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Abstract: The Frame Problem, originally proposed 

within AI, has grown to be a fundamental stumbling 

block for building intelligent agents and modeling the 

mind. The source of the frame problem stems from the 

nature of symbolic processing. Unfortunately, connec-

tionist approaches have long been criticized as having 

weaker representational capabilities than symbolic sys-

tems so have not been considered by many. The equiva-

lence between the representational power of symbolic 

systems and connectionist architectures is redressed 

through neural manifolds, and reveals an associated 

frame problem. Working within the construct of neural 

manifolds, the frame problem is solved through the use 

of contextual reinforcement learning, a new paradigm 

recently proposed.  

 

I. Background of the Frame Problem 
 

The frame problem is one of the major stumbling blocks 

for realistically modeling cognition and for developing intel-

ligent systems. The key issues revolve around the use of 

symbolic processing systems, a) for modeling phenomena 

associated with mind and brain, and b) as building blocks for 

the development of intelligent systems. While it originally 

arose as a significant challenge in classic artificial intelli-

gence, the frame problem is now also discussed in the fields 

of cognitive science and philosophy of mind. 
 
Without tracing details of its historical evolution, rein-

vention and multi-disciplinary variants, the basic issues lead-

ing to the frame problem can be summarized in the follow-

ing way: a) If knowledge is to be represented in a symbolic 

manner, then as the amount of knowledge needed by an 

agent increases, so does the number of symbols needed to 

represent all that knowledge; b) as the number of needed 

symbols increases, the agent’s efficiency decreases. Thus, a 

fundamental problem arises when we want to construct an 

intelligent agent that has even a modicum of common sense 

knowledge, for, as the corpus of common sense knowledge 

grows, the agent slows down. This yields a situation that is 

not only inconvenient, but unrealistic in comparison with the 

large volume of common sense knowledge that human be-

ings efficiently use every day. 

The original description of the frame problem, which 

was actually an attempt at its solution, focused on the man-

agement of fluents, a construct from the situational calculus 
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[4]. A fluent is a state variable that describes the environ-

ment of an agent and whose value changes temporally. An 

example of a fluent would be president (USA), which in 

2000 equals W. J. Clinton and in 2001 equals G.W. Bush. In 

the situational calculus, all temporally changing states are 

described with fluents. For real world application, the num-

ber of fluents is quite large. The frame of the famous frame 

problem refers to an attempt to limit the number of axioms 

(rules) for determining which fluents do and do not change 

in any particular situation. An agent is said to always be op-

erating within some particular frame, and every frame has 

associated with it axioms (frame axioms) for determining the 

changed and unchanged fluents. The idea is that the number 

of frame axioms per frame should be small in order to mini-

mize processing cost. An unfortunate side effect of this con-

straint is that as the desired upper limit of frame axioms per 

frame decreases, the number of frames increases. The subse-

quent proliferation of frames brings with it the challenge of 

setting up rules for determining when an agent is to be in a 

particular frame. In essence, it trades one frame problem, the 

one focused on managing fluents, for another frame prob-

lem, the one focused on managing frame transitions. 

The different variants and versions of the frame problem 

(such as the representation problem, the persistence problem, 

the prediction problem, etc.) all have the same basic struc-

ture. Namely, when the enumeration of knowledge into 

symbolic statements (rules, axioms, predicates, etc.) be-

comes large, some method is invoked to limit the number of 

symbolic statements considered at any one time. The varie-

ties of solutions proposed so far have, unfortunately, fallen 

short. Either the proposed solution solves one frame problem 

by generating another, as in the example above, or the solu-

tions are so limited in scope and application they fail to be a 

solution to the general frame problem. 
 

II. Neural Networks, Systematicity  

and the Frame Problem 
 

   It has been said that artificial neural networks (NNs) are 

immune to the frame problem, based on the fact that NNs 

encode their knowledge into a set of weights of fixed cardi-

nality, with the implication that there is always only a fixed 

cost to recall that knowledge, regardless of how much 

knowledge is encoded onto those weights. On the other 

hand, it is also argued that while NNs may avoid the frame 

problem in this way, they do so at the cost of reduced repre-

sentational power compared to that available in symbolic 

systems. This latter argument is based on the notions of sys-

tematicity, brought forth by Fodor and Pylyshyn.  Their cri-
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tique, as we shall argue, hinges upon a limited understanding 

of connectionist architectures; and, moreover, that connec-

tionist architectures do provide the representational power of 

symbolic systems.  Alas, this representational power comes 

at the cost of incurring a frame problem; but, as we shall also 

argue, this frame problem comes in a form that is solvable. 

The systematicity analysis of the representational capa-

bility of NNs was based on the then prevalent static, feed-

forward architectures in the NN literature. Unfortunately, the 

focus on such architectures yielded misleading conclusions. 

Specifically, in their systematicity argument, Fodor and 

Pylyshyn [1] not only focus on feed-forward architectures 

but also invoke an interpretation that nodes in a feed-forward 

NN correspond to concepts, or at least to some set of sym-

bols as would be used for symbolic representation (hereafter 

referred to simply as a concept). This method for knowledge 

representation is commonly referred to today as a semantic 

network and, we argue, is one of the most limiting uses of 

neural networks.  None the less, in consideration of only 

‘semantic network’ type usage of neural networks, Fodor 

and Pylyshyn correctly draw the conclusion that the connec-

tions between nodes are only interpretable as causal relation-

ships, a crippling representational limitation.   But, this is not 

the only issue with feed-forward semantic networks 

The diagram in Fig. 1 shows a prototypical example con-

sidered in the systematicity argument. There are three nodes 

labeled a priori with the concepts Mary, John, and Mary-

LovesJohn. Assuming the network in Fig. 1 operates from 

left to right, the network architecture represents a causal 

relationship from the nodes labeled Mary and John to the 

node labeled MaryLovesJohn. If this were a connectionist 

architecture, the job of the network would be to learn the 

strength of the causal relationship. Notice that this network 

only has the ability to encode MaryLovesJohn and not Joh-

nLovesMary without an additional node being defined. As 

such, the type of compactness and expressiveness one gets 

by systematically (hence, systematicity) recombining sym-

bols is not to be found in this type of connectionist architec-

ture with concept-labeled nodes.  

While it is historically true that similar representational 

schemes appear in the works of well known connectionist 

researchers (e.g., [6]), they by far do not represent the 

breadth of knowledge representation approaches with NNs, a 

fact more understood today. In fact, recurrent connectionist 

architectures can learn and develop their own representa-

tional schemes.  Of recent, Turing computability has been 

proven for discrete recurrent neural networks and super-

Turing computability has been shown of analog recurrent 

neural networks.  This means that a recurrent neural network 

is best thought of as a program which opens up a myriad of 

representational schemes.  If a recurrent neural network can 

be thought of as a program then, of course, the training of a 

recurrent neural network can be thought of as constructing a 

program.  Programs within the realm of Turing computabil-

ity are certainly not limited to only causal representation of 

relationships between variables.  Thus in consideration of 

recurrent connectionist architectures we overcome the first 

major criticism of Fodor and Pylyshin.    

We agree that at the time, the ‘semantic network’ repre-

sentational schemes posited were likely necessary, not only 

for early empirical work and comparison with symbolic sys-

tems, but also because little else was on offer for applying 

NNs to the problems and challenges of artificial intelligence 

and cognitive science. With the benefit of insights about 

recurrent connectionist architectures, we are now able to 

redress the above systematicity argument against connec-

tionism.  While we could again use the Turing computability 

argument for recurrent connectionist architectures to counter 

the main systematicity criticism, we believe a deeper analy-

sis is needed.  Specifically, redressing the systematicity cri-

ticism reveals a frame problem similar to ‘managing frame 

transitions’ discussed in Section I. However, finding the 

frame problem embedded within a connectionist architecture 

also reveals a clear solution path through a version of 

Reinforcement Learning.  Thus we devote the next two sec-

tions to addressing systematicity and returning to the frame 

problem. 
  

 
III. Representation and Neural Manifolds 

 

Methods for representation in neural systems are signifi-

cantly more diverse than previously thought. One of the key 

architectures for enhanced representational capability is the 

recurrent neural network (RNN). In fact, analyzing RNNs 

provides a gateway to a more robust set of concepts with 

respect to connectionist architectures.  Consider the recur-

rent multilayer Perceptron (RMLP) architecture (cf. [2]); in 

this architecture, the standard feed forward MLP is aug-

mented with weighted connections between nodes where 

node output values from previous processing cycles may 

serve as inputs to nodes for the current cycle (a.k.a. recur-

rent connections). The recurrent connections of the RMLP 

enable this type of neural system to incorporate temporal 

information, and further, they enable the development of 

representational schemes during the process of training. The 

signal values that appear as inputs to the nodes via the result-

ing recurrent connections may be seen as a representation of 

the information content of data presented to the network in 

the past. For clarity we will refer to this representation as a 

dynamic representation to distinguish it from other represen-

tations that arise in the use of neural systems. 

Mary 

MaryLovesJohn 

John 

Figure 1. Basic Semantic Net representation. 
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The role of these dynamic representations in RMLPs is 

to encode the relative use of current and past input data. To 

clarify, consider the RMLP structure as comprising two dis-

tinct parts: the feed forward network and the recurrent con-

nections (see Fig. 2). The feed forward network on its own 

only has the ability to process new inputs to the RMLP (i.e. 

just the current input data), and further, during operation it is 

a static structure. But now consider the dynamic representa-

tion generated by the recurrent connections. Mechanically, 

this representation may be thought of as shifting the bias 

settings on each of the feed forward nodes. The shifting of 

the bias settings has the important qualitative effect of 

changing the feedforward network from a static structure to 

a dynamic structure.  More specifically, one can think of the 

RMLP as a sequence of feed forward MLPs.  This sequence 

of MLPs is selected from a set of MLPs where each MLP is 

exactly the same, except for its bias settings.  Therefore, 

each MLP within the set is uniquely identified by its bias 

settings.  During each step of operation, the recurrent con-

nections of the RMLP serve the role of generating bias set-

tings and, as a result, selecting an MLP from the set.  Thus 

we recast the RMLP into two components: 1) a set of MLPs 

each uniquely identified by their bias settings and 2) a net-

work selector (i.e. the recurrent connections which generate 

a set of bias settings during each step of operation).     

    The first component, the set of MLPs, can be thought of 

as a manifold.   While manifolds entail deep mathematical 

properties, it suffices for the purposes of this paper to think 

of a manifold as comprising the following: 1) a set of ele-

ments, S, and 2) a coordinate system (a one-to-one mapping 

from S to R
n
 that specifies each element in S via a vector of 

n real numbers, a.k.a. the coordinates of the element). For 

the RMLP the set of elements is the collection of feed-

forward neural networks (NN) defined by varying the bias 

parameters of the hidden nodes and holding all other weights 

static.  The coordinate of each feed-forward NN is the vector 

of bias settings.   Thus the set can be considered a manifold 

of neural networks, or more simply a neural manifold.  Fig. 

3 presents a visualization aid for this concept. 

The definition of neural manifold is generic enough that 

we may consider any type of NN architecture not just feed-

forward when constructing the set of elements.  What is im-

portant, though, is that we designate some set of parameters 

for the chosen architecture as static and some other set of 

parameters as defining the coordinates for each element of 

the set.  We may refer to each group of parameters as static 

parameters and dynamic parameters, respectively.  In the 

example of the RMLP, the dynamic parameters are the bi-

ases of the hidden nodes and the static parameters are all the 

other weights on the feed-forward network.  Notice, though, 

that the weights of the network selector are not in either of 

these two parameter sets.  In the RMLP example this would 

be the weights of the recurrent connections.     Also notice 

that the weights of the recurrent connections can themselves 

be thought of as a simple linear network.  We can generalize 

the definition of the network selector to be an NN of any 

architecture.  What is important is that at every step of op-

eration it chooses a network from the manifold to use for 

information processing, that is, it sets the dynamic parame-

ters.   

The neural manifold and the network selector concepts 

provide already a rich foundation for representation.  In gen-

eral, we may consider any NN a program, not just RNNs.  

So a manifold can be thought of as a library of programs.  

Thus, the network selector is a program for selecting pro-

grams.  These concepts will be leveraged as we return to the 

systematicity criticism and subsequently the frame problem.  

It is important at this point to remark that an RMLP is a very 

simple example of a neural manifold and network selector 

and that the remainder of this paper will deal with the con-

cepts of neural manifolds and network selectors and only 

refer back to the RMLP as an example to add clarity.     
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Figure 2. Components of Recurrent MLP (RMLP) 
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IV. Neural Manifold and the Systematicity Argument 
 

Recall that the systematicity argument was directed at 

the expressive capabilities of single feedforward neural net-

works, which we agree have a limited repertoire of relation-

ships they can express among primitive symbols. We sub-

mit, though, that through the agency of neural manifolds and 

network selectors the story is different.  Consider a neural 

manifold whose elements are RNNs, per say a recurrent 

neural manifold (RNM).  Because RNNs can be thought of 

as programs we can indeed imagine constructing an RNM 

with at least one program that takes the primitives John and 

Mary and encodes JohnLovesMary and at least one program 

that takes the same primitives and encodes MaryLovesJohn.  

Due to space limitations we cannot go into a detailed expla-

nation but at this point simply assert this is true.  By defini-

tion, these two RNNs are exactly the same in architecture 

and are accessible via their respective coordinates. Thus, 

contrary to the conclusions of the systematicity argument, it 

is not necessary to specify an architecture with multiple spe-

cialized nodes; rather, the same RNN architecture may be 

used but only with differing dynamic parameter settings. So 

for the same node count, we are in a position to get much 

more representational power, and in principle, at the same 

level of representation as AI’s systematic manipulation of 

symbols. 

The above establishes that RNMs provide expressiveness 

on par with symbolic processing, and thus takes the wind out 

of the sails of the systematicity argument against NNs. So 

far, so good. What we have yet to address is a principled 

way to construct a useful manifold, through setting of the 

static parameters, and an optimal network selector, through 

setting of the parameters on the network selector.  We know 

that in the case of the RMLP this is possible through the use 

of backpropagation through time (BPTT).  By way of fore-

shadow, we shall see how BPTT is a form of reinforcement 

learning and that reinforcement learning is the general 

method for setting the static parameters of the manifold and 

the parameters of the network selector.  Before this, though, 

we shall see that constructing an optimal network selector is 

equivalent to solving the frame problem.    

Recall from Section I, the difficult issue of managing 

fluents for the original frame problem was solved at the cost 

of creating another frame problem – that of managing 

frames, which again was not directly solvable. In a sense, we 

have a similar situation here. We draw the parallel by equat-

ing the notion of frame with a point on our RNN manifold, 

and then posit that the task of selecting an RNN from the 

manifold is a (type of) frame problem. An important conse-

quence of this view is that once we develop a solution for 

constructing an optimal network selector, we will have the 

basis for a solution to the general frame problem. 
 

 

V. Neural Manifolds, Frames and the Solution 
 

As suggested above, we posit that conceptually each 

point on a neural manifold corresponds to a frame. Frames, 

as originally proposed, are defined around a particular ac-

tion. This frame action can more conventionally be thought 

of as a program (an action program). So the neural network 

corresponding to each point of the manifold takes the place 

of the action program (an action network, which performs 

the frame action).  

As described earlier, each frame has associated with it 

frame axioms; these determine the update of the fluents. If 

the AI frame approach had worked well, the subsequent in-

formation processing would have rapidly resulted in a) up-

date of fluents, b) calculation of the next action, and c) de-

termination of the frame within which the action should be 

considered. In principle, this information processing set 

could be wrapped up into a single program (a frame pro-

gram).  This frame program could in principle be replaced 

by a neural network (a frame network).   Indeed, the network 

selector plays the role of the frame network.  In the case of 

the RMLP the recurrent connections form the network selec-

tor and thus the frame network where the frames are the 

feed-forward networks of the manifold.   Recalling that 

RMLPs are trained with BPTT and, as we will show, BPTT 

is a form of reinforcement learning, the frame network can 

be constructed through reinforcement learning.  We will 

describe this connection in further detail in the next section. 

Before moving on, though, it is important to highlight 

some differences which exist between frames and neural 

manifolds. The frame problem from AI starts with the con-

cept that all actions are explicitly programmed by an engi-

neer, i.e., a tailored program is required for each frame. The 

concept of neural manifolds, on the other hand, starts by 

defining a large set of networks within which already exist 

all the programs that might be needed by the agent. Gener-

ally, the neural manifold may be thought of as comprising a 

large collection of “frame-relevant” programs, an idea we 

will explore shortly. The critical point here is that it is not 

necessary for all points in the manifold to correspond to use-

ful programs. If the manifold contains both useful and non-

useful programs, it will be the frame network’s task to deal 

with this issue. 
 

VI. Frame Networks and Reinforcement Learning 
 

Conceptually, the RNN structural form derives its com-

putational power by its ability to merge information to and 

from temporally disparate processing steps.  A recurrent 

connection from one node to another takes the output value 

of the “from” node (that was calculated during the previous 

time increment) and passes it to the input of the “to” node (at 

the beginning of the new time interval). Once a value has 

been input to the first node in a structure with recurrent con-

nections, the value will continue to influence the inputs ap-

pearing at each node in the path for all time hence. The ac-

tual contribution at any time tk will depend on the weights of 

the various connections. 

An interesting thing one can do with this type of compu-

tational structure is to adjust the meaning of past-present-

future. The usual way of thinking about the computations 
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made at a node at some time tk is to consider that all the data 

coming to it are based on past and present data. But, by ad-

justing the zero reference point on the perceiver’s clock, the 

same computations can be treated AS IF they include data 

from the “future”. Of course, when doing this, care needs to 

be taken to keep all aspects of the resulting representation 

synchronized. 

Thus if one were training a recurrent neural network to 

be a policy, the computations can be set up to act as if per-

formance information from one time step is communicated 

back to previous time steps. This concept is incorporated in 

(at least) two of the modern Reinforcement Learning proce-

dures: the Adaptive Critics and BPTT. 

The Adaptive Critic class is based on approximating 

Bellman’s Dynamic Programming. This method defines a 

primary utility function U that calculates a “cost” associated 

with an action and subsequent change of state of the plant 

being controlled. Dynamic Programming is a method for 

designing a policy that minimizes the total cost that accrues 

over an entire trajectory of the plant from a starting point in 

its state space (this is called “cost-to-go”, and is designated 

as J). The frame network (a.k.a. network selector) can be 

thought of as a policy for selecting frames (i.e. selecting 

networks from the manifold).  The adaptive critic method 

uses the clock trick mentioned above for only one step into 

the future. The rest of the future is dealt with via a critic NN 

whose job it is to directly estimate the value of J (or its gra-

dient). The policy design at each iteration of the process is 

based on the current estimate of J (or its gradient). As the 

estimate of the J value (or its gradient) is improved, so is the 

design of the policy. 

The BPTT method approaches the policy design task 

from the other direction, by making substantial use of the 

clock trick mentioned above. Instead of using a critic to es-

timate J, it adds up the various values of U that are in the 

“pipeline” during the evolution of the process, and by using 

the clock trick mentioned above, acts as though it is calculat-

ing J by adding up “future” values of U directly. It turns out 

that BPTT, in particular its truncated form, has become a 

popular method for training the weights of recurrent neural 

networks [5].  Augmentation of this algorithm with a form of 

extended Kalman filtering has proven extraordinarily power-

ful, and has been used to create RNNs which have been de-

ployed to solve very complex tasks in consumer vehicles [5].  

Getting back to the policy design task, feeding back in-

formation to previous time steps allows the output of the 

RNN from one time step to be adjusted so as to maximize 

the performance measurement for subsequent time steps. 

The key here is that BPTT allows the output from an RNN at 

one time step (say t) to be adjusted so as to maximize per-

formance measurements for subsequent time steps (say t+1 

through t+n). In the language of Adaptive Critics and Ap-

proximate Dynamic Programming mentioned above, the 

output of the RNN at time t is adjusted so as to maximize 

(minimize) the performance measurements for times t+1 

through t+n. That is, the output of the RNN at time t is ad-

justed so as to maximize/minimize 

1
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w
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, hence the characterization above that BPTT 

implements a form of RL. We thus substantiate the claim 

that BPTT is a form of RL and, given all of the analysis up 

to this point, TL can be used to construct frame networks.  In 

fact, in general RL can be used to construct a frame network 

and solve, in general the frame problem.  We briefly review 

in the next section a new RL paradigm from which this as-

sertion stems. 
 

VII. Contextual Reinforcement Learning 
 

The following discussion is based on recent work 

wherein the idea of “context” is used to extend application 

of the RL paradigm into what we have termed Contextual 

Reinforcement Learning (CRL). The discussion up to this 

point has indirectly described the major components of 

CRL; further details, analysis and implementation examples 

can be found in [3] and [7]. The major difference between 

the above discussion and CRL is use of the term ‘frame’ 

instead of the term ‘context’. The term context refers to a 

larger concept than that of the term frame, in the sense that a 

frame focuses just on the actions of the agent whereas con-

text includes aspects of the agent’s environment as well. In a 

policy design setting, for example, the plant to be controlled 

is the context for the design, and the associated optimal pol-

icy design (actor parameters) is to be selected from the 

manifold. More generally, every point on the neural mani-

fold defines a set of behaviors for the agent (e.g., optimal 

policy designs), and the aim of CRL is to translate all infor-

mation gained from the environment into an optimal behav-

ior selection from the neural manifold. 

Fig. 4 provides for a general description of CRL, and 

brings together the significant concepts discussed so far. The 

bottom most box is the manifold we have already described. 

The set of networks in this manifold are indexed via their 

dynamic parameters, which serve as the manifold‘s coordi-

nate system. In our previous RMLP example, it is the set of 

feed forward neural networks defined by varying the biases 

for the nodes receiving recurrent connections, holding all 

other parameters static. The coordinate system (indexing 

mechanism) is the domain of the dynamic parameters. 
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Also in Fig. 4, we see that the dynamic parameters are 

being set by the Context Discerner (CD). In general, we may 

consider the CD as implementing the network selector, that 

is, a ‘policy’ for selecting networks from the neural mani-

fold. The path through parameter space is based on the 

stream of inputs and feedbacks the agent receives internally 

and from the environment. In our previous RMLP example, 

the CD is the set of recurrent connections – i.e., the CD only 

receives internal feedback. In the CRL experiments per-

formed so far, the CD has been implemented as an MLP and 

an RMLP. In principle, the CD can be any form of machine 

learning algorithm. 

Among the tasks of the (trained) CD is to “know” what 

combinations of inputs and feedbacks require action from 

the CD to pick another NN from the manifold, and further, it 

needs to know how to accomplish the selection in a time 

optimal manner. This entails knowing which changes in the 

environment are most important, and what they imply in 

terms of the NN (a.k.a. the program) to be selected. A partial 

demonstration of this capability is given in a companion 

paper at this conference [3]. 
 

 

VIII. Conclusion 
 

The frame problem has been around for some four dec-

ades, and its resolution has long been overdue. It is interest-

ing that in some sense the answer to this problem has existed 

in the basic form of RMLPs for some time without recogni-

tion of the fact. The majority of this paper has explored the 

nature of the frame problem, how it finds its analogue in 

connectionist architectures and, ultimately, how it might be 

solved, in general, through the use of reinforcement learning. 

Along the way, significant effort has been spent on redress-

ing criticisms of the representational capability of neural 

networks.  These criticisms long ago pushed away from 

fruitful dialogue connectionist architectures as being signifi-

cant building blocks for artificial intelligence (as well as for 

models of mind and cognition). We believe that the research 

presented here takes a significant step in addressing these 

long standing criticisms, as well as demonstrating how some 

of the hardest problems of AI can now indeed be addressed 

through connectionism. 

The work reported here represents but a small sampling 

of what we believe to be possible with contextual reinforce-

ment learning and neural manifolds. Indeed, early results 

with CRL seem incredibly promising, but at the same time 

significant challenges remain. Still, the CRL architecture has 

the potential of providing a greater understanding of how 

human beings are able to use information learned in one 

situation across a large variety of related situations. Namely, 

it seems that the context discerner is a policy for looking at 

both, external cues (from the environment) and internal cues 

(from the agent state) in order to generalize the application 

of programs (of the neural manifold) in an optimal manner. 

Moreover, the neural manifold seems a powerful method for 

describing how memory is organized both at a cognitive and 

neural level.  From an engineering point of view, CRL pro-

vides a new method for enabling high capacity, long term 

learning and memory for an artificial agent. 

In closing, it is our hope that this and similar research 

might provide a renewed foundation for approaching again 

the largest challenges of AI. 
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