
Lyapunov Analysis of Neural Network Stability
in an Adaptive Flight Control System ?

Sampath Yerramalla1, Edgar Fuller2, Martin Mladenovski1, and Bojan Cukic1

1 Lane Department of Computer Science and Electrical Engineering
West Virginia University
Morgantown WV 26506

{sampath, cukic, martinm}@csee.wvu.edu
2 Department of Mathematics

West Virginia University
Morgantown WV 26506

ef@math.wvu.edu

Abstract. The paper presents the role of self-stabilization analysis in
the design, verification and validation of the dynamics of an Adaptive
Flight Control System (AFCS). Since the traditional self-stabilization
approaches lack the flexibility to deal with the continuous adaptation of
the neural network within the AFCS, the paper emphasizes an alternate
self-stability analysis approach, namely Lyapunov’s Second Method. A
Lyapunov function for the neural network is constructed and used in
presenting a formal mathematical proof that verifies the following claim:
While learning from a fixed input manifold, the neural network is self-
stabilizing in a Globally Asymptotically Stable manner. When dealing
with variable data manifolds, we propose the need for a real-time stability
monitor that can detect unstable state deviations. The test results based
on the data collected from an F-15 flight simulator provide substantial
heuristic evidence to support the idea of using a Lyapunov function to
prove the self-stabilization properties of the neural network adaptation.

1 Introduction

1.1 Background

Adaptive control is the latest trend in the application of Neural Networks (NN)
in realtime automation, one of the world’s leading markets for computer control
systems. The concept of Neural Adaptive Flight Control is perhaps the most
challenging of them all as constructing it with guaranteed stability that ensures
peak performance of the aircraft requires a thorough understanding of the objec-
tive functions [19]. Qualitatively speaking, an adaptive flight control system that
has the ability to sense its environment, process information, reduce uncertainty,

? This work was supported in part by NASA through cooperative agreement NCC 2-
979. The opinions, findings, conclusions and recommendations expressed herein are
those of the authors and do not reflect the views of the sponsors.



plan, generate and execute control actions is considered an Intelligent Flight Con-
trol System (IFCS) [16, 17]. The goal of IFCS is to develop and flight evaluate
flight control concepts that incorporate emerging algorithms and techniques to
provide an extremely robust system capable of handling multiple accident and
off-nominal flight scenarios [12]. Figure 1 shows the architectural overview of an
IFCS consisting of an Online Learning Neural Network (OLNN) that accounts
for dramatic changes of the aircraft exceeding robustness limits [22].

Fig. 1. An Intelligent Flight Control System Architecture

A Baseline or Pre-trained Neural Net (PNN) is used for replacing linear maps
from standard designs (like reference adaptive control) in order to produce a ro-
bust system that can handle nonlinearities. PNN is non-adaptive, meaning that
once trained, it does not change during the flight. It is essentially a table-lookup
scheme based on wind-tunnel experiments for the stable aircraft conditions. The
adaptive nature of the IFCS is induced by the realtime Parameter Identifica-
tion (PID), that uses an equation error technique employing Fourier Transform
Regression algorithm. During off-nominal flight conditions (combat damage or
major system failure), notable discrepancies between the outputs of the PNN
and the real-time PID are generated that need to be accounted by the OLNN.
This difference in output of the PNN and PID is termed as Stability and Control
Derivative (SCD) error. The role of the OLNN is to store these SCD errors and
provide a better estimate of the stored values for new flight conditions. The SCD
outputs from the BLNN along with the estimated SCD errors form the OLNN
ensure that the controller is able to compute control gains needed to make the
aircraft stable and, consequently, safe.

Adaptive systems are hard to model as they are often accompanied with
difficulties: many degrees of freedom, distributed sensors, high noise levels, and
uncertainty. Nevertheless, greater the ability of the system to deal with these
difficulties, the more intelligent is the system [17]. The central control goal of
the IFCS is to calculate the present state of the system and determine a strategy



to drive the system to a desired final state. If the system contains a provably self-
stabilizing on-line learning neural network, it ensures that while IFCS achieves
its central goal, states of the system do not deviate towards instability, thereby
avoiding a potential disaster. However, verification of self-stabilization properties
is usually a complicated task [13]. Our research goal is all the more challenging
since we need to verify self-stabilization properties of a neural network which is
able to adapt during the flight, potentially having direct consequences for the
overall system safety.

1.2 Limitations of Traditional Self-stabilization Proof Techniques

The original idea of self-stabilizing systems was introduced by Dijkstra in 1974
[8]. Traditional methodologies for the analysis of self-stabilization require a de-
tailed system understanding, needed in the definition of an invariance condition.
The role of an invariant function in self-stabilization has been described by Arora
in [1]: if the system is initiated appropriately, the invariant is always satisfied.
If the system is placed in an arbitrary state to continue execution, it eventually
reaches a state from where the invariant is always satisfied.

The self-stabilization proof methodology applicable to distributed algorithms
exhibits interesting analogies with feedback system stabilization in control en-
gineering [23]. These analogies are based on the existence of invariants, but
the proof mechanisms differ significantly. Therefore, very early in our research
we had to ask ourselves whether it would be possible to apply any of the ex-
isting methodologies to prove the self-stabilization properties of a continuously
evolving, topologically complex neural network embedded in an adaptive flight
control environment.

A major practical limitation of application of traditional methodologies for
proving self-stabilization properties of neural networks appears to be the scal-
ability [2]. Standard approaches are based on the definition of the invariance.
But in order to define the invariance, a detailed system description must be
available. However, the goal of using an adaptive component in a flight control
system is to cope with unanticipated and/or failure conditions. If these condi-
tions were to be systematically described, the excessive size of the data (and
the ensuing system designs) would make computing an invariance a complicated
task. The second limitation of traditional approaches is their inability to handle
uncertainties, regularly encountered in adaptive systems. But, even if we assume
that uncertainty and scalability are of no concern, the challenge still remains:
Do traditional stabilization proof techniques work for adaptive systems?

It should not come as a surprise that we discovered the need to define a
different notion of self-stabilization and embarked on developing alternative ver-
ification techniques to reason about the self-stabilization properties of the specific
type of neural network used in the intelligent flight control system.



1.3 Overview

The rest of the paper is organized as follows. Section 2 introduces the Lyapunov
approach to self-stability analysis of dynamic systems. Section 3 describes the
specific type of neural networks, so called Dynamic Cell Structures (DCS), used
in the context of the adaptive flight control system. DCS neural networks are the
object of our stability analysis. Section 4 presents our main result, formal stabil-
ity proof for the DCS neural network. This proof deals with the flight conditions
that exclude unexpected environmental conditions (failures). Therefore, Section
5 introduces the notion of on-line stability monitoring, which can provide early
warnings by detecting the states leading to unstable system conditions. These
concepts are further described in a case study involving the flight data collected
in an F-15 flight simulator in Section 6. We conclude by a brief summary in
Section 7.

2 Self-Stabilization Using Lyapunov Functions

Often, the mathematical theory of stability analysis is (mis)understood as the
process of finding a solution for the differential equation(s) that govern the sys-
tem dynamics. Stability analysis is the theory of validating the existence (or
non-existence) of stable states. Theoretically, there is no guarantee for the ex-
istence of a solution to an arbitrary set of nonlinear differential equations, let
alone the complicated task of solving them [7].

In the context of the analysis of the stability of adaptation in the IFCS,
the problem is to find an effective tool applicable to the online learning neural
network. It is often seen that adaptive systems that are stable under some def-
initions of stability tend to become unstable under other definitions [9]. This
difficulty in imposing strong stability restrictions for nonlinear systems was re-
alized as early as a century ago by a Russian mathematician A. M. Lyapunov.
Details on Lyapunov’s stability analysis technique for nonlinear discrete systems
can be found in [4,9,27]. The fact that Lyapunov’s direct method or Lyapunov’s
second method can be easily and systematically applied to validate the existence
(or non-existence) of stable states in an adaptive system, intrigued us in using
Lyapunov’s concept of self-stabilization in our analysis as a means of answering
the question posed earlier.

In the discrete sense, Lyapunov stability can be defined as follows:

Definition 1. Lyapunov Stability
If there exists a Lyapunov function, V : RO → R, defined in a region of state
space near a solution of a dynamical system such that

1. V (0) = 0
2. V (x) > 0 : ∀x ∈ O, x 6= 0
3. V (x(ti+1))− V (x(ti)) = ∆V (x) ≤ 0 : ∀x ∈ O

then the solution of the system is said to stable in the sense of Lyapunov.



x = 0 represents a solution of the dynamical systems and RO, O represent the
output space and a region surrounding this solution of the system respectively.
Though this concept was intended for mathematics of control theory, Lyapunov
stabilization in a general sense can be simplified as follows. A system is said to
be stable near a given solution if one can construct a Lyapunov function (scalar
function) that identifies the regions of the state space over which such functions
decrease along some smooth trajectories near the solution.

Definition 2. Asymptotic Stability (AS)
If in addition to conditions 1 and 2 of Definition 1, the system has a negative-
definite Lyapunov function

∆V (x) < 0 : ∀x ∈ O (1)

then the system is Asymptotically Stable.

Asymptotic stability adds the property that in a region surrounding a solution
of the dynamical system trajectories are approaching this given solution asymp-
totically.

Definition 3. Global Asymptotic Stability (GAS)
If in addition to conditions 1 and 2 of Definition 1, the Lyapunov function is
constructed such that,

lim
t→∞

V (x) = 0 (2)

over the entire state space then the system is said to be Globally Asymptotically
Stable.

A notable difference between AS and GAS is the fact that GAS implies any
trajectory beginning at any initial point will converge asymptotically to the
given solution, as opposed to AS where only those trajectories begining in the
neighborhood of the solution approach the solution asymptotically. The types of
stability defined above have increasing property strength, i.e.

Global Asymptotic Stability =⇒ Asymptotic Stability =⇒ Lyapunov Stability.

The reverse implication does not necessarily hold as indicated by the Venn di-
agram of Figure 2. In simple terms, the system is stable if all solutions of the
state that start nearby end up nearby. A good distance measure of nearby must
be defined by a Lyapunov function (V ) over the states of the system. By con-
structing V , we can guarantee that all trajectories of the system converge to
a stable state. The function V should be constructed keeping in mind that it
needs be scalar (V ∈ R) and should be non-increasing over the trajectories of
the state space. This is required in order to ensure that all limit points of any
trajectory are stationary. Thus a strict Lyapunov function should force every
trajectory to asymptotically approach an equilibrium state. Even for non-strict



Fig. 2. Relative strengths of Stability

Lyapunov functions it is possible to guarantee convergence by LaSalle’s invari-
ance principle. In mechanical systems a Lyapunov function is considered as an
energy minimization term, in economy and finance evaluations it is considered as
a cost-minimization term, and for computational purposes it can be considered
as an error-minimization term.

3 DCS Neural Network

In 1994 Jorg Bruske and Gerald Sommer of the University of Kiel, Germany, in-
troduced the concept of DCS as a family of topology representing self-organizing
NN [3, 5]. This Topology Preserving Feature Map (TPFM) generation scheme
was motivated by Growing Neural GAS algorithm developed by Fritzke and the
former work on Topology Representing Networks (TRN) by Martinetz [15].

DCS uses Kohonen-like adaptation to shift the weighted centers of the local
neighborhood structure, closer to the feature manifold. When applied in con-
junction with Competitive Hebb Rule (CHR) to update lateral connections of
the neighbors, this produces a network representation that preserves the features
of the input manifold. These two essential building blocks (rules) of the DCS
algorithm, play a key role in the generation of a TPFM. Before we proceed for
an in-depth analysis of the DCS algorithm we need to study and formulate these
competitive rules that govern the DCS dynamical system.

3.1 Competitive Hebb Rule (CHR)

DCS NN rests upon a Radial Basis Function (RBF) and an additional layer
of lateral connections between the neural units [3]. These lateral connection
strengths are symmetric and bounded in nature, cij = cji ∈ [0, 1]. The goal
of CHR is to update the lateral connections by mapping neighborhoods in the
input manifold to neighborhoods of the network. Thereby, avoiding any restric-
tions of the topology of the network [5]. For each input element of the feature
manifold, CHR operates by setting the connection strength between the two
neural units that are closer to the input than any other neuron pair, to a highest



possible connection strength of 1. These two neural units are referred to as the
Best Matching Unit (bmu) and Second Best Unit (sbu). CHR then proceeds to
decay the strength of all other existing lateral connections emanating from the
bmu using a forgetting constant, α. If any of these existing connections drop
below a predefined threshold θ, they are set to zero. The set of all neural units
that are connected to the bmu is defined as the neighborhood of the bmu, and
represented by nbr. All other connections of the network remain unaltered. In
this way CHR induces a Delaunay triangulation into the network by preserving
the neighborhood structure of the feature manifold.

cij(t + 1) =





1 (i = bmu) ∧ (j = sbu)
0 (i = bmu) ∧ (j ∈ nbr− sbu) ∧ (cij < θ)
αcij(t) (i = bmu) ∧ (j ∈ nbr− sbu) ∧ (cij ≥ θ)
cij(t) i, j 6= bmu

(3)

It was shown in [15] that algorithms utilizing CHR to update lateral connections
between neural units generate a TPFM.

3.2 Kohonen-Like Rule (KLR)

Unlike a typical feed-forward NN, the weight center wi associated with a neu-
ral unit i of the DCS network represents the location of the neural unit in the
output space. It is crucial to realize that these weighted centers be updated
in a manner that preserves the geometry of the input manifold. This can be
achieved by adjusting the weighted center of the bmu and its surrounding neigh-
borhood structure nbr closer to the input element. For each element of the
feature manifold, u ∈ I, DCS adapts the corresponding bmu and its neigh-
borhood set nbr in a Kohonen-like manner [18]. Over any training cycle, let
∆wi = wi(t + 1)−wi(t) represent the adjustment of the weight center of the
neural unit, then the Kohonen-like rule followed in DCS can be represented as
follows

∆wi =





εbmu(u−wi(t)) i = bmu
εnbr(u−wi(t)) i ∈ nbr
0 (i 6= bmu) ∧ (i /∈ nbr)

(4)

where εbmu, εnbr ∈ [0, 1] are predefined constants known as the learning rates that
define the momentum of the update process. For every input element, applying
CHR before any other adjustment ensures that sbu is a member of nbr set for
all further adjustments within the inner loop of the DCS algorithm.

3.3 Growing the Network

Unlike traditional Self-Organizing Maps (SOM), DCS has the ability to grow
or shrink the map by increasing or decreasing the number of neurons of the
network. A local error measure associated with the network, namely Resource,



is used to determine if the network experienced a large enough cumulative error,
meaning there is a requirement for an additional neuron in the network. In most
cases Euclidean distance between the best matching unit (bmu) and the training
input stimulus serves as a measure of the resource. After a cycle of adaptation
(epoch), if needed an additional neuron is introduced into the network at the
region between the highest and second highest resource neurons of the network.

3.4 DCS algorithm

Knowing the operational aspects of the individual building blocks, we now an-
alyze the DCS training algorithm. As shown in Figure 3, the DCS algorithm is
allowed to train on the input stimulus until the network has reached a specific
stopping criteria. For each training input stimulus, the network is searched for

while stopping criteria is not satisfied
{

for each training input stimulus
{

find bmu, sbu
update connections using CHR
adapt weights using KLR
update resource error

}
compute cumulative network resource error
if (cumulative network resource error) > (Predefined Error)
{

grow the network
decrement all resource values

}
}

Fig. 3. DCS Algorithm

the two closest neurons, best matching unit (bmu) and second best unit (sbu).
The lateral connection structure surrounding the bmu is updated using Hebb
rule. Kohonen adaptation of the weights of the bmu and its neighbors (nbr) is
performed.

The resource value of the bmu is updated correspondingly, marking the end
of a training cycle (epoch). The cumulative resource error of the network is
computed to determine the need for inserting an additional neuron into the
network. Decreasing the resource values of all the neurons by a decay constant
prevents the resource values from growing out of bounds.

We want to determine if the DCS algorithm will reliably learn a fixed input
manifold I ⊂ RI , on successive applications. The question is then how much



can the evolving state of the DCS algorithm, denoted by xt, deviate from a
previously learned stable state, denoted by x0? Stability analysis in similar terms
was performed by Kaynak et. al. for a backpropagation neural network that has
a relatively simple topological structure in comparison with a DCS network [26].

A network basically consists of nodes (weights) and vertices (connections).
Thereby, it can be completely represented using a weight center matrix, W ⊂ RO,
and a connection strength matrix, C ⊂ RO. Considering the map generated by
the DCS network as a graph, G(W,C), we provide the following definition.

Definition 4. DCS Network’s Mapping
DCS network’s mapping G(W,C) for a given feature manifold, I ⊂ RI , is an N th

order neural network representation of I in the output space, O ⊂ RO, generated
by assigning N neural units in tn steps of the DCS algorithm.

This definition characterizes the DCS process as a mapping which we can now
proceed to analyze in the context of discrete dynamical systems.

4 Self-stabilization of DCS network

4.1 State Space of the DCS Network

Let the DCS network be learning from a set of training examples of the input
space u(t) ∈ RI . At some point of time during or after the learning, if a test input
stimulus, u?(t) ∈ RI is presented, the network generates an estimated output,
ŷ = G(W (t), C(t), u?(t)). The dynamics of such learning can be represented as:

˙x(t) = f(x(t), u(t), t) : X × RI × R
ŷ = G(W (t), C(t), u?(t)) : RO × RO × RI (5)

where x(t) represents the DCS networks learning state, X represents the learn-
ing profile. For the sake of simplicity we consider only discrete time variations.
Specifically, whenever t is such that ti ≤ t < ti+1 we will have f(x(t), u(t), t) =
f(x(t),u(t), ti). This implies that the DCS network learning depends only on
x and u. The dynamics from (5) can be re-written as:

∆x = x(ti+1)− x(ti) = f(x, u)
y(u?) = G(W,C, u?) (6)

4.2 Mathematical Verification of Self-stabilization

Theorem 1. During DCS network’s representation of a fixed input manifold,
the evolving state of the system due to neural unit’s position adjustment, xW ∈
W , is self-stabilizing in a globally asymptotically stable manner.



Proof. Since the DCS network’s learning is a time-varying process whose state
changes according to the difference relations (6), we first need to construct a
Lypaunov function that is non-increasing over the state trajectories.

To set up a Lyapunov function, we measure how accurately a current state
of the algorithm models the input manifold in terms of the amount of geometry
being preserved by the network. We formulate a function that measures the
effectiveness of the placement of neural units by computing the amount by which
a neural unit deviates from an element u ∈ I of the input manifold for which it is
the best matching unit. We then average this over the total number of neurons,
N , in that phase of DCS approximation to get

V =
1
N

∑

u∈I

‖u−wbmu(u,t)‖ (7)

Throughout this proof, V , commonly referred as the network’s quantization error
serves as the network’s Lyapunov function.

First of all we need to show that the above presented Lyapunov function (V )
is valid. It is obvious that V ≥ 0 since ‖u − wbmu(u,t)‖ ≥ 0. Also V (0) = 0,
since there are no neurons in the DCS network during zero state. To show that
∆V
∆t < 0, first note that since the time step ∆t > 0, the numerator ∆V will
determine the sign in question. Over any learning cycle, DCS network adjusts
the weights of the bmu and its neighbors, nbr, according to the Kohonen-like
rule. Let |u−wbmu(u,t)‖ be represented by d(u, t), then we see that over a single
training cycle

∆V =
1

N + 1

∑

u∈I

d(u, t + 1)− 1
N

∑

u∈I

d(u, t)

=
N

∑
u∈I d(u, t + 1)− (N + 1)

∑
u∈I d(u, t)

N(N + 1)

=
N

∑
u∈I (d(u, t + 1)− d(u, t))−∑

u∈I d(u, t)
N(N + 1)

(8)

For any u ∈ I, we need to show that either the corresponding portion of
the numerator is negative or that some other portion compensates when it is
positive. There are three ways in which a neural unit’s weighted center may get
adjusted. It may get updated as

1. as the bmu for u,
2. as the bmu of some other u′ ∈ I,
3. or as one of the neighbors of the bmu of some other u′ ∈ I.

In the first case, to show that equation (8) evaluates to less than 0, it is sufficient
to show that

d(u, t + 1)− d(u, t) < 0 (9)



Computation using the weight-adaptation rule followed in DCS network gives

d(u, t + 1) = ‖u− wbmu(u,t+1)‖
= ‖u− (wbmu(u,t) + εbmu(u− wbmu(u,t)))‖
= ‖(u− wbmu(t))− εbmu(u− wbmu(t))‖
= ‖u− wbmu(t) − εbmuu + εbmuwbmu(t))‖
= (1− εbmu)‖u− wbmu(t)‖
= (1− εbmu)d(u, t).

Since εbmu ∈ (0, 1),
d(u, t + 1) < d(u, t),

which implies (9).
In the second case, the best matching unit for u ∈ I, bmu(u), may get

updated as the best matching unit for some other u′ ∈ I, bmu(u′). The update
as bmu(u′) can either precede or follow the update as bmu(u) and the effect on
V depends primarily on which input stimulus is closest to bmu(u) = bmu(u′).
When u is farthest from bmu(u), the triangle inequality for the euclidean metric
implies that d(t) > d(t+1) regardless of the order of update. On the other hand,
if u′ is farther from bmu(u), d(t) may be smaller than d(t + 1) but any increase
in the distance from u to its bmu is smaller than the decrease in the distance
from u′ to the same neuron since u is closer to bmu(u). Again, this follows from
the triangle inequality for the euclidean metric. The net effect in all cases is a
decrease in V .

The third case will have ∆V < 0 since εbmu >> εsbu in general. In case
the two values are comparable, the result follows from the same argument as
in the second case above. As a result, the function V is a Lyapunov function
for the state of position adjustments of the DCS network and furthermore since
∆V < 0 and V → 0 as t →∞, the network is asymptotically stable in the sense
of Lyapunov. Finally, the decrease in V is independent of the initial placement
of neurons in the DCS algorithm which implies that this stability is global.

The theorem verifies the fact that if we can construct a Lyapunov function
as an error-minimizing term with initial boundary conditions (V (0) = 0), Lya-
punov’s stability theory can then guarantee the neural network’s neighborhood
structure, in terms of the best matching unit (bmu) to get closer to the training
example in a globally asymptotically stable manner and thus preserving the fea-
tures of the input manifold, which is the central goal of on-line learning neural
network of the adaptive flight control system [24].

5 Online Stability Monitoring

It is of prime importance to understand if the neural network is convergent,
meaning that trajectories converge to a stationary state even before we use them
in real applications. Since we provided the required mathematical foundation to



ensure the system to be stable, we now need to assure the robustness of system.
In other words, if the online neural network encounters unusual data patterns
that force the state of the system to deviate away from its current pattern, it
always converges back to a stable equilibria within a finite amount of time. We
may not always be able to assure robustness of the online network due to its
implementation in an adaptive system, where the data patterns have no prior
probability distribution. However, as the last resort of system assurance, we
should at least be able to detect deviations of state that could lead to unstable
behavior. This is is the objective of the Online Stability Monitor, shown in Figure
4.

Fig. 4. V&V Mehtodology for OLNN

An interesting question guiding the design of online monitoring feature is:
How much an evolving state of the system needs to deviate in order for the
stability monitor to label it as unstable?

Since, the objective functions for online adaptive systems evolve over time
it is hard to establish a complete system description a priori. Hence, we cannot
precisely specify what an unstable state (for adaptive neural network) is. The
hope is that the on-line monitor will be able to detect it when it sees it. An
inadequate Lyapunov function may, of course, cause the excess of false-positive
warnings, but this risk cannot be avoided. Online Stability Monitor complements
analytical stability analysis by being being able to detect system states that
deviate away from stable equilibria in real-time.

6 Case Study

In order to better understand the role of Lyapunov functions in self-stabilization
of the given system a case study has been performed. The learning data for the
DCS neural network was collected in an F-15 flight simulator. For the sake of



simplicity, the simulation data depicts nominal conditions of approximately 4
seconds of flight. During the simulation, the derivative outputs of the PID met
the convergence criteria.

The plot in Figure 5 shows a portion of the DCS network learning behavior
for the so called DCS Cz subnetwork, one of the five DCS neural networks
used in the real implementation of the IFCS. The input to the DCS Cz network
consisted of 186 data frames, each in a seven-dimensional space. Each input data
frame consisted of 4 sensor readings and 3 stability and control derivative errors
from PID and PNN.

0.615
0.6155

0.616
0.6165

0

0.05

0.1

−0.15

−0.145

−0.14

−0.135

−0.13

−0.125

−0.12

−0.115

Mach number (speed of the aircraft)

Alpha (angle of attack)

D
el

ta
C

Zc
an

ar
d (a

ng
le

s)

Fig. 5. Network Representation of Flight Control Variables

In this figure, two independent input variables (from sensors) to the DCS −
Cz network are plotted against a third dependent input variable (from PID-
PNN) ’fed’ into the DCS − Cz network. These independent variables represent
Mach numbers, the speed of the aircraft as compared to the local speed of
sound, and alpha, aircraft’s angle of attack. The dependent variable is one of
the aircrafts stability and control derivative errors, Czcanard. Figure 5 depicts
the DCS network approximation of the data configuration plotted in a three
dimensional subspace of the total seven dimensional data space.

Since adaptive systems are associated with uncertainty, degrees of freedom
and high noise-level in real flight conditions, we may not always be able to check
to see if each dimension of the input data is effectively abstracted and repre-
sented by the network. The data sets being modelled here represent very short
data sequences for one out of five neural networks in the intelligent flight control
system. The use of the constructed Lyapunov function (V ), as shown in Figure
6, reduces the need for checking effective learning by each dimension as V ∈ R.
Rather than looking onto several dozen graphs, the adequacy (stability) of learn-
ing can be assessed from the analysis of a single graph, the graph representing



Fig. 6. Network’s Lyapunov Function.

the Lyapunov function. Figure 6 depicts the convergence of V to a stable state
within 10 epochs of neural network learning. Consequently, we can pinpoint the
precise time at which the network reaches a stable state using the rate of decay
of the Lyapunov function.

7 Summary and Discussion

In this paper, we discussed practical limitations to the idea of applying tra-
ditional self-stabilization approaches to adaptive systems. As an alternate ap-
proach we emphasize the role of a Lyapunov function in detecting unstable state
deviations. A Lyapunov function for a DCS neural network has been constructed
and used in a formal proof that established the conditions under which on-line
learning for this type of network is self-stabilizing.

Further, we propose the idea of online stability monitoring for adaptive flight
control systems. The goal of on-line monitoring is to provide a real-time safety
warning methodology. A simulation study was conducted and it provided further
evidence of self-stabilizing properties of the DCS neural network learning.

References

1. A. Arora, M. Demirbas and S. Kulkarni. Graybox Stabilization. International Con-
ference on Dependable Systems and Networks (DSN’2001), Goteborg, Sweden, July
2001.

2. A. Arora. Stabilization. Encyclopedia of Distributed Computing, edited by Partha
Dasgupta and Joseph E. Urban, Kluwer Academic Publishers, 2000.

3. Ingo Ahrns, Jorg Bruske, Gerald Sommer. On-line Learning with Dynamic Cell
Structures. Proceedings of the International Conference on Artificial Neural Net-
works, Vol. 2, pp. 141-146, 1995.

4. William L. Brogan. Modern Control Theory. II Edition, Prentice-Hall Inc., 1985.
5. Jorg Bruske, and Gerald Sommer. Dynamic Cell Structures, NIPS, Vol. 7, Pages

497-504, 1995.
6. Jorg Bruske, Gerald Sommer. Dynamic Cell Structure Learns Perfectly Topology

Preserving Map. Neural Computations, Vol. 7, No. 4, pp. 845-865, 1995.



7. Marc W. Mc. Conley, Brent D. Appleby, Munther A. Dahleh, Eric Feron. Compu-
tational Complexity of Lyapunov Stability Analysis Problems for a Class of Non-
linear Systmes. Society of industrial and applied mathematics journal of control
and optimization, Vol. 36, No. 6, pp. 2176-2193, November 1998.

8. Edsger W. Dijkstra. Self-stabilizing systems in spite of Distributed Control. Com-
munications of the Assocoation for Computing Machinery, 17(11), 643-644, 1974.

9. Bernard Friedland. Advanced Control System. Prentice-Hall Inc., 1996.
10. Bernd Fritzke. A Growing Neural Gas Network Learns Topologies. Advances in

Neural Information Processing Systems, Vol. 7, pp. 625-632, MIT press, 1995.
11. Tom M. Heskes, Bert Kappen. Online Learning Processes in Artificial Neural Net-

works. Mathematical Foundations of Neural Networks, pp. 199-233, Amsterdam,
1993.

12. Charles C. Jorgensen. Feedback Linearized Aircraft Control Using Dynamic Cell
Structures. World Automation Congress, ISSCI 050.1-050.6, Alaska, 1991.

13. J. L. W. Kessels. An Exercise in Proving Self-satbilization with a variant function.
Information Processing Letters (IPL), Vol. 29, No.1, pp. 39-42, September 1998.

14. Teuvo Kohonen. The Self-Organizing Map. Proceedings of the IEEE, Vol. 78, No.
9, pp. 1464-1480, September 1990.

15. Thomas Martinetz, Klaus Schulten. Topology Representing Networks. Neural Net-
works, Vol. 7, No. 3, pp. 507-522, 1994.

16. Kumpati S. Narendra, Kannan Parthasarathy. Identification and Control of Dy-
namic Systems Using Neural Networks. IEEE Transactions on Neural Networks,
Vol. 1, No. 1, pp. 4-27, March 1990.

17. Kumpati S. Narendra. Intelligent Control. American Control Conference, San
Diego, CA, May 1990.

18. Jurgen Rahmel. On The Role of Topology for Neural Network Interpretation, Proc.
of European Conference on Artificial Intelligence, 1996.

19. Orna Raz. Validation of Online Artificial Neural Networks (ANNs)-An Informal
Classification of Related Approaches. Technical Report for NASA Ames Research
Center, Moffet Field, CA, 2000.

20. N. Rouche, P. Habets, M. Laloy. Stability Theory by Liapunov’s Direct Method.
Springer-Verlag, New York Inc. publishers, 1997.

21. Marco Schneider. Self-Stabilization. Assocoation for Computing Machinery (ACM)
sureveys, Vol. 25, No. 1, March 1993.

22. The Boeing Company. Intelligent Flight Control: Advanced Concept Program.
Project report, 1999.

23. Oliver Theel. An Exercise in Proving Self-Stabilization through Lyapunov Func-
tions. 21st International Conference on Distributed Computing Systems, ICDS’01,
April 2001.

24. Sampath Yerramalla, Bojan Cukic, Edgar Fuller. Lyapunov Stability Analysis of
Quantization Error for DCS Neural Networks. Accepted for publication at Inter-
national Joint Conference on Neural Networks (IJCNN’03), Oregon, July 2003.

25. Wen Yu, Xiaoou Li. Some Stability Properties of Dynamic Neural Networks. IEEE
Transactions on Circuits and Systems, Part-1, Vol. 48, No. 2, pp. 256-259, February
2001.

26. Xinghuo Yu, M. Onder Efe, Okyay Kaynak. A Backpropagation Learning Frame-
work for Feedforward Neural Networks, IEEE Transactions on Neural Networks ,
No. 0-7803-6685-9/01, 2001.

27. V. I. Zubov. Methods of A. M. Lyapunov and Their Applications. U.S. Atomic
Energy Commission, 1957.


