
Context Discerning Multifunction Networks:
Reformulating Fixed Weight Neural Networks

Roberto A. Santiago
NW Computational Intelligence Lab

Systems Science
Portland State University

Portland, OR 97207
E-mail: robes@pdx.edu

Abstract— Research in recurrent neural networks has pro-
duced a genre of networks referred to as Fixed Weight Neural
Networks (FWNNs) which have the ability to adapt without
changing explicit weights. FWNNs are unique in that they adapt
their processing based on the spatiotemporal characteristics of
the incoming signal without need for weight change. As a result,
a single FWNN is able to model and control many families of
disparate systems without weight changes. FWNNs pose an inter-
esting model for contextual memory in neural systems. The work
reported takes a FWNN, decomposes it and analyzes its internal
workings. Using new insight, FWNNs are reformulated into a
simpler structure, Context Discerning Multifunction Networks
(CDMN).

I. I NTRODUCTION

Fixed-weight neural networks (FWNNs) refer to recurrent
neural networks (RNNs) (a.k.a. dynamic recurrent networks
(DRNs)) which, after training, have the ability to adapt without
further change of explicit parameters (i.e. weights). The idea
seems to originate in 1990 with the work of Cotter and
Conwell [1]. In their work, Cotter and Conwell separated
the concept of adaptation from the notion of weight adjust-
ment in a neural network. The researchers propose theFixed
Weight Learning Theorem (FWLT)which states that a RNN
can approximate with arbitrary precision the dynamics of a
feedforward neural network being trained with an adaptive
weight learning algorithm. The innovative aspect of the FWLT
is the RNN can approximate these dynamics without need for
weight changes, hence the ”‘fixed-weight”’ label.

This concept would later be picked up again but referred
to asLearning to LearnandMetalearningin [2], [3] and [4].
This work is conceptually different from the earlier work in
that it focuses on the concept of RNNs learning to implement
learning machines, hence the label metalearning. While the
FWLT is built on the notion of calculating the fixed weights
of the RNN that would implement a particular adaptive weight
learning algorithm, metalearning instead sought to get the
same fixed weights through an adaptive learning process.
The resulting FWNNs from this line of research were not as
general, though. For example, the researchers trained a RNN
to learn a family of quadratic functions. After training, the
weights of the RNN were fixed thereby making it an FWNN.
Then the FWNN was shown input-output (IO) pairs from one
member of the family of quadratic functions. The FWNN

quickly ”‘learned”’ the quadratic mapping such that upon
presentation of a new input, the FWNN produced the correct
output as specified by the selected quadratic mapping. After
it had learned the selected mapping, a new quadratic mapping
was selected and again the FWNN ”‘learned”’ that mapping.
The term ”‘learned”’ here is highlighted because it is not clear
if this is learning or adaptation. It is probably more reasonable
to call this adaptation since further research has shown that
FWNNs created in this way while able to generalize their
adaptation over the family of quadratic mappings are not
able to able to ”‘learn”’ mappings not in the family of
quadratic mappings. So in some way, the adaptation happening
in these FWNNs is dependent upon storing some meta-level
information about the family of quadratic mappings. We will
later explore this meta-information as a form of memory.
The researchers used specialized neural networks and training
algorithms including the more well known Long Short Term
Memory (LSTM) approach[5].

Feldkamp et al. [6], [7] were the first to provide useful
application of the concepts. In particular, they trained a RNN
to identify and control a set of simulated plants but this
time using only a generic RNN whose weights were fixed
after training. More recent work by Prokhorov et al. [8] has
reproduced the quadratic modeling FWNN, but again only
using a generic RNN. Most recently, Feldkamp et al. [9]
have extended this work to create FWNNs that are able to
approximate more than just one family of functions and even
family of systems. As stated before, if a FWNN is created
through training a RNN over the family of quadratic functions
then the resulting FWNN will only adapt to approximate
the quadratic functions and no other type of functions. The
FWNNs created by Feldkamp and Prokhorov now are able
to approximate several families of functions and even more.
Their FWNNs also model time evolving dynamical systems,
even those with chaotic dynamics. Thus they have extended
FWNNs from simply being able to adapt to mappings but also
to temporally dynamic systems. Thus for further discussion,
the idea of mappings and dynamic systems will simply be
referred to as systems. This ability seems very impressive and
the work reported here seeks to understand the principles that
allow FWNNs to adapt to all of these family of systems.

II. M OTIVATIONS

The exploration into FWNNs reported here is motivated
from several directions. First, FWNNs offer an interesting
way of thinking about the relationship between memory and
synaptic weights. While concepts like metalearning are in-
teresting, it seems that the simpler explanatory concept of
what FWNNs do is more along the lines of storing and
recalling memories. While FWNNs by definition are recurrent
in nature, to understand their uniqueness one might think
first about a simple feedforward network, like a multilayer
perceptron (MLP). Theoretical analysis of MLPs state that
any function can be approximated to arbitrary precision by
an MLP provided enough nodes in the network topology. For
a fixed topology, if we hold the weights of an MLP fixed
then it is only able to approximate a single function. If the
approximated function is treated as a ”memory” then an MLP
with fixed weights can only hold one memory. Thus for the
MLP one set of weights translates into one memory.

But now consider the FWNN that has recurrent connections.
The work by Prokhorov et al. [8] and Feldkamp et al. [9]
shows that large families of systems can be approximated by
a single FWNN. If we now equate the concept of a memory to
the the ability to adapt to a specific system then the weights
in a FWNN encodes a set of memories. But now one can
expand the concept of memory to not just mean the adaptation
to a specific system but but to a family of systems (e.g. the
quadratic maps, Henon attractors, etc.). Thus a memory is the
information needed to model a family of systems.

This now in turn brings up another important aspect of
these FWNNs, context. These FWNNs are able to recall this
information from memory. All the work cited so far shows an
impressive efficiency in being able to recall from memory the
information needed to adapt to a system being presented to the
FWNN. One cannot help but think that the recall mechanism
implemented by FWNNs could shed significant light on the
way neural systems can so efficiently resolve context. Put
simply, if an FWNN has memory of a particular family of
systems, then upon presentation of a member from that family
of systems, it is able to place the presented system into the
context of the family of systems. Then using information
from the memory of the family of systems it adapts to the
presented system. There is significant benefit in understanding
how FWNNs accomplish thiscontextual memorycapability
since it seems to be a needed building block for constructing
machines that display more general intelligence.

Finally, though, the training of FWNNs is computationally
expensive[8] even with the use of more advanced methods
for training RNNs, backpropagation through time (BTT) with
extended Kalman filtering (EKF) and multistreaming[10]. It
is reasonable to believe, though, that understanding the inner
workings of a trained FWNN would lead to more efficient
methods for creating them.

III. M ETHODS AND RESULTS

Prokhorov provided data from a trained FWNN, in partic-
ular the one presented in [8]. The network was trained to

emulate all mappings as defined by a parameterized quadratic
equation. In particular the parameterized equation was

y(t) = ax1(t)
2 + bx2(t)

2 + cx1(t)x2(t)

+dx1(t) + ex2(t) + f (1)

where a, b, c, d, e, f ∈ [−1, 1]. The variables are defined
in discrete time. Data points were generated by randomly
choosingx1(t) and x2(t) from a uniform distribution over
the interval [−1, 1]2 and using equation 1 to generate the
desired output,y(t). The parametersa, b, c, d, e were changed
every 1000 steps for training and every 100 steps for testing
of FWNN performance. The variables were presented to the
network with a time lag on the desired output. For simplicity,
the input to the FWNN can be written as[x(t) y(t − 1)]T

where x(t) = [x1(t) x2(t)]. Please note that the input
is a combination of the new randomly chosenx(t) and the
desired output from theprevioustime stepy(t−1). The FWNN
had two recurrent hidden layers, with 30 and 10 nodes each.
The network operation can be summarized in the following
equations.

o1(t) = sig(Win[x(t)y(t − 1)]T

+WR1o1(t − 1) + b1) (2)

o2(t) = sig(Whido1(t) + WR2o2(t − 1) + b2) (3)

ŷ(t) = Wouto2(t) (4)

wheresig() is a bipolar sigmoidal function. The output of the
FWNN was ŷ(t) which is the estimate of the desired output
y(t). The FWNN was trained using multistreamed extended
Kalman filtering details of which can be found in [8] and
[10]. By way of qualitative description, the network is able
to take a few observations, about ten to twenty, and with
those observations reconfigure its internal state to implement
the appropriate mapping; that is, it implements the mapping
which generated the observed data points. Extending from
the previous discussion about memory; it could be said that
the trained FWNN simply remembered the mapping or made
an approximation from similar memories. Performance of
the trained FWNN is shown in Figure 1 where the trained
network was shown a new desired mapping every one hundred
iterations. Using data from this network an analysis was
performed on the input activation of each of the nodes of
the network. In particular, the input to the nodes of the first
layer is made up of four components which can be seen in
equation 2: the new random values forx(t), the previous
desired outputy(t−1), the recurred informationo1(t−1) from
the layer and the biasb1. Because the input to the network was
the combined vector[x(t) y(t − 1)] some work had to be
done to isolate the input activation attributable to each part of
the input. Conceptually, one could rewrite equation 2 in the
following way to make it clear:

xin(t) = Winx
x(t)T (5)

yin(t) = Winy
y(t − 1) (6)

r1(t) = WR1o1(t − 1) (7)

o1(t) = sig(xin(t) + yin(t) + rin(t) + b1) (8)

0 100 200 300 400 500 600 700 800

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Iteration (t)

E
rr

or

Fig. 1. Performance of trained FWNN as reported in [8]. The desired
mapping was changed (i.e. new parameter values for equation 1)every 100
iterations. Notice the rapid increase in error, here(ŷ(t)−y(t)), which occurs
every hundredth iteration and quickly subsides as the network recognizes
which mapping to implement.

where the weight matrixWin from equation 2 is broken into
two smaller matricesWinx

andWiny
which isolate those input

from x(t) andy(t− 1), respectively. Similarly equation 3 can
be rewritten in the following way to isolate the input activation
of each node attributable to output from the first hidden layer
and from recurred information:

a(t) = Whido1(t) (9)

r2(t) = WR2o2(t − 1) (10)

o2(t) = sig(a(t) + r2(t) + b2) (11)

Accordingly, data was generated from the trained FWNN and
the values of the variables defined in equations 5 through
11. Analysis of these variables revealed interesting features
with respect to the internal processing that allowed the FWNN
to model the family of quadratic functions. In particular, the
weights of the first hidden layer specialized themselves so that
they either receptive to input fromx(t) or from y(t − 1), as
can be seen in Figure 2 and 3. For simplicity, those nodes on
the first layer which are only receptive to input fromy(t− 1)
are referred to as Type I nodes and the nodes on the first layer
which are only receptive to input fromx(t) are referred to as
Type II nodes. While this specialization with respect to input is
interesting, the more intriguing aspect of the learned behavior
is the contribution made by recurrence on the Type II nodes
which can be seen in the upper left panel of Figure 3. The
recurrent input shows fixed point equilibrium behavior with
the fixed point shifting every one hundred steps, corresponding
to the shift in desired mapping. Operationally, this recurrent
input on Type II nodes worked to shift the bias on the node,
an observation to be further explored soon.

The input behavior shown in Figures 2 and 3 is represen-
tative of the behavior of most nodes on the first hidden layer.
Specifically, 16 nodes showed Type I behavior and 10 showed
Type II behavior. The remaining four nodes had near zero
weights for all inputs, bothx(t) and y(t − 1). Two of these

0 200 400 600 800
−2

−1

0

1

2
r
1

0 200 400 600 800
−2

−1

0

1

2
y

in

0 200 400 600 800
−2

−1

0

1

2
x

in

0 200 400 600 800
−2

−1

0

1

2
o

1

Fig. 2. Type I node behavior from the first layer. The four panels show the
input and output behavior from a single node on the first layershowing Type
I behavior. Type I behavior is characterized by the elimination of input from
x(t) which can be seen in the lower left panel. From upper left to lower right
the panels show the components of input to the node fromr1(t), y

in
(t) and

xin(t) as well as the output of the node fromo1(t).

0 200 400 600 800
−2

−1

0

1

2
r
1

0 200 400 600 800
−2

−1

0

1

2
y

in

0 200 400 600 800
−2

−1

0

1

2
x

in

0 200 400 600 800
−2

−1

0

1

2
o

1

Fig. 3. Type II node behavior from the first layer. The four panels show the
input and output behavior from a single node on the first layershowing Type
II behavior. Type II behavior is characterized by the elimination of input from
y(t) which can be seen in the upper right panel as well as the recurrent input
which shows fixed point equilibrium behavior which can be seen in the upper
left panel. From upper left to lower right the panels show thecomponents of
input to the node fromr1(t), y

in
(t) andxin(t) as well as the output of the

node fromo1(t).

nodes had output behavior near zero indicating training had
led to the functional elimination of these nodes. The other
two nodes had fixed point output behavior which looked very
similar to the upper left panel of Figure 3.

The second layer also had very interesting behavior. Again,
two types of nodes with distinct behaviors were identified and
are referred to here as Type III and Type IV nodes. Figure
4 and 5 show the values as defined in equations 9 to 11 for
a Type III and a Type IV node, respectively. Type III nodes
show the elimination of all output signal from the node as
can be seen in the bottom panel of Figure 4. Here the FWNN
training has resulted in nodes that are functionally dormant

having not operational impact on the network. Type IV nodes
show prominent input and output behavior and are responsible
for the processing behavior of the second layer. In addition,
Type IV nodes do not show any specialized behavior like fixed
point equilibrium as can be seen in Type II nodes or shifts in
the range of values being used as can be seen in Type I nodes
(specifically the upper panels of Figure 2). The ten nodes of
the second layer were evenly split between Type III and Type
IV behavior.

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2
r
2

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2
a

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2
o

2

Fig. 4. Type III node behavior from the second layer. The three panels show
input and output behavior for a single node from the second layer showing
Type III behavior. The upper two panels show the input contributions from
a(t) and r(2). The bottom panel shows the output from the node. Type III
nodes are characterized by the elimination of output from thenode.

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2
r
2

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2
a

0 100 200 300 400 500 600 700 800
−2

−1

0

1

2
o

2

Fig. 5. Type IV node behavior from the second layer. The threepanels show
input and output behavior for a single node from the second layer showing
Type IV behavior. The upper two panels show the input contributions from
a(t) and r(2). The bottom panel shows the output from the node. Type IV
are responsible for processing on the second layer of the network.

In analyzing the internal working of the FWNN it is
apparent that much of the training resulted in both functional
specialization of nodes on the first and second layer as well
as functional elimination of several nodes. This suggests an
overly complex network architecture was employed to solve

the problem. As a result, it was hypothesized that a much sim-
pler approach to FWNN adaptation could be synthesized. The
strongest clue for this came from the analysis of Prokhorov
et al. Prokhorov et al. in [8] suggests a strong connection
to the work of Back and Chen in [11]. In particular they
state: ”‘...it appears possible to extend the results of theoretical
analysis in [Back and Chen 1998], which treats the ability ofa
single network with output-to-input recurrence to approximate
multiple systems to the case of RMLP.”’
In 1998, Back and Chen used a hybrid system framework to
show that recurrent networks could be used to implement fixed
weight systems which modeled multiple systems. The work
provided only hints as to the general construction process for
such networks. Among those hints were included a construc-
tion process which focused on shifting the biases of a standard
multi-layer perceptron (MLP). Put simply, the authors observe
that for two different sets of biases, holding all other weights
the same, the MLP will approximate two distinct models.
Subsequently, the authors indicate bias-shifting as a method for
getting a fixed weight neural network to approximate several
systems1. The question of exactly how to adjust those biases in
response to changes in desired model is not directly addressed.

As observed before, the input from the recurrent connections
for Type II nodes, seen in the upper left panel of Figure
3, seems to perform this bias shifting. It seems almost too
convenient that the Type II nodes also eliminate any input from
y(t− 1) so that they are specialized to transformingx(t) into
ŷ(t). Thus it also seems logical to hypothesize that the Type
I nodes carry out the function of observing the sequence of
inputs and internal states to identify shifts in desired mapping
and, most importantly, to assign a set of fixed point outputs
which shift the biases of Type II nodes thereby changing the
mapping being approximated by the network.

It also seemed convenient that the Type III nodes on the
second layer had no output and therefore were not directly
involved in generatinĝy(t) or even in providing recurrent
information to the Type IV nodes. The exact operation of
the Type IV nodes still needs further analysis but it was
hypothesized that the recurrence in the second layer workedto
counterbalance information coming from the first layer such
that the Type IV nodes of the second layer operate as standard
feedforward nodes or bias-shifted feedforward nodes. This
hypothesis has not yet been verified but it will simply be
assumed for the reformulation of fixed weight networks to
be discussed next.

From the analysis so far it seems clear that there are
essentially two components of the trained FWNN producing
the adaptation in the fixed weight network. The first com-
ponent can be thought of as a context discernment network
(CDN). This seems to be the most significant contribution
of the recurrent connections, especially within the first layer.
In particular, the Type I nodes seem to perform this context
discernment function. By context discernment it is meant

1Further theoretical analysis has also been developed by Back and Chen in
the series of articles [12], [13] and [14] which uses the concept of multiple
nonlinear operators instead of hybrid systems.

that the component is able to identify spatial and temporal
characteristics (hereafter referred to as spatiotemporalcharac-
teristics) and in response to those characteristics produce a set
of fixed parameters. Those fixed parameters can be thought of
as context parameters. In turn, those context parameters can
be used in the second component, the multifunction network
(MFN) to adjust biases as suggested by Back and Chen and
apparently occurring in Type II nodes (again, refer to the
upper left panel of Figure 3). Together these two subnetworks
form a Context Discerning Multifunction Network (CDMN),
a reformulation of the FWNN. For clarity, Figure 6 provides
a diagrammatic description of the concept of CDMNs.

Context
Discernment

Multi-Function
Approximation

x(t)

y(t)^

Other

Variables
(e.g. y(t-1))

CDMN

Context
Parameters

Fig. 6. Context Discerning Multifunction Network(CDMN). CDMNs have
two subnetworks, a context discernment network and a multifunction approxi-
mation network. The context discernment network looks at the spatiotemporal
characteristics of the incoming signals and produces a fixed value set of
parameters, called context parameters. These context parameters are used by
the multifunction network to adapt processing of the incomingsignals.

For purposes of illustration a simple example of CDMN
functionality was assembled. A CDMN was constructed which
approximated a similar family of quadratic functions as al-
ready described before in equation 1. The CDN component
was a simple linear regression algorithm. The algorithm took
as input the last fivex, y pairs (i.e.(x(t−1), y(t−1)) through
(x(t − 5), y(t − 5))). These were assembled into a linear
equations. For simplicity let

m(x1, x2) = [x2
1 x2

2 x1x2 x1 x1] (12)

The linear equation was as follows:

m(x1(t − 1), x2(t − 1))
m(x1(t − 2), x2(t − 2))
m(x1(t − 3), x2(t − 3))
m(x1(t − 4), x2(t − 4))
m(x1(t − 5), x2(t − 5))

a

b

c

d

e

=

y(t − 1)
y(t − 2)
y(t − 3)
y(t − 4)
y(t − 5)

(13)

Simple linear regression was used to solve fora, b, c, d, e,
the parameters for the system. This was done for every five
data points so the values of these were constantly updated.
Output from this component can be seen in Figure 7. These
values were the output of the context discernment component
and used as input to the MFN. The MFN was a MLP which
took these parameters as inputs as well asx(t) and output
ŷ(t). The MFN was trained to minimize squared error using
the backpropagation algorithm. Training took less than three
minutes on a Pentium III 450MHz computer. Figure 8 shows
the raw error of the trained CDMN. Results compare favorably
with those of Prokhorov’s, shown in Figure 1.

0 200 400 600 800
−1

−0.5

0

0.5

1

0 200 400 600 800
−1

−0.5

0

0.5

1

0 200 400 600 800
−1

−0.5

0

0.5

1

0 200 400 600 800
−1

−0.5

0

0.5

1

0 200 400 600 800
−1

−0.5

0

0.5

1

Fig. 7. Context Parameters. These context parameters are generated from
using a simple regression method. While not a network, the methodprovides
a functional example of estimated parameters uniquely identifying the spa-
tiotemporal characteristics of the input signal. These werethen used by a
multifunction network which was a standard MLP.

0 100 200 300 400 500 600 700 800
−3

−2

−1

0

1

2

3

Iteration (t)

Error

Fig. 8. Result from the simple CDMN example on the quadratic function
approximation problem. The desired quadratic function is changed every 100
steps. Results are comparable to those of Prokhorov seen in Figure 1.

The use of linear regression over a polynomial basis for
the CDN component was done for illustrative purposes with
respect to the intended functionality of that component. In-
deed, the CDMN approach highlights the challenge of future

research, namely, to understand how to easily create RNNs
that are able to capture spatiotemporal features of input signal
and represent them parametrically so that they may be used
for bias shifting of a multifunction network. This is similar to
the insight that Back and Chen provide in [11]. Moreover, the
FWNN analyzed only modeled a set of quadratic functions
and not dynamical systems as another FWNN reported in [9]
can. It would be interesting to analyze one of those networks.
It is hypothesized that the CDMN formulation would still
be appropriate with the exception that the context parameters
might switch over the course of modeling a single system or
the MFN would have to be stated as a RNN.

IV. CONCLUSIONS

Decomposition and analysis of a FWNN discussed in [8]
was performed and reported. Analysis revealed functional
specialization of nodes classified into four types. Further
analysis revealed that several nodes of the trained FWNN
have no functional impact on the processing of the net-
work. More importantly, the functional specialization reveals
a subcomponent of the network which functions as a context
discernment unit. This context discernment unit observes the
spatiotemporal characteristics of the input signal and assigns
a set of fixed parameters to each unique source system. These
fixed parameters are used to shift the biases of the remaining
network thereby changing the model being approximated by
the rest of the network. Using this insight, and insight from
Back and Chen [11], FWNNs are now reformulated into two
separate components, a context discernment network (CDN)
and a multifunction network (MFN), together referred to as a
Context Discerning Multifunction Network (CDMN). A very
simple functional example is provided to illustrate the concept.
It is concluded from this analysis that the CDMN approach is
a much more efficient and intuitive method for synthesizing
the desired behavior from FWNNs.

Further work is needed in formalizing the concepts of
context and memory in CDMNs. It is desirable that the
definition of these terms with respect to CDMNs bear strong
relationship to they way they are used in neuroscience and
cognitive science. To be useful in further research in machine
intelligence as well as cognitive science and neuroscience
more efficient methods for creating FWNNs is still needed.
This paper has shown that a much of the computational
effort results in specialization of the network topology and
the functional elimination of nodes. It is reasonable to believe
that DRNs will still be necessary for context discernment.
Alternatively, a new method known as Echo State Networks
[15], [16], [17] developed by Herbet Jaeger seems a promising
method for developing context discernment networks computa-
tionally efficiently. Also, the method known as adaptive critics
(a.k.a. approximate dynamic programming) may also play an
important role. Experimentation is already underway with both
of these approaches.

ACKNOWLEDGMENT

The author is much indebted to Danil Prokhorov for gener-
ously allowing use of data from the trained FWNN reported in
[8] as well as George G. Lendaris and Tad Shannon for helpful
discussion and direction. This work was supported in part by
the National Science Foundation under grant ECS-0301022.

REFERENCES

[1] N. Cotter and P. Conwell, “Fixed-weight networks can learn,” in
Proceedings of the International Conference on Neural Networks, vol. 2.
San Diego, CA: IEEE Press, 1990, pp. 553–559.

[2] J. Schmidhuber, “Steps towards ‘self-referential’ learning,” Department
of Computer Science, University of Colorado at Boulder, Tech. Rep.
CU-CS-627-92, November 1992 1992.

[3] S. Hochreiter, A. Younger, and P. Conwell, “Learning to learn using
gradient descent,” inProceedings of the International Conference on
Artificial Neural Networks (ICANN2001). Heidelberg: Springer, 2001,
pp. 87–94.

[4] A. Younger, S. Hochreiter, and P. Conwell, “Meta-learning with back-
propagation,” inProceedings of the International Joint Conference on
Neural Networks (IJCNN2001). Washington, DC: IEEE Press, 2001,
pp. 2001–2006.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
citeseer.nj.nec.com/hochreiter96long.html

[6] L. Feldkamp, G. Puskorius, and P. Moore, “Adaptation fromfixed
weight dynamic networks,” inProceedings of the IEEE International
Conference on Neural Networks (ICNN96). Washinton, DC: IEEE
Press, 1996, pp. 155–160.

[7] ——, “Adaptive behaviour from fixed weight dynamic networks,” Infor-
mation Sciences, no. 98, pp. 217–235, 1997.

[8] D. Prokhorov, L. Feldkamp, and I. Tyukin, “Adaptive behavior with fixed
weights in recurrent neural networks: An overview,” inProceedings of
the International Joint Conference on Neural Networks 2002. Honolulu,
HI: IEEE Press, 2002.

[9] L. Feldkamp, D. Prokhorov, and T. Feldkamp, “Simple and conditioned
adaptive behavior from a fixed neural network,”Neural Networks,
vol. 16, no. 7, pp. 683–689, 2003.

[10] D. Prokhorov, G. Puskorius, and L. Feldkamp, “Dynamical neural net-
works for control,” inA Field Guide to Dynamical Recurrent Networks,
J. Kolen and S. Kremer, Eds. IEEE Press, 2001.

[11] A. Back and T. Chen, “Approximation of hybrid systems by neural net-
works,” in International Conference on Neural Information Processing
(ICONIPS97), vol. 1. Singapore: Springer-Verlag, 1998, pp. 326–329.

[12] T. Chen and H. Chen, “Approximation of continuous functionals by neu-
ral networks with application to dynamic systems,”IEEE Transactions
on Neural Networks, vol. 4, no. 6, pp. 910–918, 1993.

[13] ——, “Universal approximation to nonlinear operators byneural net-
works with arbitrary activation functions and its application to dynamical
systems,”IEEE Transactions on Neural Networks, vol. 6, no. 4, pp. 911–
917, 1995.

[14] A. Back and T. Chen, “Universal approximation of multiplenonlinear
operators by neural networks,”Neural Computation, no. 14, pp. 2561–
2566, 2002.

[15] H. Jaeger, “The ”echo state” approach to analysing and training recurrent
neural networks,” German National Research Center for Information
Technology, Tech. Rep. GMD Report 148, 2001.

[16] ——, “Short term memory in echo state networks,” German National
Research Center for Information Technology, Tech. Rep. GMD Report
152, 2001.

[17] ——, “Adaptive nonlinear system identification with echo state net-
works,” in Neural Information Processing Systems 2002, S. Becker,
S. Thrun, and K. Obermayer, Eds., vol. 15. Vancouver, BC: MIT
Press, 2002.

