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Abstract— This paper explores a computational intelligence
approach to the problem of detecting internal changes in time
dependent processes described by heterogeneous, multivariate
time series with imprecise data and missing values. Processes
are approximated by collections of time-dependent nonlinear
AR models represented by a special kind of neuro-fuzzy neural
networks. Grid and high throughput computing model-mining
procedures using neuro-fuzzy networks and genetic algorithms,
generate collections of models composed by sets of time lag terms
from the time series, as well as prediction functions represented
by neuro-fuzzy networks. The composition of the models and
their prediction capabilities, allows the identification of changes
in the internal structure of the process. These changes are asso-
ciated with the alternation of steady and transient states, zones
with abnormal behavior, instability, and other situations. This
approach is general, and its potential is revealed by experiments
using paleoclimate and solar data.

I. INTRODUCTION

Time series data in the geosciences present difficult prob-
lems for analysis for a variety of reasons. The data are
often incomplete (missing observations), imprecise (noisy)
and heterogeneous (mixed scales of measurement), making
conventional time series approaches unsatisfactory. Neural
network models using similarity-based heterogeneous neurons
and systematic analysis of complex lags offer an approach that
is robust and sensitive. The ability to predict such changes of
state (long or short term) has many important applications
to natural systems. In complex or poorly known processes,
knowledge discovery designed to uncover the underlying struc-
ture of the physical process is crucial, especially for revealing
patterns and time dependencies, detecting abnormal behavior,
instabilities, changes of state, deriving prediction criteria, and
constructing forecasting procedures.

The paper discusses the use of a computational intelligence
approach for model discovery and model-change detection in
multivariate time processes with different kinds of variables,
missing data and uncertainty. It is a hybrid approach to time-
dependent model discovery, based on a combination of neural
networks and evolutionary algorithms (genetic algorithms). A
model of a time-dependent target variable is understood as a

prediction function of its value at a given time, generally non-
linear. The arguments of this function are past values of some
or all of the variables involved in the multivariate process (the
dependency pattern). The mathematical description is that of a
non-linear multivariate autoregressive (AR) model when both
the arguments, and the prediction function, are continuously
changing with time. In non-linear dynamics and chaos theory
there AR-type of dependencies, and genetic algorithms are
used for finding proper lag terms as well. However, in the
presented approach the nature of the time series is more
general (composed of heterogeneous data), and chaos is not
assumed.

In the present approach, the prediction functions are repre-
sented by hybrid neural networks using heterogeneous neurons
in the first hidden layer, which accept as input heterogeneous,
fuzzy and missing data. Instead of trying to find a global
model for the whole multivariate process, like the conventional
approaches, the discovery process proceeds as a continuous
exploration along the multivariate series. The method finds sets
of non-linear models for a target signal at time-intervals. The
overall dependencies between the multivariate heterogeneous
time series are characterized as probability distributions and
error-cost functions over the sets of time lags of the ensemble
of discovered dependency patterns. These distributions are
represented as images (spectra), and are combined with the
prediction-error curves associated with the discovered mod-
els. Their joint interpretation allows the segmentation of the
multivariate process, and stable and transient states can be
recognized.

From the methodological point of view, this approach can be
considered as an abstract, conceptual filtering of multivariate
time series of general character, which transforms the original
heterogeneous, imprecise, and incomplete collection into a
time series of models (with time-varying dependency patterns,
and time-varying neural networks).

Applications of this approach to two datasets are presented
here to demonstrate the potential of the approach: oxygen
isotope data from ice cores, and sunspot cycles.



A. Heterogeneous Domains and Multivariate Time Series

A formal approach for describing heterogeneous informa-
tion in general observational problems was given in [17], and
for constructing neuron models in [13], [14], and [2]. Different
information sources are associated with the attributes, relations
and functions, and these sources are associated with the
nature of what is observed (e.g. point measurements, signals,
documents, images, etc). They are described by mathematical
sets of the appropriate kind called source sets (Ψi), constructed
according to the nature of the information source to represent
(e.g. point measurements of continuous variables by subsets of
the reals in the appropriate ranges, structural information by
directed graphs, etc). Source sets also account for incomplete
information. A heterogeneous domain is a Cartesian product
of a collection of source sets: Ĥ = Ψ1 × · · · × Ψn , where
n > 0 is the number of information sources to consider. For
example, consider a domain where objects are described by
attributes like continuous crisp quantities, discrete features,
fuzzy features, time-series, images, and graphs (missing val-
ues are allowed). Individually, they can be represented as
Cartesian products of subsets of real numbers(R̂), nominal
(N̂ ) or ordinal sets(Ô), fuzzy sets(F̂ ), set of images (Î) ,
set of time series (Ŝ) and sets of graphs (Ĝ), respectively,
all properly extended for accepting missing values. Thus, the
heterogeneous, time dependent domain is Ĥn(t) = N̂nN (t)×
ÔnO (t)×R̂nR(t)×F̂nF (t)× ÎnI (t)×ŜnS (t)×ĜnG(t), where
nN is the number of nominal sets, nO of ordinal sets, nR

of real-valued sets , nF of fuzzy sets , nI of image-valued
sets, nS of time-series sets, and nG of graph-valued sets,
respectively (n = nN + nO + nR + nF + nI + nS + nG).
A multivariate, heterogeneous time series is shown in Fig-1.

Fig. 1. An example of a heterogeneous, time-dependent multivariate process.
Each row is a time series of a different type: nominal, graph, ratio, image,
ordinal, fuzzy, time-series. Attributes may have missing values (?). The
sampling interval is assumed to be the same (and synchronized) for each
of the individual series.

B. Model Mining with Heterogeneous Neurons and Hybrid
Neural Networks

The purpose of model mining in heterogeneous, multi-
variate, time varying processes is to discover dependency
models. A model expresses the relationship between values

of a previously selected time series (the target), and a subset
of the past values of the entire set of series. Different classes
of functional models could be considered, in particular, a
generalized non-linear auto-regressive (AR) model like the one
given by Equation-1.

ST (t) = F




S1(t − τ1,1), · · · , S1(t − τ1,p1),
S2(t − τ2,1), · · · , S2(t − τ2,p2),

. . .
Sn(t − τn,1), · · · , Sn(t − τn,pn

)


 (1)

where ST (t) is the target signal at time t, Si is the i-th time
series, n is the total number of signals, pi is the number of
time lag terms from signal i influencing ST (t), τi,k is the k-th
lag term corresponding to signal i (k ∈ [1, pi]), and F is the
unknown function describing the process.

The classical approaches in time series consider mostly
univariate, homogeneous (real-valued), time series, without
missing values [3], [12], [11], [9]. Conventional multivariate
approaches are complex and have difficulties in handling
heterogeneity, imprecision and incompleteness.

A hybrid soft-computing algorithm for approaching this
kind of problems using heterogeneous neural networks and
genetic algorithms has been given elsewhere [15], and it goes
along other approaches within the neural network field [10].
This approach requires the simultaneous determination of: (i)
the number of required lags for each series, (ii) the particular
lags within each series carrying the dependency information,
and (iii) the prediction function. A requirement on function
F is to minimize a suitable prediction error, usually the root
mean squared error (RMS Error). The procedure is based
on: (a) exploration of a subset of the model space with a
genetic algorithm, and (b) use of a similarity-based neuro-
fuzzy system representation for the unknown prediction func-
tion. As mentioned, statistical or other classical approaches
either have difficulties handling these kinds of situations or
cannot handle them at all. The size of the model space is
immense, and grows exponentially as the value of the maximal
lag included in the model increases. Considering only 10 time
series and the first 20 time lags, the search space contains
about 1060 models. The prediction function F is represented
by a hybrid neural network with a hidden layer composed by
heterogeneous neurons (h-neurons). A heterogeneous neuron
is a general mapping h : Ĥ × Ĥ → Y , where Ĥ is a
heterogeneous domain, and Y is an arbitrary set. If x,w ∈ Ĥ ,
and y ∈ Y , then y = h(x,w). A particular class of h-
neurons is obtained when Y is the real interval [0,1] and h is
given by a composition of a similarity function s [4], and an
isotone automorphism g : [0, 1] → [0, 1] (usually a non-linear
function). In this case the h-neuron is given by h = g ◦ s, and
called a similarity-based neuron (s-neuron) [13] (Fig-2).

This neuron model is flexible (heterogeneous data with
missing values are its natural input, without the need of data
type transformation or imputation of missing values), and it
is robust. Networks using this neuron also have the general
function approximation property [2]. The s-neuron can be



Fig. 2. . A similarity-based heterogeneous neuron. Both the input and the
neuron weights are objects from a heterogeneous domain (? is a missing
value). The output is a similarity value.

coupled with classical neurons (aggregation function given
by the scalar product, and activation given by the sigmoid
or hyperbolic tangent), forming hybrid neural networks. In
the particular case of homogeneous, real-valued source sets,
fast training algorithms can be used, as proposed in [18]. An
implementation of this model discovery approach as a parallel
computing algorithm (Fig-3), was reported in [16].

Fig. 3. Multivariate Time Series Model Miner System (MVTSMM). The arc
is a parallel genetic algorithm evolving populations of similarity-based hybrid
neural networks. The binary strings encode dependency patterns for the target
signal. For each, a hybrid neural network is constructed and trained with a
fast algorithm. The network represents the prediction function, and is applied
to an independent test set. The best models (those with their RMSError under
a preset threshold), are collected.

C. Models as a Function of Time

Evolving through a sequence of changes of state, where
stable states of different nature are separated by the corre-
sponding transient states, is a situation typical from most
physical systems, including earth and planetary processes. In
these cases, the relationship between the variables involved
in the process changes with time, and so will do the models
describing them. Accordingly, it is important to find the points
along the time series, where the changes are taking place. A

statistical approach for their estimation in the case of real-
valued, univariate time series is given in [1]. It is based on
numerous assumptions, which are difficult to consider in the
case of multivariate, heterogeneous, imprecise and incomplete
series. In any case, regardless of the type of models used
for describing the physical process, they are no longer going
to be the same as the process evolves. In other words, the
models are going to be a function of time, and in the present
approach it means that either the dependency pattern, the
prediction function (the neural network), or both, are going
to change with time. Theoretical and practical considerations
for a computational intelligence approach to time varying
model discovery, are given in [19], where general nonlinear
AR models as expressed by eq-1 are interpreted as random
variables. Of particular importance is the concept of lag
probability function (lpf), given by: Lp

ε (t, τp,q) = P (τp,q ∈
M̂εT

)(t), where t is a given time, τp,q is the p-time lag
term from time series q, as defined in (1), εT is a prediction
error threshold, M̂ is the set of all discovered models, and
M̂εT

∈ M̂ is the subset of those whose prediction error is
upper bounded by εT . The lpf expresses the probability with
which a particular time lag will appear in εT -good discovered
models (those with their prediction errors upper-bounded by
the given error threshold). The rationale is that if a given
lag appears systematically within the dependency pattern of
models with good performance, then that lag carries important
dependency information from the point of view of predicting
the process at the time t.

Another view of the importance of the lag terms of eq-
1 considering M̂ as a whole, is given by the weighted lag
importance function (wlif):

Lw(t, τp,q) =
∑card(M̂)

i=1 µ(τp,q,M̂i(t))/E(M̂i(t))∑card(M̂)
i=1 (1/E(M̂i)(t))

(2)

where card(M̂) is the number of discovered models,
M̂i(t) ∈ M̂ is the i-th model found at time t, µ(τp,q,M̂i(t))
is the boolean membership function of τp,q w.r.t. M̂i(t), and
E(M̂i(t)) is a prediction error measure on M̂. The wlif
transforms into a lpf (a frequency), if all of the models in
M̂ are εT -good, and it is a more general measure, as it works
with all of the models and not only with a specific subset of
them. The wlif can be represented as a image spectrum in the
same way as it is done with the lpf [19].

In a stable process the set of important lags, would be ap-
proximately the same with time. On another hand, the models
discovered at any time t, are the result of a search in the space
of such networks. Clearly, the set of discoverable/discovered
models will be conditioned by the nature and parameters of the
search, and by the nature of the underlying physical process.
Therefore, differences between the probability distribution of
the prediction error associated with the sets of k-best models
found for two different times t1, t2, would be also an indicator
of model change, provided that both sets of models were
obtained under the same search conditions.



From the point of view of the dependency patterns (the
inputs of the neural network), a procedure for exploring model
changes [19] would consist of: i) specify a time frame of
a given length, ii) fix the set of parameters of the model
mining algorithm, iii) collect the set of dependency patterns,
and of neuro-fuzzy networks representing the corresponding
prediction functions, and iv) compute the lag probability spec-
trum or the weighted lag importance spectrum, and the mean
prediction error, for all time frames. In addition, differences
in the probability distribution of the prediction error (for the
same sets of models described by the lag probability spectra),
would also serve as indicator of change.

II. EXAMPLES FROM EARTH AND PLANETARY PROCESSES

With the purpose of start a systematic investigation of the
behavior and properties of the proposed methodology, time
series from the following natural processes were used:

• Sunspot numbers
• Greenland ice-core data

For simplicity, only univariate, homogeneous, real-valued,
non-fuzzy, and non-incomplete time series data were chosen.
They are particular cases of the kind covered by the presented
approach, but the algorithms applied were those of the general
case. Further studies will use more complex kinds of data.

A. Experimental settings

The algorithm was applied using the following parame-
ters: number of responsive neurons in the hidden layer=3,
5, 7, 9, similarity function for the neuron model derived
from the Euclidean distance (d) as s = 1/(1 + d), num-
ber of generations=100, 200, 300, 500, population size=50,
100, 200, roulette-wheel selection, single-point crossover,
crossover probability=0.6, 0.7, 0.8, 0.9, mutation probabil-
ity=0.01, 0.025, 0.05, and elitism. Sliding time frames of size
101 were set, exploring models up a maximum depth of 15,
and 20 time lags (10 and 20 for the ice core data). Three
different seeds were used for the random number generators.
Within each frame, the first 75 values were used as training,
and the remaining as test. For each of the data sets 3456
experiments were performed. Each produces an amount of
models equal to the population size of the genetic algorithm
for each sliding time window (sometimes only the 10-best
were kept). Data processing was performed using distributed
and grid computing facilities at the National Research Council
Canada involving a variable set of approximately 70 comput-
ers.

B. Sunspot numbers

Sunspot cycles are well studied, because of their importance
in affecting solar radiation received at the Earth’s surface, and
their potential for affecting global climate. The data used are
the annual mean sunspot numbers in the period 1749-2003,
as reported by the National Geophysical Data Center (USA,
www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html).

In this case 155 different time locations were investigated
(from 1799 to 1953). For each time, 109440 models were kept,

for a total of 16963200 models computed using a maximum
lag depth of 15. The behavior of the RMS error for all of
these models is shown in Fig-4. It is a multimodal distribution
suggesting a mixture of different populations, with the first
spawning from [8, 25], the second from [25, 34], and the third
from [35, 51]. There is a positive skewness (with a mode
around 12), many times larger than the second most frequent
mode (at around 43), associated with the population of error
values in the interval [34, 51].

Fig. 4. RMS Error distribution for the 16963200 models found for the
sunspot numbers series, with maximum time lag=15.

The kind of prediction obtained with models in the lower
end error range is illustrated in Fig-5, corresponding to a
model given by eq-3 (RMS Error = 8.897).

S(t) = F
(

S(t − 1), S(t − 2), S(t − 4), S(t − 5),
S(t − 7), S(t − 11), S(t − 18)

)
(3)

Fig. 5. Sunspot numbers data between 1978 and 2003, with the observed
and the predicted values corresponding to the model explained in eq-3 (RMS
error = 8.897).

Besides the good predictive behavior of the discovered
model, it is interesting to note the presence of a time lag of
value 11, which coincides with the classical cycle length of
11.1 years determined by the Swiss astronomer Wolf in 1848.

The weighted lag importance spectra (eq-2) corresponding
to the maximum lags of 15 and 20 years, as well as the mean
functions of the root mean prediction errors for all models
as a function of time, are shown in Fig-6. The spectra are
shown in the form of images. Brightness is proportional to the
importance of a given lag, and each spectrum is normalized
by the value of its most important lag.



Fig. 6. Sunspot numbers data between 1749 and 2003, with the weighted
lag importance spectra (for maximum lags of 15 and 20), and the mean RMS
prediction error. 16963200 models were investigated. In the spectrum, bright-
ness is proportional to lag importance. Vertical lines indicate approximate
spectrum landmarks where changes in model composition are observed. They
correspond well with the behavior of the error function.

The mean error functions for the models with maximum
lags of 15 and 20 coincide almost completely. This indicates
that looking for dependencies farther than 15 years does not
lead to better models. Moreover, there is a clear time period
([1893, 1913] approximately), in which the prediction quality
falls approximately 4 times.

The spectra for 15 and 20 maximum lags show
basically the same information in terms of lag
patterns. From them, approximate time landmarks
at {1812, 1822, 1847, 1878, 1893, 1913, 1932} can be
recognized, and they are depicted with vertical lines in Fig-6.
They correspond well with the main features of the error
function.

C. Greenland ice-core data

Ice cores from various parts of the world have been
studied intensively, and Greenland cores have received
particular attention because they have the potential to
record changes in temperature from oxygen isotope values
over an extended period of history. The data used are
annual averages (May -April) of delta 18-O (per mil),
in the period 1761-1975 ([5], [6], [7], [8]), from the
World Data Center for Paleoclimatology (Boulder, USA,
www.ngdc.noaa.gov/paleo/icecore/greenland/gisp/campcentury
/campc data.html). The Delta O18 is the change of the ratio
of oxygen isotopes O18/O16 and is often used as a measure
of atmospheric temperature.

According to the experimental settings, and the time period
covered by this data, 115 different time locations were inves-
tigated (from 1811 to 1925). For each time, 17280 models
were kept, for a total of 1987200 models computed using
a maximum lag depth of 10 (the same holds for 20). The
behavior of the RMS error for all models is shown in Fig-7.

Fig. 7. RMS Error distributions for the Delta O18 data, for maximum time
lags of 10 (top), and 20 (bottom). 1987200 models were computed for each
maximum lag.

The error distributions for the models with a maximum
time lags of 10 and 20 have the same type of skewness and
are multimodal, but they differ in their statistical descrip-
tors (mean= 1.218, standard dev.= 0.149, minimum = 0.819,
maximum= 1.538, median = 1.250 for maximum lag = 10,
vs, mean= 1.075, standard dev.= 0.135, minimum = 0.665,
maximum= 1.410, median = 1.099 for maximum lag = 20).
The multimodal character of the error distributions indicates a
different behavior of the process with time, as the same search
controlling parameters were used on each case.

The weighted lag importance spectra corresponding to the
maximum lags of 10 and 20 years, as well as the mean
functions of the root mean prediction errors for all models
as a function of time, are shown in Fig-8.

Changes in lag distribution with time for models computed
to a maximum lag of 10 years, are shown with vertical lines
placed at the time points where the changes in the pattern
of lag distribution are observed. They correspond approx-
imately to years {1827, 1843, 1867, 1877, 1894, 1903, 1914}.
The behavior of the mean RMS error with time for 10-
years maximum lag models, also exhibits variations whose
landmarks correspond quite well with those suggested by the
spectrum. When a deeper search is considering by looking at
models with lag terms up to 20 years, the behavior of the
mean prediction error is very similar w.r.t 10 years, but the
errors are in all cases better. The spectrum shows that the
most important lags are actually those located approximately
between 12 − 15 years in the past. This indicates that when
values of Delta O18 at times greater than 10 years before
the current time are considered, the prediction accuracy of
the models increases systematically. It may also suggests that
even deeper maximum lags should be considered in further
studies, also focussing on the meaning of the time landmarks
found. Most of the spectral landmarks coincide with those
found independently for the sunspot numbers data, and in



Fig. 8. Delta O-18 data from Greenland (Camp Century), with the weighted
lag importance spectra, and the mean RMS prediction error. In the two
spectra, brightness is proportional to lag importance. Vertical lines indicate
approximate spectral landmarks where changes in model composition are
observed. They correspond well with the behavior of the mean error functions.

particular, two of them {1894, 1914} delimiting regions of
sharp changes, are almost identical. This would reinforce the
idea of a relationship between the two processes (mentioned
elsewhere), which should be further investigated.

III. CONCLUSIONS

The application of the proposed approach to the detection
of changes of state in time dependent processes through
model discovery, allowed the detection of regions exhibiting
differential behavior in terms of the sets of past values of
the process, and the quality of their associated prediction
models. The use of computational intelligence tools in a grid
computing environment proved to be a very effective way for
model mining applied to complex problems, like those studied
by earth and planetary sciences. The mining process lead to
good prediction models, as illustrated by the sunspot-numbers
case. In particular the results obtained for paleotemperature,
and solar activity data suggest a relation between the two
processes in terms of the changes of state observed in them
independently, which should be investigated further.
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