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Abstract— Finite Automata (FA) is a base net for many
sophisticated probability-based systems of artificial intelligence.
However, an FA processes symbols, instead of images that the
brain senses and produces (e.g., sensory images and motor
images). Of course, many recurrent artificial neural networks
process images. However, their non-calibrated internal states
prevent generalization, let alone the feasibility of immediate
and error-free learning. I wish to report a general-purpose
Developmental Program (DP) for a new type of, brain-anatomy
inspired, networks — Developmental Networks (DNs). The new
theoretical results here are summarized by three theorems. (1)
From any complex FA that demonstrates human knowledge
through its sequence of the symbolic inputs-outputs, the DP
incrementally develops a corresponding DN through the image
codes of the symbolic inputs-outputs of the FA. The DN learning
from the FA is incremental, immediate and error-free. (2) After
learning the FA, if the DN freezes its learning but runs, it
generalizes optimally for infinitely many image inputs and
actions based on the embedded inner-product distance, state
equivalence, and the principle of maximum likelihood. (3) After
learning the FA, if the DN continues to learn and run, it “thinks”
optimally in the sense of maximum likelihood based on its past
experience.

I. INTRODUCTION

Models for intelligent agents fall into two large categories,
symbolic and emergent.

A. Symbolic networks

Given a task, a human designer in Artificial Intelligence
(AI) [11], [6] or Cognitive Science [1], [24] handcrafts
a Symbolic Network (SN), using handpicked task-specific
concepts as symbols, as illustrated in Fig. 1(a). The “common
denominator” network underlying many such SNs is the Fi-
nite Automaton (FA) whose probabilistic extensions include
the Hidden Markov Model (HMM), the Partially Observable
Markov Decision Processes (POMDP) and the Bayesian Nets
(also called belief nets, semantic nets, and graphical models).
Fig. 2 gives an FA that simulates a simple cognitive and
behavioral animal.

Such an FA is powerful by recursively directing many dif-
ferent sensory sequences (e.g., “kitten” and “young cat”) into
the same equivalent state (e.g., z3) and its future processing
is always based on such an equivalence. For example, state
z4 means that the last meaning of all input subsequences

Juyang Weng is with the Department of Computer Science and Engineer-
ing, Cognitive Science Program, and Neuroscience Program, Michigan State
University, East Lansing, MI, 48824 USA (email: weng@cse.msu.edu).

The author would like to thank Z. Ji, M. Luciw, K. Miyan and other mem-
bers of the Embodied Intelligence Laboratory at Michigan State University;
Q. Zhang and other members of the Embodied Intelligence Laboratory at
Fudan University whose work have provided experimental supports for the
theory presented here.

(b)

(a)

Image

H
an

d
cr

af
te

d
 

p
ro

ce
d

u
re

 o
r

 h
an

d
-c

o
n

ve
rs

io
n

Image

Image

Image

Image

Motor
 image

Sensory
 image

Motor
 image

Sensory
 image

Symbols

Symbols

Handcrafted
FA (or SN)

Emergent DN
YX Z

DP

Physical
environment

Physical
environment

Given body
and task

Given body
without task

Fig. 1. Comparison between a symbolic FA (or SN) and an emer-
gent DN. (a) Given a task, an FA (or SN), symbolic, handcrafted by
the human programmer using a static symbol set. (b) A DN, which
incrementally learns the FA but takes sensory images directly and
produces motor images directly. Without given any task, a human
designs the general-purpose Developmental Program (DP) which
resides in the DN as a functional equivalent of the “genome” that
regulates the development — fully autonomous inside the DN.

that end at z4 is “kitten looks” or equivalent. However, the
resulting machine does not truly understand the symbolic
concepts and is unable to learn new concepts beyond possible
re-combinations of handpicked symbols.

B. Emergent networks

The term “connectionist” has been misleading, diverting
attention to only network styles of computation that do
not address how the internal representations emerge without
human programmer’s knowledge about tasks. Furthermore,
the term “connectionist” has not been very effective to
distinguish (emergent) brain-like networks from SNs. For
example, Jordan & Bishop [9] used neural networks to name
SNs, and Tenenbaum et al. [25] used SNs to model the mind.

Definition 1 (Emergent representation): An emergent
representation emerges autonomously from system’s
interactions with the external world (outside the brain or
network) and the internal world via its sensors and its
effectors without using the handcrafted (or gene-specified)
content or the handcrafted boundaries for concepts about
the extra-body environments.

Feed-forward [22], [21] and recurrent [7], [33] networks,
use images (numeric patterns) as representations. Recurrent
networks can run continuously to take into account temporal
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Fig. 2. An FA simulates an animal. Each circle indicates a context
state. The system starts from state z1. Supposing the system is at
state q and receives a symbol σ and the next state should be q′, the
diagram has an arrow denoted as q σ−→ q′. A label “other” means
any symbol other than those marked from the out-going state. Each
state corresponds to a set of actions, indicated below the FA. The
“other” transitions from the lower part are omitted for brevity.

information. The network representations are emergent in
the sense that the internal representations, such as network
connection patterns, multiple synaptic weights, and neuronal
responses, emerge automatically through the interactions
between the learner system and its environment. However,
it is unclear how a recurrent network can model a brain.

Vincent Müller [19] stated: “How does physics give rise
to meaning? We do not even know how to start on the
hard problem.” This question is indeed challenging to answer
since the internal representations inside the brain skull do not
permit handcrafting. They emerge from a single cell (zygote)
through experience, regulated by the Developmental Program
(DP) — the genome program in the nucleus of every cell.
As illustrated in Fig. 1(b), an artificial DP is handcrafted by
a human, to short cut extremely expensive evolution.

C. Symbolic networks vs. emergent networks

Marvin Minsky 1991 [17] and others argued that symbolic
models are logical and clean, while connectionist (he meant
emergent) models are analogical and scruffy. The logic capa-
bilities of emergent networks are still unclear, categorically.

Neuroanatomical studies, surveyed by so far probably the
most extensive and detailed review by Felleman & Van Essen
[4] reported that in the brain the motor areas feed its signals
back to the earlier sensory areas and, furthermore, in general,
almost every area in the brain feeds its signals to multiple
earlier areas.

Computationally, feed-forward connections serve to feed
sensory features [20], [23] to motor area for generating be-
haviors. It has been reported that feed-backward connections
can serve as class supervision [7], attention [2], [3], and
storage of time information [33]. Foreseeably, there are many
other functions to which we can attribute feed-backward
connections to. Gallistel reviewed [5]: “This problem-specific
structure, they argue, is what makes learning possible.”
“Noam Chomsky ... , Rochel Gelman, Elizabeth Spelke,
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Fig. 3. Conceptual correspondence between an Finite Automaton
(FA) with the corresponding DN. (a) An FA, handcrafted and static.
(b) A corresponding DN that simulates the FA. It was taught to
produce the same input-out relations as the FA in (a). A symbol
(e.g., z2) in (a) corresponds to an image (e.g., (z1, z2, ..., z4) =
(0, 1, 0, 0)) in (b).

Susan Carey, and Renee Baillargeon have extended this
argument.”

However, the theory introduced hear seems to show that
the brain does not have to work in such a piece-meal way
or a problem specific way if we understand the brain con-
nections using the automata theory developed for modeling
computer-like reasoning. The Developmental Network (DN)
here provides an example — a problem-specific (or task-
specific) structure is unnecessary for DN learning.

The remainder of this paper is organized as follows.
Section II briefly introduces the Finite Automata and an
extension to agent FA. The DN framework is outlined in
Section III. The major meanings of the three theorems were
explained in Section IV. The published experimental results
that support the framework here were briefly summarized in
Section VI. Section VII provides concluding remarks.

II. SYMBOLIC NETWORKS

The brain’s spatial network seems to deal with general
temporal context without any explicit component dedicated
to time as argued by [16], [10], but its mechanisms are still
largely elusive.

A. Intuitive introduction to FA

FA is amenable to understanding the brain’s way of
temporal processing. An FA example is shown in Fig. 3(a).
At each time instance, the FA is at a state. At the beginning,
our example is at state z1. Each time, it receives a label
as input (e.g., “young”). Depending on its current state and
the next input, it transits to another state. For example, if
it is at z1 and receives label “young”, it transits to “z2”,
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meaning “I got ‘young’.” All other inputs from z1 leads back
to z1 meaning “start over”. The states have the following
meanings: z1: start; z2: “young”; z3: “kitten” or equivalent;
z4: “kitten looks” or equivalent. An FA can reason. For
example, our FA example treats “young cat” and “kitten”
the same in its state output.

B. Formal definition of FA and agent FA

Definition 2 (Language acceptor FA): A finite automaton
(FA) M is a 5-tuple M = (Q,Σ, q0, δ, A), where Q is a
finite set of symbols called states; Σ is a finite alphabet of
input symbols; q0 ∈ Q is the initial state; A ⊂ Q is the set
of accepting states; δ : Q × Σ 7→ Q is the state transition
function.

We extend the definition of the FA to agent FA:
Definition 3 (Agent FA): An agent FA M for a finite

symbolic world is a 4-tuple M = (Q,Σ, q0, δ), where Σ
and q0 are the same as above and Q is a finite set of states,
where each state q ∈ Q is a symbol, corresponding to a set of
concepts. The agent runs through discrete times t = 1, 2, ...,
starting from state q(t) = q0 at t = 0. At each time t − 1,
it reads input σ(t − 1) ∈ Σ and transits from state q(t − 1)
to q(t) = δ(q(t − 1), σ(t − 1)), and outputs q(t) at time t,

illustrated as q(t− 1)
σ(t−1)−→ q(t).

The input space is denoted as Σ = {σ1, σ2, ..., σl}. The
concept set of each state has two subsets, the cognition
set and the action set; but the cognition set can also be
considered as actions — report the cognition. Regardless
of meanings, the set of states can be denoted as Q =
{q1, q2, ..., qn}. The example of agent FA in Fig. 2 hints that
an FA can be very general.

C. Completeness of FA

Let Σ∗ denote the set of all possible strings of any finite
n ≥ 0 number of symbols from Σ. All possible input
sequences that lead to the same state q are equivalent as
far as the FA is concerned. It has been proved that an FA
with n states partitions all the strings in Σ∗ into n sets.
Each set is called equivalence class, consisting of strings
that are equivalent. Since these strings are equivalent, any
string x in the same set can be used to denote the equivalent
class, denoted as [x]. Let Λ denote an empty string. Consider
Fig. 2. The FA partitions all possible strings into 6 equivalent
classes. All the strings in the equivalent class [Λ] end in z1.
All strings in the equivalent class [“kitten” “looks”] end in
z4, etc.

The completeness of agent FA can be described as follows.
When the number of states is sufficiently large, a properly
designed FA can sufficiently characterize the cognition and
behaviors of an agent living in the symbolic world of
vocabulary Σ.

D. Other types of automata

Furthermore, there are four types of well known automata,
FA, Pushdown Automata, Linear Bounded Automata (LBA)
and Turing machines.

Automata have been used to model the syntax of a
language, which does not give much information about
semantics. As argued by linguisticists [26], [8], semantics
is primary in language acquisition, understanding and pro-
duction, while syntax is secondary.

The DN theory below enables the semantics to emerge
implicitly in its connection weights in the network. In par-
ticular, it treats syntax as part of the emergent semantics. It
does not separately treat syntax as the above three types of
automata. Therefore, FA is sufficient for our purpose.

E. Symbolic networks: Probabilistic variants

FA has many probabilistic variants (PVs), e.g., HMM,
POMDP, and Bayesian Nets. Like FA, each node (or module)
of a PV is defined by the handcrafted meaning which
determines what data humans feed it during training. A PV
can take vector inputs (e.g., images) based on handcrafted
features (e.g., Gabor filters). The PV determines a typically
better boundary between two ambiguous symbolic nodes (or
modules) using probability estimates, e.g., better than the
straight nearest neighbor rule. However, this better boundary
does not change the symbolic nature of each node (or mod-
ule). Therefore, FA and all its PVs are all called Symbolic
Networks (SNs) here.

F. Power of SN

The major power of SN lies in the fact that it partitions
infinitely many input sequences into a finite number of states.
Each state lumps infinitely many possible state trajectories
(e.g., “kitten” and “young cat”) into the same single state
(z3). For example, state z4 means that the last meaning of
all input subsequences that end at z4 is “kitten looks” or
equivalent. Regardless what the previous trajectories were
before reaching the current state, as long as they end at the
same state now they are treated exactly the same in the future.
This enables the SN to generalize (act correctly) for infinitely
many state trajectories that it has not been observed. For
example, in Fig. 2(a), as long as “kitten” has been taught to
reach z3, “kitten looks”, “kitten stares”, “kitten well looks”
so on all lead to z4, although these strings have never been
observed.

G. Limitations of SN

An SN has the following major limitations:
(1) An SN is static. It does not have emergent representa-

tions like those in the brain. Therefore, it cannot think like
the brain. For example, it cannot be creative, going beyond
a finite number of combinations of these handcrafted static
concepts.

(2) An SN is intractable for dealing with many concepts.
Suppose that a task involves c concepts (e.g., location, type,
scale) and each concept has v values. The number of states
is potentially vc, exponential in c. For v = 4 and c = 22,
vc = 420 = 1611 > 1011 = 100, 000, 000, 000, larger
than the number of neurons in the human brain. Here are
23 examples of concept: object type, horizontal direction,
vertical direction, object pose, apparent scale on the retina,
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viewing distance, viewing angle, surface texture, surface
color, surface reflectance, lighting direction, lighting color,
lighting uniformity, material, weight, temperature, deforma-
bility, purpose, usage, owner, price, horizontal relationship
between two attended objects, vertical relationship between
two attended objects. It is intractable for a human to exam-
ine that many symbolic states and decide which ones are
equivalent and should be merged as a single meta symbolic
state. Therefore, a human designs conditions for every meta
state without exhaustively checking its validity. This is a new
complexity reason why symbolic agents are brittle.

III. DEVELOPMENTAL NETWORKS

Weng 2010 [28] stated that a DN can simulate any FA.

A. DN architecture

A basic DN has three areas, the sensory area X , the
internal (brain) area Y and the motor area Z. An example
of DN is shown in Fig. 3(b). The internal neurons in Y have
bi-directional connection with both X and Z.

The DP for DNs is not task-specific as suggested for the
brain in [31] (e.g., not concept-specific or problem specific).
In contrast to a static FA, the motor area Z of a DN can be
directly observed by the environment (e.g., by the teacher)
and thus can be calibrated through interactive teaching from
the environment. The environmental concepts are learned
incrementally through interactions with the environments.
For example, in Fig. 3(b), the “young” object makes the
pixels 2 and 4 bright and all other green pixels dark.
However, such an image from the “young” object is not
known during the programming time for the DP.

In principle, the X area can model any sensory modality
(e.g., vision, audition, and touch). The motor area Z serves
both input and output. When the environment supervises Z,
Z is the input to the network. Otherwise, Z gives an output
vector to drive effectors (muscles) which act on the real
world. The order of areas from low to high is: X,Y, Z. For
example, X provides bottom-up input to Y , but Z gives top-
down input to Y .

B. DN algorithm

DN is modeled as an area of the brain. It has its area Y
as a “bridge” for its two banks, X and Z. If Y is meant for
modeling the entire brain, X consists of all receptors and Z
consists of all muscles neurons. Y potentially can also model
any Brodmann area in the brain. According to many studies
in detailed review by Felleman & Van Essen [4], each area
Y connects in both ways with many other areas as its two
extensive banks.

The most basic function of an area Y seems to be
prediction — predict the signals in its two vast banks X
and Y through space and time. The prediction applies when
part of a bank is not supervised. The prediction also makes
its bank less noisy if the bank can generate its own signals
(e.g., X).

A secondary function of Y is to develop bias (like or
dislike) to the signals in the two banks, through what is
known in neuroscience as neuromodulatory systems.

This work focuses on the first, most basic function —
prediction for the two banks.

Algorithm 1 (DN): Input areas: X and Z. Output areas: X
and Z. The dimension and representation of X and Y areas
are hand designed based on the sensors and effectors of the
species (or from evolution in biology). Y is the skull-closed
(inside the brain), not directly accessible by the outside.

1) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector
r, where V contains all the synaptic weight vectors
and G stores all the neuronal ages. For example, use
the generative DN method discussed below.

2) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:
a) Every area A performs mitosis-equivalent if it is

needed, using its bottom-up and top-down inputs
b and t, respectively.

b) Every area A computes its area function f , de-
scribed below,

(r′, N ′) = f(b, t, N)

where r′ is its response vector.
c) For every area A in {X,Y, Z}, A replaces: N ←

N ′ and r← r′.
In the remaining discussion, we assume that Y models

the entire brain. If X is a sensory area, x ∈ X is always
supervised. The z ∈ Z is supervised only when the teacher
chooses to. Otherwise, z gives (predicts) motor output.

Put intuitively, like the brain, the DN repeatedly predicts
the output Z for the next moment. When the predicted Z is
mismatched, learning proceeds to learn the new information
from Z. But, there is no need to check mismatches: learning
takes place anyway.

A generative DN (GDN) automatically generates neurons
in the Y area. If (b, t) is observed for the first time ((the
pre-action of the top-winner is not 1) by the area Y , Y adds
(e.g., equivalent to mitosis and cell death, spine growth and
death, and neuronal recruitment) a Y neuron whose synaptic
weight vector is (b, t) with its neuronal age initialized to 1.
The idea of adding neurons is similar to ART and Growing
Neural Gas but they do not take action as input and are not
state-based.

C. DN area function

The area function f which is based on the theory of
Lobe Component Analysis (LCA) [30], a model for self-
organization by a neural area. Each area A has a weight
vector v = (vb,vt). Its pre-response vector is:

r(vb,b,vt, t) =
vb
‖vb‖

· b
‖b‖

+
vt
‖vt‖

· t
‖t‖

= v̇ · ṗ (1)

which measures the degree of match between the direc-
tions of v̇ = (vb/‖vb‖,vt/‖vt‖) and ṗ = (ḃ, ṫ) =
(b/‖b‖, t/‖t‖).
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This pre-response is inspired by how each neuron takes
many lines of input from bottom-up and top-down sources.
It generalizes across contrast (i.e., the length of vectors). It
uses inner-product v̇ · ṗ to generalize across many different
vectors that are otherwise simply different as with symbols in
an FA. The normalization of the first and second terms above
is for both the bottom-up source and top-down source to be
taken into account, regardless the dimension and magnitude
of each source.

To simulate lateral inhibitions (winner-take-all) within
each area A, top k winners fire. Considering k = 1, the
winner neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (2)

The area dynamically scale top-k winners so that the top-
k respond with values in (0, 1]. For k = 1, only the single
winner fires with response value yj = 1 and all other neurons
in A do not fire. The response value yj approximates the
probability for ṗ to fall into the Voronoi region of its v̇j
where the “nearness” is r(vb,b,vt, t).

D. DN learning: Hebbian

All the connections in a DN are learned incrementally
based on Hebbian learning — cofiring of the pre-synaptic
activity ṗ and the post-synaptic activity y of the firing
neuron. If the pre-synaptic end and the post-synaptic end fire
together, the synaptic vector of the neuron has a synapse gain
yṗ. Other non-firing neurons do not modify their memory.
When a neuron j fires, its firing age is incremented nj ←
nj + 1 and then its synapse vector is updated by a Hebbian-
like mechanism:

vj ← w1(nj)vj + w2(nj)yjṗ (3)

where w2(nj) is the learning rate depending on the firing age
(counts) nj of the neuron j and w1(nj) is the retention rate
with w1(nj) +w2(nj) ≡ 1. The simplest version of w2(nj)
is w2(nj) = 1/nj which corresponds to:

v(i)
j =

i− 1
i

v(i−1)
j +

1
i
1ṗ(ti), i = 1, 2, ..., nj , (4)

where ti is the firing time of the post-synaptic neuron j. The
above is the recursive way of computing the batch average:

v(nj)
j =

1
nj

nj∑
i=1

ṗ(ti) (5)

The initial condition is as follows. The smallest nj in Eq. (3)
is 1 since nj = 0 after initialization. When nj = 1, vj on
the right side is used for pre-response competition but does
not affect vj on the left side since w1(1) = 1− 1 = 0.

A component in the gain vector yjṗ is zero if the cor-
responding component in ṗ is zero. Each component in vj
so incrementally computed is the estimated probability for
the pre-synaptic neuron to fire under the condition that the
post-synaptic neuron fires..

E. GDN area functions

Algorithm 2 (Y area function): This version has k = 1
for top-k competition.

1) Every neuron computes pre-response using Eq. (1).
2) Find the winner neuron j using Eq. (2).
3) If the winner pre-response is not 2, generate a Y

neuron using the input ṗ as the weight with age 0.
The new Y neuron as it is the winner for sure.

4) The winner neuron j increment its age: nj ← nj + 1,
fire with yj = 1, and updates its synaptic vector, using
Eq. (3).

5) All other neurons do not fire, yi = 0, for all i 6= j,
and do not advance their ages.

Algorithm 3 (Z Area function): This version has k = 1
for top-k competition within each concept zone.

1) If the dimension of Y has not been incremented, do:
a) Every neuron computes pre-response using

Eq. (1).
b) Find the winner neuron j using Eq. (2).

Otherwise, do the following:
a) Supervise the pre-response of every neuron to be

1 or 0 as desired.
b) Add a dimension for the weight vector of every

neuron, initialized to be 0, which may be imme-
diately updated below.

2) Each winner or supervised-to-fire neuron j increment
its age: nj ← nj + 1, fire with zj = 1, and updates its
synaptic vector, using Eq. (3).

3) All other neurons do not fire, zi = 0, for all i 6= j, and
do not advance their ages.

The Y area function and the Z functions are basically the
same. Z can be supervised but Y cannot since it is inside the
closed “skull”. During the simple mode of learning discussed
here, neurons responding for backgrounds are suppressed
(not attending), so that no neurons learn the background.

IV. INTRODUCTION TO THE THREE THEOREMS

For those who do not want to read the exact formal
exposition of the three theorems, the following introduction
is sufficient to understand the meaning and importance.
For those who do, the following introduction gives the
motivation. Due to the space limit, the formal presentation
of the three theorems and the full proofs are not presented
here but are available at Weng 2011 [29].

A. About Theorem 1

The text version of Theorem 1 is as follows.
The general-purpose DP can incrementally grow a GDN to

simulate any given FA on the fly, so that the performance of
the DP is immediate and error-free, provided that the Z area
of the DN is supervised when the DN observes each new state
transition from the FA. The learning for each state transition
completes within two network updates. There is no need for
a second supervision for the same state transition to reach
error-free future performance. The number of Y neurons in
the DN is the number of state transitions in the FA. However,
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the DN generalizes with 0% action error for infinitely many
equivalent input sequences that it has not observed from the
FA but are in the brain-mind of the human FA designer.

As a sketch of the proof, Fig. 4 illustrates how the DN
simulates each new state transition of FA by creating a new
Y neuron that immediately initializes with the image code
of the state q(t−1) and the image code of the input σ(t−1)
through the first network update (see the Y area at time
t − 0.5). During the next network update, the Z area is
supervised as the image code of the desired state q(t) and
the links from the uniquely firing new Y neuron to the firing
Z neurons are created through a Hebbian mechanism. Since
the match of the new Y neuron is exact and only one Y
neuron fires at any time, the Z output is always error-free if
all image codes for Z are known to be binary (spikes).

Let us discuss the meaning of this theorem. Suppose
that the FA is collectively acquired by a human society, as
a static ontology (common sense knowledge and specialty
knowledge). Each input image x(t) ∈ X is a view of
attended object (e.g., a cat). Then this FA serves as a
society intelligence demonstrator representing many human
teachers whom an agent meets incrementally from childhood
to adulthood. A different FA represents a different career
path. Then, a DN can learn such symbolic knowledge of the
FA immediately, incrementally, and error-free. This is not
what any prior neural network can do. They require many
iterative approximations that may lead to local minima.

Furthermore, the DN does not just do rote learning. Each
teacher only teaches piece-meal knowledge, (e.g., report the
same cognition for “young cat” and “kitten”), but the teacher
did not indicate how such a piece of knowledge should be
transferred to many other equivalent settings (e.g., infinitely
many possible sensory sequences which contains “young cat”
or “kitten”). The DN transfers such a piece-meal knowledge
to future all possible (infinitely many) equivalent input se-
quences although it has only saw one of such sequences,
as we discussed above about the power of FA. Any DN
can do such transfers automatically because of the brain-
inspired architecture of the DN. Prior neural networks and
any conventional databases cannot do that, regardless how
much memory they have.

B. About Theorem 2

Suppose that the x and z codes for the FA are similar
to those from the real physical world. This is important for
the skills learned from FA to be useful for the real physical
world, as illustrated in Fig. 1(b). The number of symbols in Σ
is finite, but the number of images x ∈ X (e.g., images on the
retina) from the real physical world is unbounded, although
finite at any finite age if the video stream is sampled at a
fixed sampling rate (e.g., 30Hz).

The following is text version of Theorem 2.
Suppose that the GDN learning is frozen after learning the

FA but still run (generating responses) by taking sensory in-
puts beyond those of the FA, the DN generalizes optimally. It
generates the Maximum Likelihood (ML) internal responses
and actions based on its experience of learning the FA.

The DGN “lives” in the real world and generalizes opti-
mally, going beyond the FA, as explained in Fig. 1.

C. About Theorem 3

The following is text version of Theorem 3.
Suppose that the GDN has run out of its new Y neurons

as soon as it has finished simulating the FA. If it still
learns by updating its adaptive part, the DN generalizes
(“thinks”) optimally by generating the ML internal responses
and actions based on the limited network resource, the
limited skills from FA, and real-world learning up to the
last network update.

Such a unified, general-purpose, task nonspecific, incre-
mental, immediate learning DP can potentially develop a
DN to learn a subset of human society’s knowledge as an
FA, but each DN it develops only learns one such FA in
its lifetime. Many DNs learn and live through their own
career trajectories to become many different experts who also
share the common sense knowledge of the human society.
The human programmer of a DP does not need to know the
meanings of the states of each possible FA, which are only
in the minds of the future human teachers and the learned
DNs.

The following gives detail about DN learning FA.

V. DN SIMULATES FA

First consider the mapping from symbolic sets Σ and Q,
to vector spaces X and Z, respectively.

Definition 4 (Symbol-to-vector mapping): A symbol-to-
vector mapping m is a mapping m : Σ 7→ X . We say that
σ ∈ Σ and x ∈ X are equivalent, denoted as σ ≡ x, if
x = m(σ).

A binary vector of dimension d is such that all its
components are either 0 or 1. It simulates that each neuron,
among d neurons, either fires with a spike (s(t) = 1) or
without (s(t) = 0) at each sampled discrete time t = ti.
From discrete spikes s(t) ∈ {0, 1}, the real valued firing rate
at time t can be estimated by v(t) =

∑
t−T<ti≤t s(ti)/T ,

where T is the temporal size for averaging. A biological
neuron can fire at a maximum rate around v = 120 spikes per
second, producible only under a laboratory environment. If
the brain is sampled at frequency f = 1000Hz, we consider
the unit time length to be 1/f = 1/1000 second. The timing
of each spike is precise up to 1/f second at the sampling
rate f , not just an estimated firing rate v, which depends on
the temporal size T (e.g., T = 0.5s). Therefore, a firing-
rate neuronal model is less temporally precise than a spiking
neuronal model. The latter, which DN adopts, is more precise
for fast sensorimotor changes.

Let Bdp denote the d-dimensional vector space which
contains all the binary vectors each of which has at most
p components to be 1. Let Edp ⊂ Bdp contains all the binary
vectors each of which has exactly p components to be 1.

Definition 5 (Binary-p mapping): Let Q = {qi | i =
1, 2, ..., n}. A symbol-to-vector mapping m : Q 7→ Bdp is
a binary-p mapping if p > 0 and m is one to one: That is,
if zi ≡ m(qi), i = 1, 2, ..., n, then qi 6= qj implies zi 6= zj .
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Fig. 4. Model the brain mapping, DN, and SN. In general, the brain performs external mapping b(t) : X(t − 1) × Z(t − 1) 7→ X(t) × Z(t) on the
fly. (a) An NS samples the vector space Z using symbolic set Q and X using Σ, to compute symbolic mapping Q(t − 1) × Σ(t − 1) 7→ Q(t). This
example has four states Q = {q1, q2, q3, q4}, with two input symbols Σ = {σ1, σ2}. Two conditions (q, σ) (e.g., q = q2 and σ = σ2) identify the active
outgoing arrow (e.g., red). q3 = δ(q2, σ2) is the target state pointed to by the (red) arrow. (b) The grounded DN generates the internal brain area Y as
a bridge, its bi-directional connections with its two banks X and Z, the inner-product distance, and adaptation, to realize the external brain mapping. It
performs at least two network updates during each unit time. To show how the DN learns a SN, the colors between (a) and (b) match. The sign ≡ means
“image code for”. In (b), the two red paths from q(t− 1) and σ(t− 1) show the condition (z(t− 1),x(t− 1)) ≡ (q(t− 1), σ(t− 1)). At t− 0.5, they
link to y(t − 0.5) as internal representation, corresponding to the identification of the outgoing arrow (red) in (a) but a DN does not have any internal
representation. At time t, z(t) ≡ q(t) = δ(q(t−1), σ(t−1)) predicts the action. But the DN uses internal y(t−0.5) to predict both state z(t) and input
x(t). The same color between two neighboring horizontal boxes in (b) shows the retention of (q, σ) image in (a) within each unit time, but the retention
should be replaced by temporal sampling in general. The black arrows in (b) are for predicting X . Each arrow link in (b) represents many connections.
When it is shown by a non-black color, the color indicates the corresponding transition in (a). Each arrow link represents excitatory connections. Each bar
link is inhibitory, representing top-k competition among Y neurons.

The larger the p the more symbols the space of Z can
represent.

Suppose that a DN is taught by supervising binary-p codes
at its exposed areas, X and Z. When the motor area Z is
free, the DN performs, but the output from Z is not always
exact due to (a) the DN outputs in real numbers instead of
discrete symbols and (b) there are errors in any computer
or biological system. The following binary conditioning can
prevent error accumulation, which the brain seems to use
through spikes.

Definition 6 (Binary conditioning): For any vector from
z = (z1, z2, ..., zd), the binary conditioning of z forces every
real-valued component zi to be 1 if the pre-action potential
of zi is larger than the machine zero.

The output layer Z that uses binary-p mapping must use
the binary conditioning, instead of top-k competition with a
fixed k, as the number of firing neurons ranges from 1 to p.

VI. EXPERIMENTS WITH DN

Our DN had several versions of experimental embodi-
ments, from networks for general object recognition from
360◦ views [12], to Where-What Networks that detect (in
free viewing), recognize, find (given type or location), mul-
tiple objects from natural complex backgrounds [13], to
Multilayer In-place Learning Networks (MILN) that learn
and process text of natural language [32] (e.g., the part-
of-speech tagging problem and the chunking problem using
natural languages from the Wall Street Journal), to Where-

What Networks that incrementally acquire early language
from interactions with environments and also generalize [18].
Preliminary versions of the DN thinking process has been
observed by [15], [14] for vision as the DN predicts while
learning, and by [18] for language acquisition as the DN
predicts across categories and superset and subset while
learning. However, the impressive results from such DNs
are difficult to understanding without a clear theoretical
framework here that links DNs with the well-known automata
theory and the mathematical properties presented as the three
theorems.

VII. CONCLUSIONS

This work focuses on the theory of brain-mind. When the
complex nature like the brain-mind has been explained in
terms of precise mathematics, the complex nature can be
better understood by more analytically trained researchers,
regardless their home disciplines.

The new brain-mind theory uses mapping X(t − 1) ×
Z(t − 1) 7→ X(t) × Z(t) to model real-time external brain
functions. All SNs are special cases of DN in the following
sense: An SN allows humans to handcraft its base net, but a
DN does not. In other words, an SN is a human handcrafted
model outside the brain, while DN is emergent like the brain
inside its closed skull.

On one hand, using an SN, the human written symbolic
text for each node is for consensual communications among
humans only. The machine that runs the SN does not truly
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understand such symbolic text. Mathematically, an SN uses
handcrafted symbols in Q to sample the vector space Z and
uses handcrafted feature detectors to get a symbolic feature
set Σ as samples in X . Probabilistic variants of SN do not
change the handcraft nature of the base net from Q and Σ.
SNs are brittle in real physical world due to the static natures
of symbols and the exponential number of elements in the
sensory space X and the motor space Z.

On the other hand, existing emergent networks, feed-
forward and recurrent, were motivated by brain-like internal
computation through emergent internal area Y . However,
their learning is slow, not exact, and scruffy.

A GDN is an emergent network, inspired by characteristics
of internal brain area Y as discussed in [28]. It learns any
complex FA immediately and error-free, through incremental
observation of state transitions of the FA one at a time,
using a finite memory. In particular, the GDN immediately
generalizes, error-free, to many sensorimotor sequences that
it has not observed before but are state-equivalent. There
are no local minima problems typically associated with
a traditional emergent recurrent network, regardless how
complex the FA is. After learning the FA as scaffolding,
the GDN can freeze its learning and optimally generalize, in
the sense of maximum likelihood, for infinitely many input
images arising from the real physical world. Alternatively,
the GDN can continue to learn and optimally think, in the
sense of maximum likelihood, by taking into account all
past experience in a resource limited way. In particular,
there seems no need for the human programmer to handcraft
rigid internal structures, such as modules and hierarchies,
for extra-body concepts. Such structures should be emergent
and adaptive. For example, the input fields of every neuron
should be emergent and adaptive, through mechanisms such
as synaptic maintenance (see, e.g., Wang et al. 2011 [27]).

A GDN uses its inner product distance, the incrementally
estimated probabilities, and state equivalence to interpolate
for infinitely many vector pairs in X(t − 1) × Z(t − 1) 7→
X(t)×Z(t) from relatively few sample pairs represented in
Y (t − 0.5). Much future work is needed along the line of
GDN autonomous thinking, such as the creativity of GDN.
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