
 
 

  

Abstract—Both activity-dependent (AD) and activity-
independent (AI) processes play important roles in neural 
development. For example, in the development of the 
vertebrate visual system,  molecular guidance cues that are 
largely activity-independent provide a rough topography of 
early projections, while activity-dependent refinement of 
termination zones occurs later on through correlated retinal 
activity.  A key question concerns the nature of the interaction 
between these processes. Recent knockout experiments 
involving the β2 subunit of nicotinic acetylcholine receptors  
and bone morphogenic protein (BMP) suggest that these two 
processes make genuinely separate contributions – but leave 
open the precise nature of their interaction.  In this article we 
show how a novel, computational framework (dubbed 
INTEGRATE) can illuminate the scope and limits of the AI-AD 
interaction, including facts about critical periods and timing. 

I. INTRODUCTION 
n the coming decades, one of the most pressing challenges 
in the field of developmental neuroscience is to 

understand the interactions between activity-dependent (AD) 
and activity-independent (AI) mechanisms of development 
While both AI and AD factors play a role in neural 
development, the interactions between these processes 
remain elusive [1], and is at the core of our understanding of 
the interaction between genes and the environment. We 
argue here that computational approaches can further our 
understanding of these fundamental interactions.  

Our specific empirical focus here is on the development of 
a paradigmatic system, the retinotopic map. The genetic and 
neural principles that influence its formation have been 
extensively studied (for a review, see [2]), and it has been 
the object of numerous theoretical accounts (for a review, 
see [3-4]). However, as explained in further detail below, 
AI-AD interaction remains poorly understood, with a host of 
open questions. Are the respective contributions of AI and 
AD factors completely independent from one another, 
occurring at different stages of development? Further, 
assuming these different stages, can initial deficiencies in the 
AI process be corrected through AD processes at later 
stages? Or are there critical periods for map formation 
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beyond which a certain aberrant organization is not fully 
reversible? 

II. UNDERSTANDING THE INTERACTION BETWEEN 
ACTIVITY-DEPENDENT AND ACTIVITY-INDEPENDENT 

DEVELOPMENTAL PROCESSES: A COMPUTATIONAL APPROACH 
One way to address these questions is computational (for 

a review, see [5]); in silico experiments can often be run 
more quickly and reliably than in vivo experiments. 
Moreover, there are already extant models for understanding 
both AD and AI contributions, though as yet relatively little 
work directly characterizing the nature of their interaction.  

There are several reasons why the interaction between 
molecular and AD mechanisms has not yet been clearly 
established. First, the time course of axonal guidance 
includes an initial stage of map formation that is strongly 
influenced by chemotropic gradients, followed by pre-
critical and critical periods; few models have even attempted 
to capture this dynamic. Second, most extant models have 
not addressed many of the benchmark details associated with 
retinotopic map formation, including cell-cell interactions 
[5], interstitial branching [6-8], and stochastic exploration 
[9].  

A few models (e.g., [1][10]) demonstrate how different 
starting conditions for the AD process can have 
consequences in later development., as part of an important 
investigation into the influence of one stage on another. 
However, most models contain no AI mechanism, so it is 
difficult to relate the proposed initial conditions to genetic 
mechanisms (e.g., relating topographical biases to certain 
expressions of chemotropic gradients).  An additional 
concern with most extant computational models derives 
from the logic of their operation. They work by adjusting 
connection weights according to some pre-defined rules for 
synaptic plasticity. On this assumption, the output of 
activity-independent processes would presumably have to 
cache out as some sort of bias on initial conditions that 
constrains later activity-dependence; although this is not 
impossible in principle, it is a non-trivial problem that has 
not been directly tackled. 

Here, we propose a model, INTEGRATE, with the 
explicit aim of understanding the interactions between AI 
and AD processes. The starting point of the model is the 
generally held assumption that retinotopic development 
follows two distinct phases, with only small overlap, namely 
an initial AI phase followed by an AD phase. We instantiate 
AI as servomechanism guidance [5] and AD as Hebbian 
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learning [11], explained in the next two sections; Section V 
explains how they are combined; VI describes a test case, 
and VII preliminary results. 

III. ACTIVITY-INDEPENDENT DEVELOPMENT 
Development of the vertebrate visual system is 

characterized by an extension of projections from the retina 
(retinal ganglion cells; RGCs) to topographically faithful 
termination zones (TZs) in the superior colliculus (SC) or 
tectum in the midbrain. Early topography is heavily 
influenced by AI processes that rely on genetically 
expressed molecular guidance cues (Eph/ephrins; [12]). 
Later on in the course of development, the initial projections 
are refined by processes that depend on the flow of ions 
across cell membranes triggering biochemical and electrical 
activity in cells. These AD factors are known to play a role 
both during a pre-critical and a critical period of 
development. In many species including the mouse, the pre-
critical period occurs prior to eye opening, and is 
characterized by spontaneous waves of locally correlated 
activity on the RGCs [13]. The critical period follows eye 
opening, and involves refinement through interactions with 
the environment [14-17]. In both pre-critical and critical 
stages, activity is a necessary condition for synaptic 
plasticity and morphological changes in axonal projections 
[18]. 

Recent studies in mice have highlighted the distinct 
contributions of AD and AI mechanisms [13,19,20]. Results 
of these studies argue that AD and AI processes play distinct 
roles in retinotopic map formation, and likely occur in 
distinct stages in the course of development. 

The particular role of AI mechanisms is shown in 
experiments involving transgenic mice with misexpressed 
bone morphogenetic protein (BMP). In these animals, 
ventral RGCs initially projected to inappropriate locations 
lateral to their normal TZs, leading to a miswired map [19]. 
The impact of this disruption is sustained despite later AD 
refinement. These results argue for a central role of AI 
mechanisms in shaping the initial projections from RGCs to 
the SC. These initial connections form a bias that cannot be 
fully transformed through AD mechanisms. 

The role of AI mechanisms in map formation is also 
highlighted in experiments involving a genetically-induced 
knockout of a component of the machinery for mediating 
AD, the β2 subunit of neuronal nicotinic receptors. In these 
animals, even lacking a reliable means for AD, AI 
mechanisms are sufficient for an initial rough map 
established (although axons lacking robust AD fail to refine 
their final TZs). With the influence of AD mechanisms 
drastically diminished, the degree of remaining map 
organization is presumably due to AI mechanisms.  

In sum, AI development is characterized by an early stage 
of map formation where a rough map is formed which 
influences all subsequent AD phases of development. 

IV. ACTIVITY-DEPENDENT DEVELOPMENT 
Experiments involving genetically modified mice 

highlight the role of AD mechanisms in map formation, and 
form the empirical basis of our study. In BMP transgenic 
mice, ventral RGCs project to inappropriate locations lateral 
to their normal TZs on the SC, leading to a miswired map 
[3]. Given this mistargetted map laid down by AI processes, 
AD processes will refine the diffuse TZs and prune out 
extranumerary connections, but are unable to correct the 
faulty TZs. As a result, activity refines the faulty TZs in a 
manner that leads to focused yet mistargetted projections. 
These findings argue for a limited role of AD processes in 
map formation. Rather than being able to produce 
topographically correct organizations regardless of initial 
conditions, AD mechanisms are in fact quite sensitive to 
initial (AI) conditions.  

The role of AD in refining initially diffuse TZs is also 
highlighted in β2 knockouts. The β2 subunit of the nicotinic 
receptors is especially important for lateral communication 
in retinal circuits; their removal leads to a drastic reduction 
in the influence of AD processes. In β2 knockouts, 
drastically reducing the influence of AD mechanisms leads 
to a map that is unrefined, compared to normal (wild-type) 
animal. 

V. INTERACTIONS BETWEEN ACTIVITY-DEPENDENT AND 
INDEPENDENT DEVELOPMENT 

Experiments combining both β2 knockout and BMP 
manipulations have argued for independent contributions of 
intrinsic and AD mechanisms of map formation. Indeed, 
there is a cumulative effect of disrupting both the initial map 
through BMP, and the AD process, through β2 knockout. As 
a result, maps are not only mistargetted, but also diffuse and 
unfocussed. 

The above results on β2 knockouts and BMP 
manipulations are compatible with a staged approach to 
modeling the development of the retinotopic system. The 
idea of critical stages implies that, if one stage is skipped or 
incorrectly performed, consequences are irreversible for later 
development. In these critical stages, each stage builds on 
the previous, and each possesses inherent limited capacities: 
early development can only provide a gross map, and later 
development can only perform some refinement of the 
existing map. These two stages complement each other well, 
but do not allow a lot of room for later stages overcoming 
problems in early ones (as is the case in BMP transgenic 
mice).  

An account of retinotopic development based on distinct 
stages suggests that, despite the fact that activity may be 
present early in the retinotopic system (e.g., as early as 
prenatal day E16 in mice; [13]), its role in map formation 
remains limited until a later time [but see 18]. Further 
research suggests that spontaneous activity can only refine 
projections during a brief critical period prior to eye opening 
[13]. 
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VI. INTEGRATE: A FRAMEWORK FOR MOLECULAR AND AD 
MECHANISMS 

The goal of INTEGRATE is to act as an interface between 
chemotropic models and AD models. Within this 
framework, both can be manipulated independently. In this 
way, AI processes can be set off in an early stage of 
development, and AD processes can be triggered in a later 
stage. The proposed account is based on the assumption of 
two stages of development, one that involves the formation 
of an initial map mainly under the influence of AI processes, 
and another that involves map refinement mainly under AD 
processes.  

An important challenge here is to grow axons through an 
AI process, and then extract connection weights that will 
serve as initial conditions to an AD model. The proposed 
account should be general enough to allow for any AI model 
[3], as well as any AD model (e.g., self-organizing map; 
[21]; spike-time-dependent plasticity; [10]; etc.), to be 
employed. 

As discussed earlier, obtaining trainable connection 
weights from axonal projections is a difficult problem that 
has not received much attention in computational 
approaches. One way of addressing it, which we adopt here, 
is to treat axons as progressively migrating across the target 
surface. We then have a matrix that keeps track of the 
termination position of axons, based on an index of their 
start position (i), and an index of each axon starting from 
there (j). 
 A matrix transformation is performed to obtain trainable 
connection weights based on the stop locations s obtained 
through the AI process (Appendix 1; [1]). To do so, a matrix 
of weights wi,j is initialized to zeros. Iterating through all 
i,j,k,  

, , 1i j i jw w= +       if si,k=j,  

,i jw = 0        otherwise. 

(1) 

 It is possible to generate an AI distribution of axonal 
projections through the servomechanism model (see 
Appendix 1, [9]). Such a distribution is shown in Fig.1a. 
Through Eq.1, it is then possible to transform this 
distribution into trainable weights (Fig.1b). These weights 
are characterized by a rough bias towards topography 
(topographic weights are mapped on the diagonal). 

 Eq.1 is reversible but this transformation has no unique 
solution. Nonetheless, it is possible to use it  as basis for 
applying synaptic plasticity through AD mechanisms, and 
then revert back to an AI matrix of stop locations that can be 
used to resume axonal migration. To do so, a matrix si,j is 
initialized to zeros, and j=1. Then, iterating for all i,k,  
 
While , 0i kw > . 

,i js i= ,  

, , 1i k i kw w= − . 
j=j+1; 

End While. 
 

 
 

(a) 
 
 
T 
 
 
 
 
 
 
 
 
N 

 

 
          L                                                           V 

(b)  
 
Fig. 1: Translating axonal arborisation to connection weights. (a) a matrix s 
of stop locations obtained from AI axonal guidance. (b) the translation of 
the s matrix into a distribution of trainable connection weights that provide 
a rough bias towards topography (see Equation 1). N=nasal; T=temporal, 
L=lateral; V=ventral. 

 
The fact that the initial TZs of projecting RGC axons are 

determined through AI mechanisms alone is compatible with 
the idea that these mechanisms provide an initial bias 
towards certain TZs that are then refined through AD 
processes. In the proposed model, a bias towards a perfect 
point-to-point topography would be achieved if the highest 
weights wij per row i are found along the diagonal of the 
matrix: 

( )max i iij
w w= . 

 An advantage of INTEGRATE is that it is flexible enough 
to allow for various types of AI and AD processes to be 
incorporated under a single umbrella. Possible AI processes 
include not only molecular gradients, but also cell-cell 
competitive interactions [5], interstitial branching along the 
main axonal shaft [6-8], and stochastic exploration [9]. 
Possible AD mechanisms include competition for 
neurotropic factors [22], plasticity through modulations in 
synaptic efficacy [23], and morphological changes in axonal 
arborisation [18]. 

VII. COMPUTATIONAL INSTANTIATION OF INTEGRATE 
In order to test some of the proposed ideas on critical stages 
of development, we combine both AI and AD mechanisms 
in INTEGRATE. Here, AI axonal guidance is modeled 
through the servomechanism model with cell-cell 
competitivity [5]. The AD process is modeled through 
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Hebbian learning [11]. The proposed account is based on the 
assumption of two stages of development, one that involves 
the formation of an initial map mainly under the influence of 
AI processes, and another that involves map refinement 
mainly under AD processes.  

A. Servomechanism Axonal Guidance 
The servomechanism model [5,9] offers an account of how 

axons gradually extend projections through a target surface 
(Appendix 1). In the model, migration of the growth cone is 
determined mainly by chemotropic factors, but also by 
stochastic exploration and cell-cell competitive interactions 
(the model contains no backbranching along the main axonal 
shaft, c.f., [7]). The result of these processes on migration is 
a "guided stochastic" walk through the target surface (Fig.2). 

 
P 

 
 

SC 
position 

 
 

A 

 

 
                                      time-steps 

 
Fig. 2: Migration of a single projecting retinal growth cone through one 
dimension of the target surface (SC). R(i)=50. A=anterior; P=posterior. 
Arrow shows the direction of migration. 
  

B. Hebbian Synaptic Weight Modification 
Following the AI process, an AD process is introduced 
based on Hebbian learning with a Gaussian neighborhood 
activation [1]. This learning scheme adjusts connection 
strengths between the RGCs and SC, thus refining the 
projections obtained through servomechanism guidance. 
Such principle reflects the known influence of AD 
mechanisms in stages of development following the initial 
guidance of axons through molecular gradient cues. 

The learning rule for connection strengths ijw  linking the 
RGCs to the SC cells is: 

( )1 s s
ij j i ij

i j

w v x w
N

∆ = −∑∑ , (2) 

where v is the activity of tectal neurons j given input pattern 
s, represented by logistic units, and N is the total number of 
cells in each layer. Retinal input patterns x are presented as 
waves with random centers expanding throughout the retina 
in a radial fashion (see [1], for details; [13]). These 
spontaneous waves of activity are characteristic of the pre-
critical period of development that precedes eye opening. 
The synaptic plasticity rule of Eq.2 seeks to maximize the 

connection weights from RGC to SC cells that fire together, 
and minimize the connection weights from cells that do not.  

VIII. RESULTS 

A. BMP transgenic projections 
In the wild-type (WT; normal) condition, initial 

projections obtained through AI mechanisms are 
characterized by a rough topography, where TZs are 
centered appropriately but are diffuse (Fig.3a). AD plasticity 
refines these TZs, resulting in the elimination of many non-
topographic connections (Fig.3b).  

The BMP condition is modeled by applying the AI 
mechanism as in the WT condition, but shifting over the 
ventral RGC projections to inappropriate locations laterally. 
With this manipulation, projections are initially miswired 
(Fig.3c). If activity is not introduced, TZs remain not only 
inappropriately wired, but also lack refinement, thus 
replicating the cumulative influences of disrupting AI and 
AD processes [19]. If activity is introduced in the BMP 
condition, spontaneous waves can refine their TZs, despite 
being miswired (Fig.3d). 
These results replicate the empirical findings reported in 
Section V, and suggest that the idea of critical stages of 
development can indeed by captured by the INTEGRATE 
framework. The simulations show how each stage plays a 
specialized role in retinotopic map formation, with a rough 
topography established early in development, and refinement 
of TZs occurring in a later stage. The model captures well 
the limited capacity of the AD mechanism; indeed, 
mistargetted TZs through the BMP manipulation make it 
impossible for Hebbian learning to produce a correctly wired 
map. To our knowledge, no other existent model  captures 
this range of results. 

B. Role of AI conditions on map refinement 
Our results suggest that AI conditions play a determining 

role in map formation, and thereby influence the scope of 
refinement that is later on possible through AD processes. 
Hebbian learning by itself, without some initial bias, cannot 
produce a topographically faithful map. For instance, given 
an initial map with weights of 0.0, Hebbian learning fails to 
adapt the map in any way (i.e., weights remain at 0.0). If the 
result of the AI process is a random map, the result of the 
AD process will also be a random map. Absent  some prior 
topographical bias induced by AI process(es), AD processes 
have limited effect. 
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(c) BMP, no activity waves 
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(b) WT, with activity waves 
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Fig. 3: Effect of spontaneous activity and BMP on retinotopic map refinement (figure shows weights wij, ranging from 0.0 to Nc). (a) WT without activity 
waves; (b) WT with activity waves; (c) BMP without activity waves; (d) BMP with activity waves. L=lateral, V=ventral, T=temporal, N=nasal. 
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Fig. 4: Influence of axonal density (Nc) on STDP map refinement. below: 
average over 10 runs, non-topographic weights. 
 

How much prior bias is required remains unknown, and is 
clearly parametrically-dependent. As a preliminary 
investigation of this issue, we  manipulated the density of 
arborisation at topographically faithful TZs, i.e., the Nc 
parameter in the servomechanism model. These follow up 
simulations suggested a monotonically decreasing function, 
with the upper limits on activity-dependence declining as 
initial topography ordering decreases. Conversely, a stronger 
bias promotes topography (Fig.4). 

In more general terms, the proposed account predicts that 
AD processes will always refine TZs by increasing 
arborisation in a projecting region of highest density, and 
eliminate it in all other regions. Any AI bias that shifts the 

region of highest density to a non-topographic location will 
lead to a mistargetted map that cannot be overcome by AD 
processes. 
Given the set of parameters we used, activity was sufficient 
to rescue maps with an initial a density of Nc =30 (i.e., 30% 
of the model’s default density), but not initial maps with less 
density.  Although these specific number must be taken with 
a grain of salt (until further empirical data that allow us to 
more precisely set parameters), the overall lesson seems 
clear: the power of activity-dependence  very much depends 
on the power of prior activity-independent processes. To 
paraphrase an ancient but well-known saying, activity helps 
those who help themselves. 

IX. REMAINING ISSUES  
Models such as INTEGRATE that explore the interaction 

between activity-dependent and activity-independent 
processes can be used to investigate many of the most 
important questions in development. If it is a truism that 
nature and nurture interact, understanding how they interact 
is a necessity. In the particular case of retinotopic 
development, one can explore questions such as what factors 
(environmental and genetic) mediate the progression through 
developmental stages; what is the precise time-course of 
influence of genetic and biophysical processes on 
development; how small genetic disruptions affect map 
formation; what influence can enriched or deprived 
environments exhort on neural organization. More broadly, 
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any account of neural development may profit from a precise 
exploration of activity-dependent and AI processes. 

The whole in this case can only be as good as the sum of 
the parts: investigations into the interactions of these two 
key components depend on solid models of their individual 
contributions. In each component, many important 
challenges remain. With respect to activity-independent 
processes, one immediate challenge consists in quantifying 
the precise shapes of molecular gradients on the retina and 
SC. Some efforts towards this goal (e.g., [24]) have 
successfully fitted functions to some of the molecules 
involved; however, there are many more whose shapes are 
unknown. Further, the interaction between these molecules 
and the growth cone receptors are not fully understood. 
Some avenues of exploration with computational models [8] 
have shown how basic biokinetic forces of attraction and 
repulsion can be used to account for recent experimental 
evidence on the role of Eph/ephrin gradients. 
 In AD mechanisms, an important issue concerns their 
possible instructive versus permissive roles in map 
formation [25]. One the one hand, activity can be conferred 
an instructive role if found necessary to obtain topographic 
projections, and if these projections are directly affected by 
features of the activity. On the other hand, activity is said to 
be permissive if topographic projections can be obtained as 
long as there is a sufficient level of activity present. Current 
empirical evidence argues for an instructive role of activity 
[25]. However, an understanding of what features of activity 
in particular influence development of the retinotopic system 
remains to be investigated. In particular, computational 
models could investigate the influence of certain features of 
spontaneous activity waves in early development. 
Biophysical models of these waves have so far been 
successful at replicating recorded RGC activity, but not its 
influence on synaptic plasticity [26]. An investigation of 
retinal waves on synaptic plasticity will require a more 
sophisticated model than the one proposed here, one that 
will likely involve precise membrane potentials and time-
dependent learning rules [23]. 
Returning to the combination of activity-independent and 
activity dependent processes, much more remains to be 
investigated. For example, under what activity-independent 
conditions can activity-dependent processes perform a 
refinement to correct TZs? The answer to this question 
should be in part influenced by the known limited capacity 
of activity-dependent processes to overcome a faulty initial 
map – as demonstrated in BMP manipulations (Section V), 
where activity was not able to reverse a mistargetted map 
[19] and modeled in our studies But current computational 
approaches to map formation may actually be too powerful 
to capture such limited capacity. Indeed, many algorithms 
for unsupervised learning (e.g., self-organizing maps [21]) 
can learn difficult distributions from scratch. Despite this 
capacity to perform powerful learning, it is also possible that 
topographic map formation may require a bias, because it is 
one of many possible solutions, all equi-probable from a 
statistical standpoint, to achieve a one-to-one connectivity 
between two layers of neurons. This potential limitation of 

learning algorithms would not apply to models that combine 
both AD and AI processes. 
 Future developments using the INTEGRATE framework 
will include the shaping of axonal morphology through AD 
mechanisms [18], as well as the incorporation of molecular 
mechanisms that orchestrate the beginning and ending of 
different developmental stages (e.g., BDNF, [27]). 

X. CONCLUSION 
 The proposed model of retinotopic map formation 
incorporates both AI and AD mechanisms in a way that 
allows them to be manipulated separately, as in recent 
experimental work [19]. Simulations support the view that 
chemotropic and AD processes may provide independent 
sources of influence during retinocollicular map formation, 
and occur at different critical stages. As a consequence, there 
is a cumulative effect of disrupting these processes (e.g., see 
Fig.3). One implication of these results is that AD processes 
possess a limited instructive power; they can refine maps by 
eliminating extranumerary connections, but cannot correct 
mistargetted TZs. Finally, through simulations, the amount 
of topographic bias provided by the AI process has been 
argued to play a critical role in retinotopic map formation. 

The challenges proposed in the study of retinotopic map 
formation will likely require the collaboration of scientists 
across many disciplines, and foster links between molecular 
biology and computational neuroscience. The field of 
developmental neuroscience will likely benefit from these 
efforts, as principles that are found in retinotopic map 
formation are also pervasive in other brain centers involved 
in sensory processing. Indeed, the Eph/ephrin molecular 
gradients discussed here also influence topographic map 
formation in the somatosensory system [28]; projections 
from the thalamus to the somatosensory neocortex), and 
tonotopic system [29], and vomeronasal system [30]. In 
addition to shaping projections along sensory pathways, 
Eph/ephrins are also responsible for map formation in 
hippocampus-entorhinal connections [31,32], hippocampus-
septum connections [33], patch-matrix connections of the 
striosome [34], dopaminergic striatal neuron-midbrain 
connections (nucleus accumbens; [35]), and cortical columns 
of layers 2/3 [36] . A proper understanding of the interaction 
between AD and AI mechanisms is likely to cast light on all 
of these processes. 
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APPENDIX 1: SERVOMECHANISM MODEL 
In the model, RGC axons send out projections that travel 

through discrete positions1 in the SC, through a number of 
time-steps (for pseudo-code, see Table I). Through its 
interactions with the target surface, the growth cone will 
 

1 Although the SC is a continuous surface, it can only be sampled 
discretely by traveling axons. 
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naturally aim towards a position where all its receptors are 
occupied (referred to as the point of maximum receptor 
saturation [8]. 
 For simplicity, and because migration can be modeled 
independently along the dorsal-ventral and anterior-posterior 
axis [9], a single dimension of migration is modeled here 
(i.e., the anterior-posterior axis of the SC).  

 
TABLE I: PSEUDO-CODE FOR SERVOMECHANISM MIGRATION 

 
Set the default number of positions and axons N=100 
Set the default number of time-steps T=100 
For each retinal position i to N, and each axon j to N 

Set Mi =[R(ui)]2 
Set v(1)=1 
For each time-step t, 
  Set G(t) = ui * v(t) 
  Set d(t) = |G(t) – Mi| 
  If d(t)<1 
   si,j = v(t) 

Goto next axon j 
End If 

  Else 
   Set v(t+1) = v(t)+1 
   Set G(t+1) = ui * v(t+1) 
   Set d(t+1) = |G(t+1) – Mi| 
   If d(t+1) > d(t) 
    v(t+1)=v(t)-1 
   End If 
End For 

End For 
 
The model assumes a linear simplification of receptor and 

ligand gradients (more precise models have been proposed, 
e.g., [23], and account for nonlinearities in these gradients). 
In the proposed model, the number of available receptors on 
the RGC growth cones varies according to position on the 
retina, in a high nasal – low temporal fashion [8,37]. 

 
 

TABLE II : PSEUDO-CODE FOR SERVOMECHANISM 
COMPETITION 

 
Set the default density tolerance Nc = 50 
Set the default travel distance q =10  
For each location i 

Set density(i) = 0 
While density(i)<Nc 
 For axon j to N 
  If si,j=i 
   Set density(i)=density(i)+1 
  End If 
 End For 
 While si,j ≠  i 
  Set j = ceil(random(0,1) * N) 
  If si,j = i 

  Set si,j = si,j ±  ceil(random(0,1) * travel)      
 Bind si,j between a range of [1, Nc] 

 End If 
End While 

End While 
End For 

 
The model forces all axons to enter from the same SC 

position. This insures that axons gain no information as to 

where they belong simply by where they enter (biologically 
plausible to a large extend).  

The precise mechanisms involved in axonal guidance are 
still under debate in the literature. Part of this debate centers 
around the type of stop signal produced (i.e., setpoint versus 
local optimum rules; see [38]), as well as the type of 
molecular signaling that provides guidance (i.e., absolute 
versus relative; [24,39]. The proposed account steers clear of 
these debates, and is theoretically compatible with all 
accounts; a detailed discussion on the topic is beyond the 
scope of this paper, and can be found elsewhere [8]. 

Chemotropic factors influence migration through their 
interaction with the growth cone receptors, as captured 
through the law of mass action (i.e., second-order kinetics). 
Under the assumption that the ligand function employed is 
already taken to be a summation over all ligand molecules, 
there is no requirement to sum this equation over multiple 
receptor and ligand interactions.  

Axons travel in small steps of fixed size, and try to 
approach the point of maximum receptor saturation, where 
they will stop. If a new travel location decreases maximum 
receptor saturation, the axon retracts one step. 
Once all axons have migrated, a process of axonal 
competition is introduced [5]. The goal of this competition is 
to discourage axons from terminating in a region of the 
target surface where the density of projecting axons is high 
(Table II). 
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