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Abstract

Through a review of AI papers published in Nature since 2015, this report discusses the technical flaws called
Post-Selection in the charged papers. This report suggests the appropriate protocol, explains reasons for the protocol,
why what the papers have done is inappropriate and therefore yields misleading results. The charges below are
applicable to whole systems and system components, and in all learning modes, including supervised, reinforcement,
swarm, reservoir, and evolutionary learning modes, since the concepts about training sets, validation sets, and test
sets all apply. A reinforcement-learning algorithm includes not only a handcrafted form of task-specific, desired
answers but also values of all answers, desired and undesired. A supervised learning method typically does not
provide values for intermediate steps (e.g., hidden features), but in contrast, a reinforcement learning mode must
provide values for intermediate steps using a greedy search (e.g., time discount). Casting dice is the key protocol
flaw that owes a due transparency about all losers (e.g., how good they are). A commercial product is impractical
if it requires every customer to cast dice and almost all trained “lives” must cause accidents and be punished by
deaths except the luckiest “life”. All the losers and the luckiest are unethically determined by so called “unseen”
(in fact should be called “first seen”) test sets but the human programmer saw all the scores before he decided
who are losers and who is the luckiest. Such a deep learning methodology gives no product credibility.

I. INTRODUCTION

Restricted to only technical subjects, this author hereby respectfully allege that the following papers
published in Nature [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16] suffer
from the following major technical and protocol flaws and, consequently, their reported results are grossly
misleading.

II. CHARGES

C1 Post-Selection
Their experimental protocols should have included a stage, called Post-Selections Using Test
Sets (PSUTS). In the simplest form, all the data were divided into two disjoint sets, T and T ′. In
a training stage, n systems where trained to fit the training set T , each starting from a different
set of weights determined by a different random seed. Next, in the Post-Selection stage, all the
n systems were tested on the test set T ′ and finally only the performance of the luckiest system
that has the best performance on the test set T ′ was reported in the corresponding paper, but not
the performances of the remaining less lucky n− 1 systems. This is a version of “testing on the
training set” as textbook [17] warned against, because the Post-Selection stage utilized the test
set T ′. In competitions, the Post-Selections take a form of machine PSUTS or human PSUTS.

C2 Lack of transparency
There is a lack of transparency in reporting the Post-Selection stage. Almost all the charged
papers did not mention the Post-Selection stage at all. An exception is [4] which mentioned in
the caption of Figure 5, “20 replicated training runs with different random-number seeds for a
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DNC and LSTM ... A single DNC was ... some failures to satisfy all constraints (incomplete).”
However, [4] still lacks due transparency about the Post-Selection stage. For example, do the
performance data, including those in Fig. 4(b), correspond to the luckiest system among these
n = 20 trained systems? If the answer is positive, what is the distribution of performances of
other less lucky 20 − 1 = 19 systems? As a publicly disclosed case, [1] misleadingly claimed:
“... until ImageNet competition in 2012. When deep convolutional systems were applied to a
data set of about a million images from the web that contained 1,000 different classes, they
achieved spectacular results, almost halving the error rates of the best competing approaches.”
But [1] did not explain the Post-Selection stage, which should have used PSUTS on team-labeled
test sets. The least transparent case among the charged papers seems to be paper [14] which
did not state which AI method was used. Paper [14] stated: “We used the inverse probability of
treatment weighting to adjust for baseline confounding factors and to emulate randomization.”
But, it did not mention (i) what AI method (re: inverse probability IPTW which requires machine
learning) was used, and (ii) what feature representations of IPTW were applied to the “Flatiron
Health database” and (iii) how the uncertainty (re: inverse probability IPTW) in the real data
are cross-validated to support the reported results about “relaxing specific eligibility criteria”.

III. SUPPORTING BRIEF

S1 What the appropriate protocol should be
If one has to use a weak (batch learning) technology that requires many trained systems instead
of only one, the following protocol should be carried out to evaluate the technology.
(A) All available data should be divided into three mutually disjoint sets, a training set T , a
validation set V , and a test set T ′.
(B) In the validation stage, all systems trained to fit the training set T are validated using the
validation set V , but not the test set T ′ (which must not be leaked into the post-selection stage).
The validation rate—the ratio of the number of systems that pass the validation over the total
number of systems trained—must be reported. Next, during the test stage, the performances of
all trained systems must be reported (including those not validated).
(C) According to the well known protocol of cross-validation [17, p. 483-484], random lucks
(including all those lucks that a user does not fully control during deployment, like deployment
of a vaccine) should be averaged out to report at least the average performance on T ′ across all
n systems trained. One may use n-fold cross-validation [17, p. 483-484] across all n random
seeds, tested on the test set T ′. In other words, the charged papers should report the average
performance on a completely new test set T ′ across all n systems trained, including those not
validated, instead of only the performance of the luckiest system from PSUTS.
(D) To estimate the reliability of the average performance, report also, in additional to the average
of performances, also the distribution of all n performances across different random seeds,
including the minimum, the maximum, and the standard deviation of all the n performances.
This is done for the recommended hyper parameter vector.
(E) Report the distribution of performances of kn systems, where k is the number of hyper-
parameter vectors searched [4], should also be reported in the format of (D) since such a search is
coupled with a search for seeds of random weights. Alternatively, declare that random seeds for
weights are decoupled from the search for the best hyper parameter vector. Namely, every hyper
parameter vector tried in search uses the same initial value of the ransom seed for assigning
random weights of the neural network.
(F) For a machine learning competition, the competition organizer should publicly announce
and strictly enforce stipulations that explicitly ban PSUTS, either the suspected machine PSUTS
in [1] via team-labeling test sets or suspected human PSUTS in [18], [3], [5], [12] via human
on-the-fly interactions with the decision process of a competing machine.
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S2 Why this is the appropriate protocol
(A) Some available data sets provide a validation set; or some competition teams privately extract
a disjoint validation set from available data.
(B) Each competition team should not use the test set T ′ in training or post-selection, nor should
it hand-label the test set from a competition. The validation rate is used to see how effective a
machine learning technique is, but all trained systems should be all tested and reported to be
transparent about the high cost of machine training.
(C) An objective test should provide statistically expected error of a single resulting system for
a typical deployment. Statistically, the luckiest system on V (or T ′) is expected to give only an
average performance across all possible random seeds on a new validation set V (or a new test
set T ′) drawn from the same distribution. Thus, instead of reporting the luckiest performance,
report the average performance to smooth out random-seed lucks that a typical user in deployment
cannot control. The traditional n-fold cross-validation uses average to smooth out similar lucks
in dividing all available data into T and T ′.
(D) If the standard deviation of n performances is large, the reported average performance is not
trustable. This is similar to, but more transparent than, so called p-value in statistical science.
(E) S1(E) is necessary because if one claims n = 1 for each hyper-parameter vector, in fact the
search for the luckiest random seed is embedded in the search for the kn = k hyper-parameter
vectors and k is typically huge in machine learning unless a decoupled random seed is declared.
Alternatively, a decoupled seed prevents the search for random weights hiding in the search for
hyper parameter vectors.
(F) Without the stipulation in S1(F), a competition against a machine is unfair since it is in fact
a competition with a team of humans who have a lot of computer support.

S3 Why what those papers have done is inappropriate and therefore yields misleading results
(A) Since the charged papers did not provide any statements to state otherwise, it is reasonable
for a reader to assume that the test set T ′ was used in Post-Selection. For the same lack of
transparency, textbook [17, p.483] wrote: “It is essential that the validation (or test) set not
include points used for training the parameters in the classifier—a methodological error known
as ‘testing on the training set’.”
(B) The luckiest system from V (or T ′) is like a luckiest hit in a lottery of random seeds. The
charged papers should not report only the misleadingly high recognition rate of the luckiest
system, but instead the performances of all trained systems. Textbook [17, p.295] stated: “The
average error on an independent test set is virtually always higher then on the training set.” The
luckiest results from PSUTS in the charged papers are grossly misleading.
(C) The charged papers should transparently report how many systems they have trained (e.g.,
10,000 by [10]) and the average performance across all trained systems (not just 165 luckiest
ones in [10]). Without this information, it is misleading for [1] to claim credits for error-backprop
techniques because error-backprop also resulted in those less lucky systems.
(D) The charged papers did not transparently explain the distribution of performances across a
huge number of trained systems from less lucky random seeds.
(E) The charged papers did not present how sensitive the reported performance is to the hyper-
parameters that only greedily fit a specific test set. The charged papers did not transparently
account for the distribution of performances across a huge number of trained systems with
different random seeds and different hyper parameters tried. The charged papers did not declare
a decoupled random seed.
(F) The competitions discussed in [18], [1], [3], [5], [12] lack the stipulation in S1(F) and
therefore the publicly announced results from these competitions are misleading.

Without discussing each of the charged papers, the authors and readers of all the charged papers should
be able to understand how the PSUTS charge C1 and the transparency charge C2 explained here are
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applicable specifically to each of the charged papers.
This author intends to make this report concise and free from mathematics. The allegations are rooted

in well-known pattern recognition protocol, such as the n-fold cross-validation in [17] and are supported
by the related theoretical analysis and experimental experience from this author.

For more technical details about why Convolutional Neural Networks (CNNs) trained by gradient decent
techniques severely suffer from local minima problems, see [19]. For some variants of Post-Selections and
why PSUTS is technically flawed for not only CNNs but also all other AI methods that do not automatically
abstract rules and purposes, such as published swarm learning and evolutionary computations, see [20].

IV. CONCLUSIONS

To deny the allegations, the authors of the charged papers should publicly provide to Nature scientifically
verifiable source programs and data sets T , V and T ′ along with additional data in S1(C), S1(D), S1(E), and
if competitions are involved, also S1(F). If the authors of the charged papers failed to provide such denial
in a reasonable time frame or failed to receive positive verifications by other independent laboratories
and this author, the authors of the charged papers should voluntarily retract their corresponding papers
according to Nature and COPE rules.
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