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In [l], B.S. Razumikhin gave conditions for the stability and asymptotic 
stability of the zero state of systems of ordinary differential equations involving 
a fixed finite time delay. His conditions make use of Liapunov functions 
defined on the finite-dimensional state space rather than on the space of 
functions continuous on the interval of delay; for methods involving functions 
of the latter type, cf., for example, Yoshizawa 121. 

In a recent paper [3], the author has used Liapunov functions of 
Razumikhin type to give conditions sufficient for the stability of the zero 
state of a system of ordinary differential equations involving an interval of 
delay which becomes unbounded as t + + co; an example of such a system is 
an integrodifferential equation of Volterra type: 

here and henceforth, k(t) = dx/dt, and X, G, and K denote functions with 
values in RR, n-dimensional Euclidean space. 

An example given in [3] and in the appendix of this paper shows that the 
usual modifications which in the bounded delay case yield conditions sufficient 
for asymptotic stability of the zero state do not work for systems like (1-l) 
with an unbounded interval of delay. It is the purpose of this paper to give 
conditions in terms of Liapunov-Razumikhin functions sufficient for asymp- 
totic stability. The main idea of these conditions is that the effect of states near 
2 = 0 on the rate of change (the derivative of the state at t > 0 should 
decrease rapidly as t increases. 

We use the following notation and definitions: R = R1, with R1” as previ- 
ously defined; for x == (si ,..-, x,) and y : ( yr ,...: yn) in R”, we define 
x . y = Cy=r xjyj , and j x 1 = (X . .$/a. For each t > 0, we denote by S, 
the set (A+~(.)) of functions continuous on [0, t] to R”. We observe that if x(S) 
is a function continuous on [0, T) to Rn, T > 0, and if t E (0, T), then x(s), 
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s E [0, t] is a member of S, : here and henceforth, T = fco is allowed. We 
call such an element +(*) of S, a segment of X(S), s E [0, T). 

For fixed t > 0, let F(t, (.)) d en0 e t a function on St to P. We assume 
that if ZQ(.) is the segment of a continuous function X(S), s E [0, T), then 
F(t, +( .)) is continuous on [0, T). By a solution of 

Lqt) = qt, Xt(.)), (1) 

we mean a continuously differentiable function X(S), s E [0, T), such that (1) 
holds for t E (0, 7’). We shall assume that if T < co and X(S) is a solution on 
[0, T) which cannot be continued in the usual way to the right of T, then X(S) 
cannot be bounded on [0, T). This is essentially hypothesis (HJ in [3]; for 
conditions on G and X in (1.1) sufficient that (Hr) hold for this system, cf. 
[4], Corollary 4, p. 98. 

We denote by x(t, x0) any solution of (1) such that ~(0, x0) = x0 . We use 
the usual Liapunov definitions of stability and asymptotic stability; for the 
former, cf. [3], Definition 1, and for the latter: 

DEFINITION. x = 0 is said to be asymptotically stable for (1) if it is stable 
and if there exists a r,, > 0, such that j x,, / < r0 implies x(t, q,) --j 0 as 
t+ fco. 

In what follows, V(t, x) denotes a function continuous on R x R” to R. 
We assume that: 

(a) There exist real-valued functions U(S) and n(s), continuous and 
increasing for s 2 0 such that u(0) = v(O) = 0, and 

u(I x I> < V(t, x) < 4 x 1) for t 3 0, x E R7”; (2) 

(b) Let f(s) be a function continuous for s >, 0 such that f(s) > s for 
s > 0. Let x(t) be a solution of (1) on [0, T) T < co. Then there exists a 
number Y > 0, and a function zu(s), continuous for s > 0, w(0) = 0, and 
w(s) > 0 for s > 0, such that the condition 

(i) V(s, x(s)) < f(V(t, x(t))) for s E [to, t], t > 0, where to = 
max[O, t - r], implies 

(ii) F(t, x(t)> < -w(l x(t)l); 

here w(s) and Y may depend on the solution x(t), as well as on V andf, and 

r(t, x(t)) = liF+_os_up[v(t + h, x(t + h)) - V(t, x(t))]/h. 

THEOREM 1. Let tlaere exist functions V and f satisfying the conditions (a) 
and (b) above. Then for each solution x(t) bounded on [0, co), x(t) + 0 
as t++co. 
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COROLLARY 1. If, i?z addition to the hypotheses of Theorenz 1, x = 0 is 
stable for (I), then it is asymptotically stable. 

COROLLARY 2. If, in addition to (a), (b) holds for any solution (not rzecez- 
sarily bounded ofz [0, CD)), then E = 0 is asymptotically stable for (1). 

Corollary 1 follows easily from the theorem: all we need observe is that as a 
consequence of the stability of XI = 0 for (I), there esists a T,, > 0 such that 
j x(t, x,)1 < 1 for / x0 / < To. 

To prove Corollary 2, we observe if condition (b) holds for any solution 
of (1), then this condition implies hypothesis (Hs) of Theorem 1 in [3] which 
states that for f, F’, and 6’ as above, if x(s) is any solution of (1) which exists on 
[0, t], t > 0, for which f( V(t, x(t))) > V(s, x(s)) for s E [0, t], then 

qt, x(t)) < 0. 

Since the conclusion of Theorem 1 in [3] is that x = 0 is stable for (I), 
Corollary 1, and hence Corollary 2 follows. 

Proof of Theorenz 1. The proof is essentially the same as the one for the 
case where the time delay is firred and finite; we give it here for the sake of 
completeness. 

Let x(t) be a solution of (1) bounded on [0, co) and define 

A!! = suf 1 r(t)]. 
, 

Let E > 0 be given; we may suppose E so small that u(c) < w(M). Then there 
exists a number a = a(c) > 0, such that f(s) - s > a for s E [U(E), zr(M)]. 
Let N = N(E) > 0 be the smallest integer such that V(M) < u[~) + Na, and 
define E/ = u(c) + (N - j)a, j = 0, 1, 2 ,..., N. We note that V(t, x(r)) < e. 
for t > 0. 

Suppose V(7(t, x(t)) > or for all t 3 Y. Then for any such t, ~(1 x(t)l) 3 or , 
and hence / x(t)1 > v*(EJ > 0. Also for such t, ~(6) < V(t, x(t)) < v(M), 
so that 

f(V(4 x(t))) > V(t, x(t)) + a 3 u(c) + (N - 1)a + a = U(E) + Na. 

But V(S, X(S)) < U(E) + Na for all s > 0, and thus also for s E [t - I’, t]; 

t > Y, Using (b) with j = 0, we conclude that 

qt, .m> < -4 ~(W, t > r. (3) 

Define p1 = +(EJ, and yr = inf,++1 WI(S) > 0; it follows then from (3) 
that 

w, x(t)> d q, +-I) - y& - r) < 60 - n(t - y), 

for all t > T. Since V(t, r(t)) is never negative, this leads to a contradiction. 
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So there exists a t, > P such that V(tl, x(Q) < Q . If I/(&, A(&)) = Er 
for some $ > tr , we may suppose ir chosen so that V(t, x(t)) < or for 
t E [t, , tJ, and it follows clearly that 

However, 

f(Cl) =f(V(& ) ‘V(fJ)) > V($ , A(&)) + a = l l + a = E. . 

Since also V(s, x(s)) < q, for s E [& - P, &I, it follows from (b) that 

I’(& , x(tl)) < -~(1 a(f -c 0. 

This contradicts (4), so we must conclude that 

qt, x(t)) < El for all t > tl . (5) 

Suppose V(t, LX(~)) 3 Q for all t > tl . Then for t 3 tr + Y, we have 

4 WI) a 62, and hence 1 x(t)[ > v-~(+); define pz = z+(EJ. Since 
l s < V(t, x(t)) < or for t > t, + T, it follows that for such t, 

f(V(t, x(t))) > lqt, x(t)) + a 3 24(E) + (N - 1)a = El > V(s, x(s)) 

for s E [t - Y, t]. So by (b) we have 

P(t, x(t)> d -4 4t)l), t > t1 + Y. (6) 

If ye = i4c[p,,,bfl w(s), then ys > 0, and from (6) we have 

V(t, x(t)) < V(t1 + r, x(t1 + 7)) - y*(t - tl - r) < El + y2(t - it1 - r). 

But for t > t, + Y and sufficiently large, this leads to a contradiction. So 
there exists t2 > t, + Y such that V(t2 , x(t2)) < c2 . 

Suppose for some & > t2 , V(& , x($)) = e2 , while V(t, x(t)) < E? for 
t E [t2 , &). It follows that 

However, 
P(f2 ) x(f2)) 2 0. (7) 

f(4 = f( V(& ) x(%))) > V(f2 ) x(f2)) + a = E2 + a = El . 

But also V(X, X(S)) < or for s E [& - Y, &I: this follows from (5) since for such 
s, s > t, - Y > t, . SO f(V(% , X(&J)) > V(s, x(s)) for s E [$ - r, KJ, and 
using (b), we obtain P(&, , x(Fa)) < 0, which contradicts (7). So we must have 
V(t, x(t)) < c2 for t 2 t, . 
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Continuing in this way, we get forj I= 0, l,..., N, that there exists tj such that 

V(t, X(t)) < Ej for t 3 t j  , where tj 3 t+, + T, and t, = 0. But Q, = 

U(E): i.e., V(t, x(t)) < U(G) for t > tN . Thus for such t, we have 

from which we get j x(t)\ < E for t > t, . This proves the theorem. 
In systems such as (1. I) and more generally, (I), the solution is a function on 

[0, 2’) to Bit and the equation specifies the derivative of this solution for all 
t E [0, T). We can easily generalize our theorem to the case where the equation 
still specifies the derivative of the solution on [0, T), but where the solution 
must be defined on [--r, T) for some fixed Y > 0, and where its derivative at t 
depends on the solution X(S), s E [-r, t], t E [0, T). For example, we can 
consider a system of type 

where g is as in (1. I), f (t, $) is a continuous function on R x C, , C, the 
space (with the usual supremum norm) of continuous functions on [-T, 0] to 
I?“, and if x(t) is a solution of (1.2) it must be continuous on [-Y, T), con- 
tinuously differentiable on (0, T), and satisfy (1.2) there where xt denotes the 
element of C, defined by x(t + s), s E [t - Y, t]. The part of the solution for 
t E [--7,O] can be regarded as the initial value for the solution. Thus we now 
include systems which are referred to as functional differential equations 
of retarded type, cf. [4], to which Razumikhin originally applied his method. 

The following theorem applies to (1.2), and involves much stronger 
conditions which are however more easily applicable to more explicit cases 
of (1.2), as our final example will show. 

THEOREM 2. Szzppose that 

(a,) there exists a fmzction V OTZ R x R” to R satisfying (a) arzd baaing 
continuous first partial derivatives in all variables there; 

(b,) there exist functions f and zu satisfying the same conditions as in (b) 
except that w is also illcreasing; 

(clj given E > 0 atzd M > 0, there exists a k = k(c, Al) > 0 such that 

and if X(t) is a solution of (1.2) satisfying 

(ii) V(s, x(s)) < f(V(t, x(t))) for t - kz < s < t, t 2 kr, 
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then 

for t > kr. 
Then $x(t) is a bounded solution of (1.2), x(t) + 0 as t --f + GO. 

In (cl), g = (g ,..., E). La aqz 

Proof of Theorem 2. Let E > 0 be given, and x(t) be a bounded solution of 
(1.2). Let N = N(E) and Ej , j = 0, I,..., N, be as defined in the proof of 
Theorem 1. Then using (cr), (i), there exists for each integerj, 0 < j < N, a 
kj = kj(q , M) such that 

av . t--kjr 

ax’ 0 J 
g(t, s, x) ds < z+-yEj))/2 (Q 

for t 3 kjr and j x 1 < M = suptao 1 x(t)1 : here v-l is the inverse of ZI 
defined in (a). 

As in the proof of Theorem 1, we wish to show that V(t, x(t)) < u(e) = Ed 
for all t sufficiently large. Since V(t, x(t)) < E,, for all t > 0, and cj > q+r , 
j = 0 ,..., N - 1, it foll ows that there exists a greatest integerj, , 0 < j, < N, 
such that F(t, x(t)) < l jo for all t sufficiently large. Suppose j, < N and 
suppose that V(t, x(t)) > q+r for all t > r,, = kfO+,r sufficiently large. Then 
as in the proof of Theorem 1, we find that 

p, x(s)) < WV2 4t))), t--()<s<t, 

and all t 3 r0 sufficiently large. Using (c,), we then have 

q’(t, @)) = g * [f(t, 4 + J-t, g(t, s, x(s)) ds 
0 

+ )-ot-‘b g(t, s, x(s)) ds] + $ 

< -w(J x(t)l) + w(z'-1(Ej>)/2 

= -4 4w2 

for t > P,, and sufficiently large. Using this and the fact that 

I x(t)l 2 er-l(Ejo+l> > O 

(8-l) 

for such t, we obtain, as in the proof of Theorem 1, a contradiction. 
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So there exists a t, > rs such that V(t, , x(Q) < Q+~ . If V(t, x(t)) < ~,+r 
for t 3 to , we contradict our choice ofj, , So there exists a f > t, such that 
V(& , x(Q) = E~,+~ and P(&, x(&J) 3 0. But as in the proof of Theorem 1, 
we find that f(V($ , x(&J)) > V(s, x(s)) for $, - r0 < s < f,, . As above, we 
use (cl) again and find, as (%I), that P(t”, , X(Q) < 0, again a contradiction. 
We can only conclude that j, = N, which essentially completes the proof of 
Theorem 2. 

As an example of this last result, we consider the system 

I = Ax(t) + h(t, XJ + sbg(t, s, x(s)) ds, (13 

where A is a real stable IL x n matrix, h is a function continuous on R x C, 
and satisfying / h(b, (b)l < p /I + 11, where 

and g(t, s, x) is continuous on R x R x JP for t > s 3 0, and satisfies 
j g(t, s, x)1 < K(t, s)\ x / with 

.t 

J 
K(t, s) ds -+ 0 as t-++co, 

0 

We show that for p sufficiently small, each bounded solution of (1.3) tends 
to zero as t -+ $co. 

Since -4 is a stable matrix, by a well-known result, there exists a positive 
definite symmetrix matrix B such that BA + ATB = -I, here AT denotes 
the transpose of A and I is the identity matrix. Define V = Bx .r. 

To show that (bJ holds for p sufficiently small, we observe first that there 
exist positive numbers X and fl such that h2 ] x j2 ,< Bx . x < A2 j .1c I2 for 
all x E R”. If 

CL -=c h/(2 i B I 4, (9) 

where 1 B 1 = x& 1 b, 1, B = (b,), then there exists a q > 1, such that 

EL < NC% I B I 4. 

We choose f(s) = q2s. Then for any positive integer k and any solution 
x(t) of (1.3) such that 

Bx(s) . x(s) < qzBx(t) . x(t) for sE[t-kr,t], t>kr, (10) 

we have clearly qz& \ x(t)\" > X2 \\ zct \12, t 3 kr. Thus 

I Wt) * W, dl < I B I I #)I P I! it Ii 
< fc I B I qA I ~(t)i”P, t >, kr. (11) 
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Fix ,ur > 0 such that 

(2 I B I Fw)(P + I4 < 1, (12) 

then there exists a k > 0 such that for t > kr, 

Since 

d sup 
&It-kr, tl 

t > K, and x(t) a solution of (1.3) satisfying (lo), it follows that for such 

k t, and x(t), 

.& $2 x(s)) ds / 6 &z41 I B J I s(t)12/A. (13) 

If we define 01 = 1 - 2 1 B 1 ql(p + pr)/h, and w(s) = a?, we conclude that 
(ii) of cJ holds, note that (12) implies 01 > 0. 

It remains to show that (i) of (cr) also holds; but this follows easily from the 
fact that 

IJ --g(t, s, x) ds 1 < 1 x ( It K(t, s) ds + 0 as t++co. 
0 0 

Hence under the hypotheses given above on A, h, and g, if (9) holds, then each 
bounded solution of (1.3) tends to zero as t + + co. 

A somewhat less restrictive condition ong which yields the same conclusion 
is to suppose that 1 g(t, s, x)>I < K(t, s)l Y ( with 

s 

t 

K(t, s) ds < ~1 for t > 0, 
0 

where 1-11 satisfies (12), and that 

s 
t K(t + 7, s) ds -+ 0 as r---t+co, 

0 
(14) 

the limit being uniform for t > 0. It is clear that (14) implies condition (cr); 
we omit the details. 
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APPENDIX 

Consider the scalar equation 

S(t) = -2x(t) + x(0). 

It is clearly of type (l), and all its solutions are of the form 

x(t) = (1 + e-2t) ~(0)/2. 

(1.3) 

Clearly z = 0 is not asymptotically stable for this equation. However, if 
we take V(t, x) = S/2 and f (s) = 2s, we find that 

v(1.3)(x(t)) = -2x’(f) + x(t) x(0). (14 

If x(t) is a solution such thatf(V(‘(x(t))) > V@(s)) for 0 < s < t, t > 0, then 
clearly 1/z ! x(t)1 > ! a(O)\. It follows from (1.4) that for such solutions w(t) 

JL,,(4t>) < (-2 + d) X2(t), 
. . 
i.e., V(r.a) is bounded above by a negative definite function of / x(t)\. It 
follows that while such a condition is sufficient for the asymptotic stability of 
x = 0 for systems with a fixed finite delay interval (cf., for example, Theorem 
11.2 in [4]), it is clearly insufficient for systems like (1). 

This example also motivates condition (b) in the hypotheses of Theorem 1. 
Loosely speaking, this condition says that if a solution x(t) of (1) ever is such 
that V(t, x(t)) . t is oo close to the supremum of V((s, X(S)) as s ranges from 
1 - r to t, and t > Y, then V(t, x(t)) must decrease as t increases. However, 
if V(‘(t, x(t)) is too close to the supremum of V(.r, X(S)) as s ranges from 0 to t, 
then our example shows that a condition such as 

qt, X(t)) < -41 @)I>, 

where 01 is continuous and positive definite, is not sufficient for asymptotic 
stability of x = 0, even though such a condition implies that V(t, x(t)) must 
decrease as t increases. 
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