) = [r_0 + (r_{\max} - r_0)\cos(s - s_{\max})]_+$$

Tuning Curve: V1, sigmoid

• V1 disparity-sensitive neurons:

$$f(s) = \frac{r_{\max}}{1 + \exp((s_{1/2} - s)/\Delta_s)}$$

where s is disparity and $s_{1/2}$ is where disparity response is half the $\max.$

13

Stimuli that Makes a Neuron to Fire

• Weber's law: "just noticeable" difference in stimulus, Δs , has the property:

$$\frac{\Delta s}{s} = \text{constant.}$$

- Fechner's law: Noticeable differences set the scale for perceived stimulus intensities. Perceived intensity of stimulus of absolute intensity *s* varies as log *s*.
- Zero mean stimulus:

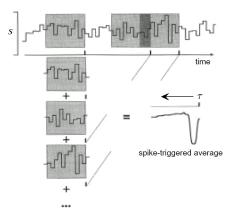
$$\int_0^T dt \frac{s(t)}{T} = 0$$

- Averages:
 - Over the same input, across trials: $\langle \cdot \rangle$.
 - Over different inputs: usually averaged over time as a single long stimulus.
 15

Tuning Curves: Spike-Count Variability

- Tuning curves gives average firing rate, but do not describe the spike count variability around the mean firing rate $\langle r \rangle = f(s)$ across trials.
- Spike-count rate can be from a probability distribution where f(s) is the mean.
- The variability is considered to be noise:
 - Noise distribution independent of f(s): additive noise.
 - Noise distribution proportional to f(s): multiplicative noise.

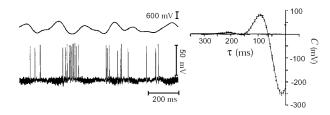
14


Periodic Stimuli

• Given stimulus s(t) from interval $0 \le t \le T$, we can replicate with a phase shift of τ .

$$\int_0^T dt \, h(s(t+\tau)) = \underbrace{\int_{\tau}^{T+\tau} dt \, h(s(t)) = \int_0^T dt h(s(t))}_{\tau}$$

Holds when $s(T+\tau)=s(\tau)$ for any τ


Spike-Triggered Average

• Average stimulus (over trials), τ before spike occurred:

$$C(\tau) = \left\langle \frac{1}{n} \sum_{i=1}^{n} s(t_i - \tau) \right\rangle \approx \frac{1}{\langle n \rangle} \left\langle \sum_{i=1}^{n} s(t_i - \tau) \right\rangle.$$
17

Spike Triggered Average Example

- Neuron of the electrosensory lateral-line lobe of the weakly electric fish *Eigenmannia*.
- Input *I*, spikes, and spike-triggered average shown.

Spike Triggered Average and Stimulus-Response

Correlation

• Spike-triggered average can be represented as:

$$C(\tau) = \frac{1}{\langle n \rangle} \int_0^T dt \, \langle \rho(t) \rangle s(t-\tau) = \frac{1}{\langle n \rangle} \int_0^T dt \, \mathbf{r}(t) s(t-\tau).$$

• The firing-rate stimulus correlation function is:

$$Q_{rs}(\tau) = \frac{1}{T} \int_0^T dt \, \mathbf{r}(t) s(t+\tau).$$

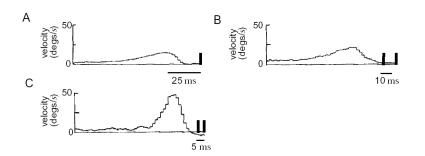
Thus,

$$C(\tau) = \frac{1}{\langle r \rangle} Q_{rs}(-\tau)$$

18

Stimulus Autocorrelation and White-Noise Stimuli

- White noise stimulus: any one time point of the stimulus is uncorrelated with any other time point.
- Stimulus autocorrelation function:


$$Q_{ss}(\tau) = \frac{1}{T} \int_0^T dt \, s(t) s(t+\tau).$$

• For white noise stimulus,

$$Q_{ss}(\tau) = \begin{cases} 0 & \text{if } -T/2 < \tau < T/2, \tau \neq 0 \\ \sigma_s^2 \delta(\tau) & \text{if } \tau = 0 \end{cases},$$

where σ_s^2 is the stimulus variance.

Multiple-Spike-Triggered Averages

- Instead of a single spike, you can look for stimuli triggering a pattern of spikes.
- Blowfly H1 neuron data are shown above.

Stochastic Process

21

- Point process: stochastic process that generates a sequence of events, like action potentials.
- Probability of an event at time *t* is usually dependent on all past events.
- Renewal process: current event only depends on immediate past event so that intervals between successive events are independent.
- Poisson process: All events are statistically independent.
 - Homogenous: firing rate is constant over time.
 - Inhomogeneous: firing rate is dependent on time.

Spike-Train Statistics

• The probability density of a random variable z is p[z].

 $\int_{-\infty}^{\infty} dz \ p[z] = 1.$

• Probability of *z* taking a value between *a* and *b*:

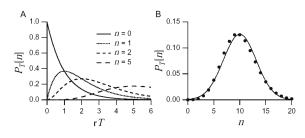
$$P[a \le z \le b] = \int_a^b dz \ p[z].$$

• For small Δx ,

$$P[x \le z \le x + \Delta x] \approx p[x]\Delta x.$$

• Probability of spike sequence given prob. density of spikes $p[t_1, t_2, ..., t_n]$ and a short interval Δt :

$$P[t_1, t_2, ..., t_n] = p[t_1, t_2, ..., t_n] (\Delta t)^n.$$


22

Poisson Distribution

- Poisson experiment:
 - Number of events in one time interval is independent of that in another non-overlapping interval.
 - Probability of a single event during a short interval is proportional to the length of the interval, and is independent of events outside that interval.
 - Probability that more that one event can occur in a very short interval is negligable.
- The number X of outcomes in such an experiment (in a specific time interval) has the Poisson distribution.
- Binomial random variable with distribution b(x; n, p) approaches Poisson distribution as $n \to \infty, p \to 0$, and $\mu = np$ stays fixed.

Ref: Walpole and Myers, Probability and Statistics for Engineers and Scientists, 3rd ed. Macmillan (1985)

Poisson Distribution (II)

• The number of events *n* in a given interval *T* is

$$P_T[n] = \frac{\exp(-\mu)\mu^n}{n!},$$

- where μ is the average number of events in that interval. Note, if firing rate is r and the interval is $T, \mu = rT$.
- The probability of an ordered sequence of spikes is:

$$P[t_1, t_2, ..., t_n] = n! P_T[n] \left(\frac{\Delta t}{T}\right)^n.$$
25

Interspike Interval

- Probability of two successive spikes at t_i and t_{i+1} with $t_i + \tau \le t_{i+1} \le t_i + \tau + \Delta t$ is
 - No spike within au (interspike interval) and,
 - Spike witin a short period Δt immediately following that.

No spike within au

$$P[t_i + \tau \le t_{i+1} \le t_i + \tau + \Delta t] = \underbrace{\mathbf{r} \Delta \mathbf{t}}_{\text{Firing within } \Delta t} \quad \underbrace{\exp(-\mathbf{r}\tau)}_{\text{Firing within } \Delta t}$$

• Mean and variance of interspike interval:

$$\langle \tau \rangle = \int_0^\infty d\tau \ \tau r \exp(-r\tau) = \frac{1}{r}.$$
$$\sigma_\tau^2 = \int_0^\infty d\tau \ \tau^2 r \exp(-r\tau) - \langle \tau \rangle^2 = \frac{1}{r^2}.$$

Properties of Poission Distribution

• Variance and mean of spike count is the same:

$$\sigma_n^2 = \langle n^2 \rangle - \langle n \rangle^2 = \mathbf{r}T = \mu.$$

• Fano factor:

$$rac{\sigma_n^2}{\langle n \rangle}$$

is 1 for homogeneous Poisson process.

• Coefficient of variation:

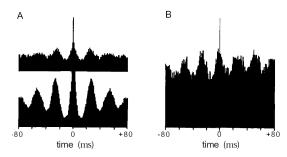
$$C_V = \frac{\sigma_n^2}{\langle \tau \rangle},$$

is 1 for homogeneous Poisson process (τ is the interspike interval).

26

Spike-Train Auto- and Crosscorrelation Function

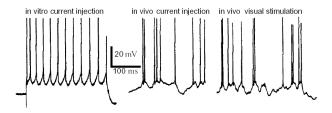
- ISI distribution describes τ between two successive spikes.
- Generalizing this to times between any two pair of spikes in a spike train is spike-train autocorrelation function:


$$Q_{\rho\rho}(\tau) = \frac{1}{T} \int_0^T dt \left\langle \left(\rho(t) - \langle r \rangle\right) \left(\rho(t+\tau) - \langle r \rangle\right) \right\rangle$$

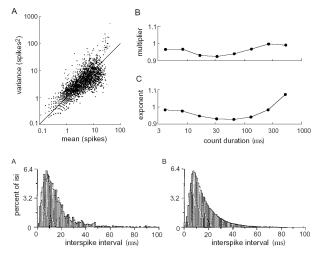
Property:

$$Q_{\rho\rho}(\tau) = Q_{\rho\rho}(-\tau)$$

• Do the above across two spike trains to get the crosscorrelation function.


Auto- and Crosscorrelation Histogram

- Lag *m*.
- Number of spike-pairs with distance within $m\pm 1/2\Delta t$: N_m .
- Normalize N_m by the number of intervals in each bin $n^2 \Delta t/T$ and duration of trial T:


$$H_m = \frac{N_m - n^2 \Delta t/T}{T}.$$
29

Neuronal Response Variability

 Poission model does not account for neuronal repsonse variability in *in vivo* (alive animal) experiments as compared to *in vitro* (in isolated tissue).

Comparison of Poisson Model and Data

• Fano factor and ISI distribution show close match between Poisson model and experimental data.

30

The Neural Code

- How is information coded by spikes?
- A matter of intense debate: Rate coding or temporal coding?
- Other perspectives: Independent or dependent spikes?
 - Independent-spike code
 - Correlation code
 - Independent-neuron code
 - Synchrony and oscillations