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Abstract There is substantial neurophysiological evidence

from decades of single-cell studies that category and other

concept cells exist in both human and animal brains. This

indicates that the brain can generalize and create abstract con-

cepts and encode and represent such abstractions using single

cells. These single-cell findings cannot be accounted for and

explained by the theory of distributed representation and pop-

ulation coding, the dominant theory in the brain sciences. In

light of these findings, this paper reexamines the two contending

mental representational schemes, localist and distributed, on the

basis of computational efficiency, the ability to simultaneously

process and activate many different concepts, and the structure

for semantic cognition. The evidence for category and concept

cells favors localist representation in the brain.

Keywords Localist representation � Distributed

representation � Semantic cognition � Category cells �
Concept cells

Introduction

Single-cell recordings of recent years, in both animals and

humans, have revealed the existence of abstract category and

concept cells in the brain. The existence of abstract place cells

has been known for decades. More recent findings reveal the

existence of different types of face cells (e.g., monkey faces and

human faces), cells that reflect emotions, cells for categories of

objects (e.g., nests, animals, and houses), multimodal invariant

concept cells for persons (e.g., Jennifer Aniston and Saddam

Hussein), and objects (e.g., Sydney Opera House). However,

the most widely accepted theory of the brain, the theory of

population coding or distributed representation, cannot explain

the existence of these types of abstract cells—why are they

there, what is their purpose, and so on. Their existence is

obviously related to mental representational issues. This paper

offers some theoretical perspectives on the existence of these

types of cells in the brain. Representational issues obviously are

the focus, and the two primary theories—local and distributed

representation (population coding)—are compared. The first

perspective is from the point of view of processing and repre-

sentational efficiency and efficiency of access to information

for decision making and problem-solving. The second per-

spective is from the point of view of parallel processing and

simultaneous activation of many different concepts. The third

perspective is from the point of view of semantic cognition and

the role of these category and concept cells.

The paper is laid out as follows. Section 2 cites some of

the findings on category and concept cells. Section 3 pre-

sents a localist semantic cognition model that is widely

referenced and its corresponding distributed representation

form. Section 4 deals with computational and processing

efficiencies of the two representational schemes. Section 5

is about the ability to simultaneously activate many dif-

ferent concepts. Section 6 deals with semantic cognition

and the implementation of a localist semantic cognition

model using Hebbian cell assemblies and abstract catego-

ries and concepts. Section 7 has the conclusions.

The Evidence for Abstract Category and Concept Cells

in the Brain

In general, there is significant evidence that the brain can

create abstract multimodal invariant representations of
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objects and persons and encode them in single cells. Quian

Quiroga et al. [1] report finding single medial temporal

lobe (MTL) neurons in humans that encode object-related

concepts irrespective of how the objects are presented—

visual, textual, or sound. They checked the modality

invariance properties of a neuron by showing the subjects

different pictures of the particular individual or object that

a neuron responds to and their spoken and written names.

For example, Quian Quiroga et al. [1, p. 1308] found a

neuron in the entorhinal cortex of a subject that responded

‘‘selectively to pictures of Saddam Hussein as well as to the

text ‘Saddam Hussein’ and his name pronounced by the

computer… There were no responses to other pictures,

texts, or sounds.’’ Quian Quiroga [2, p. 588) found a hip-

pocampal neuron that responded to pictures of Halle Berry,

an actress, even when she was masked as a ‘‘Catwoman.’’

The neuron also responded to the letter string ‘‘HALLE

BERRY’’ (and not to other names) and her name pro-

nounced by a synthesized voice. Suthana and Fried [3,

p. 428] found a neuron that responded to pictures of the

Sydney Opera House, but not to 50 other landmarks. It also

responded to ‘‘many permutations and physically different

representations of the Sydney Opera House, seen in color,

in black and white, or from different angles’’ and to the

written words ‘‘Sydney Opera.’’

Quian Quiroga et al. [1] found that a large proportion of

MTL neurons responded to both pictures and written names

of particular individuals or objects and speculates that ‘‘MTL

neurons encode an abstract representation of the concept

triggered by the stimulus.’’ These abstract cells are often

called concept cells and are further discussed in [4, 5].

The Evidence for Category Cells

Cells that represent abstract categories have been found in

both humans and animals. Fried et al. [6] and Kreiman

et al. [7] led the discovery of ‘‘category-specific’’ neurons

in the MTL in humans. Fried et al. [6] found single neurons

in the MTL that discriminated faces from inanimate objects

and also found ones that responded selectively to specific

emotional expressions or jointly to particular facial

expression and gender. Kreiman et al. [7] found single

MTL neurons that responded selectively to ‘‘visual stimuli

from different categories, including faces, natural scenes

and houses, famous people and animals.’’ Kawasaki et al.

[8] found neurons in the left and right orbital and anterior

cingulate cortices of humans, which were selective for only

one emotion class, most often aversive.

Single neurons in the monkey visual temporal cortex

have been found to respond selectively to certain categories

of stimuli such as faces or objects [9–11]. Gothard et al.

[12] found single neurons in the amygdala of monkeys that

responded selectively to images of monkey faces, human

faces, and objects. Their general observation is (p. 1674):

‘‘These examples illustrate the remarkable selectivity of

some neurons in the amygdala for broad categories of

stimuli.’’ Lin et al. [13] found ‘‘nest cells’’ in the mouse

hippocampus that fire selectively when the mouse observes

a nest or a bed, regardless of the location or environment.

Yoshida et al. [14] found many neurons in the dorsopos-

terior part of rat anterior piriform cortex that are tuned

selectively to either a single category or a specific com-

bination of distinct categories of a panel of eight food-

related categories of odorants. Sugase et al. [15] studied

single neurons in the temporal cortex of macaque monkeys

and found that they conveyed different types of informa-

tion at different latencies. Initial response of the neurons

categorized the stimulus as monkey faces, human faces, or

other shapes. A later response of the same neurons con-

tained more detailed information about identity and

expression.

Freedman et al. [11] summarized these findings in the

following way (p. 312): ‘‘These studies have revealed that

the activity of single neurons, particularly those in the

prefrontal and posterior parietal cortices (PPCs), can

encode the category membership, or meaning, of visual

stimuli that the monkeys had learned to group into arbi-

trary categories.’’

Overall, the neurophysiological evidence is substantial

that category cells exist in the brain and that the brain can

abstract and generalize and use single cells to represent

these abstractions.

Semantic Cognition Based on a Hierarchy of Abstract

Categories and Concepts

Semantic cognition implies our ability to infer properties of

objects and concepts when we encounter them in some

form. For example, when we see a bird on the ground, we

generally infer in our mind that it has wings, it can fly, it is

a living thing, and so on. How such semantic knowledge is

created, stored, and accessed in our brains has been of

immense interest for decades. Figure 1 shows a possible

way of storing semantic knowledge, as proposed in [16],

where semantics are based on a hierarchy of abstract cat-

egory concepts and their properties.

In this tree structure, nodes represent abstract categories

and arrows reflect properties of a category. For example,

the node bird has arrows for the properties feathers, fly, and

wings. The semantic tree shows the hierarchical relation-

ship of these abstract categories. For example, plant and

animal are subcategories of living thing. The hierarchical

tree of Fig. 1 produces propositions such as living things

grow; a plant is a living thing; a tree is a plant; and an oak

is a tree. It therefore follows that an oak can grow.
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A Distributed Representation/Population Coding View

of Semantic Cognition

PDP connectionists [17–19] and population coding theory

deny the existence of abstract concept cells in the brain.

That is, they deny that single cells could encode and rep-

resent such abstract concepts as living thing, plant, animal,

and so on. Hence, in their models [17–19], they restructure

this type of semantic tree by replacing the complex abstract

units with units of the distributed form. Therefore, concept

nodes—such as robin, living thing, plant, and animal—are

replaced with string of nodes for distributed representation.

Figure 2 is the Rumelhart-type network model used by

Rogers and McClelland [18, 19] to learn the semantic

knowledge of Fig. 1. The network of Fig. 2 learns three-

element propositions of Fig. 1 that are true of objects such

as pine and canary. This particular model uses localist

representation for objects and concepts, but [18, 19] later

use perceptual features of objects to explain the concept of

distributed representation. The Item and Relation layer

nodes of Fig. 2 are the input nodes, and the Attribute layer

nodes are the output nodes. The hidden layer nodes have

nonlinear processing functions. The Item layer nodes rep-

resent objects, whereas Relation layer nodes represent

contexts. For example, the input pair canary and can is

analogous to showing the network a picture of a canary and

asking what it can do.

In the following quote, Rogers and McClelland [18,

p. 147, 148] explain how a distributed representation model

is created from the semantic model of Fig. 2, which is a

localist model.

‘‘The distributed version of the model uses the same

corpus of training items and a similar model architecture.

However, in place of twenty-one Item units employed in

the localist version (with one unit standing for each

item), we instead construe the input units as representing

the subset of each object’s attributes that are apparent

from its visual appearance—for example, features such

as red, big, and legs…The model might be shown a

picture of a robin, for instance, by activating input units

corresponding to red, legs, and wings….To this end, we

employed as ‘perceptual’ input attributes seven of the

eight is properties from the training corpus—excluding

living, but including big, pretty, green, red, yellow,

white, and twirly—as well as a subset of the has prop-

erties: specifically, wings, legs, gills, petals, and bran-

ches. Note that these properties are also included as

output attributes, along with is living, the remaining has

properties, and the can properties for all twenty-one

instances.’’

Note, however, that the distributed representation model

proposed above is still based on localist units (i.e., it uses

localist units such as big, pretty, green, and red) and is

essentially used to explain the concept of distributed rep-

resentation in a simple way. Their ultimate distributed

model, however, is made of units that have no meaning and

labels at all, neither at the input layer nor at the output

layer.

Fig. 1 A taxonomic hierarchy

of the type used by Collins and

Quillian [16]. Adapted from

Fig. 2 in ‘‘Précis of Semantic

cognition: a parallel distributed

processing approach,’’ by

Rogers and McClelland [19].
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A Theoretical Perspective: On Efficient Access

to Information by a Supervisory System

Abstract category and concept cells correspond to localist

representation and here’s one explanation why such cells

exist in the brain.

Given that a supervisory system is the ultimate recipient

of category and concept information, any type of system,

biological or artificial, would try to provide that informa-

tion in the most compact and readily usable form. Imagine

a supervisory system being informed by a single cell that

the visual stimulus corresponds to a monkey face versus

being presented with a distributed pattern over a few

thousand cells. In the case of a distributed pattern, the

supervisory system would have to interpret the pattern first

and that adds a layer of computation irrespective of the way

it is performed. Such a pattern interpretation step would

also take time and slow down processing. On the other

hand, an abstract cell for a monkey face relieves the

supervisory system of such a computational burden and

speeds up processing. There is, therefore, significant

computational efficiency with localist representation

especially for frequent and repetitive tasks.

Extracting, abstracting, and summarizing information

in additional cells, such as concept and category cells,

streamlines computations, and interpretations, avoids

redundant computations, and creates speed and efficiency

in the system. Hence, computational efficiency of the

overall system is one of the main reasons for the exis-

tence of category and concept cells and the constant

abstraction of information in various stages of processing

in the brain.

Fig. 2 Rumelhart-type network

model used by Rogers and

McClelland [18, 19] to learn

propositions of Fig. 1
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A Theoretical Perspective: On the Need

for Simultaneous Activation of Many Different

Concepts

Suppose that the human brain has a distributed represen-

tation system that is trained to recognize different catego-

ries of animals. Now, imagine a person looking at an

advertisement for a zoo at a distant billboard that shows a

tiger, a lion, a giraffe, a rhinoceros, and an elephant, all in

close proximity to each other and within the person’s span

of attention [20–22]. A distributed representation system

would have to process each animal separately, one after the

other, in order to recognize them. Such a system, therefore,

is not capable of recognizing all of the animals simulta-

neously, even when all of them are in focus. In this situ-

ation, the distributed representation system essentially

becomes a sequential (serial) processor, processing one

animal at a time. And parts of the visual stimulus would

have to be in a queue and wait for processing. A localist

representation system, on the other hand, is not bound by

the strict limits of such a single-structure recognition sys-

tem (i.e., the distributed representation system) and can

create separate parallel recognition systems for each cate-

gory of animal, very similar to parallel processing in the

brain for color and motion detection. It can segment the

stimulus (for each animal) and process the segments in

parallel through the multiple recognition systems and

activate the corresponding category cells simultaneously.

One can, therefore, build efficient parallel processing sys-

tems by using localist representation. In general, simulta-

neous activation of many different concepts, a phenomenon

observed in the brain, is possible only with localist repre-

sentation and that is one of the reasons we find category

and concept cells in the brain, which are localist cells.

Distributed representations problem with simultaneous

activation was pointed out earlier by Garagnani et al.

[23, p. 161]: ‘‘In this approach, the same set of hidden nodes is

used to encode different items as different patterns of graded

activation; this, however, makes it impossible to maintain

separate different item representations when these are

simultaneously active. In general, cognitive arguments (e.g.

our proven ability to maintain multiple item representations

distinct) favour localist representations, whereas neurosci-

ence arguments weight in favour of distributedness.’’

A Theoretical Perspective: Category and Concept Cells

and Semantic Cognition in the Brain

The existence of category and concept cells might also

explain how semantic cognition works in the brain and vice

versa. The abstraction-based semantic model of Fig. 1

appears realistic in many ways given the neurophysiological

evidence. First, there is evidence for hierarchical categories

in the brain. Second, a Hebbian cell assembly can easily

implement such a hierarchical semantic cognition system.

The Evidence for Category Hierarchies

If one examines the variety of category cells found in the

brain, one would observe that some of the cells reflect very

broad categories, whereas others are not so broad. For

example, there are face cells, but also cells for subcate-

gories like human and monkey faces. There are also cells

for specific types of emotions, for gender, and for different

types of odors and their combinations. There are object-

related cells, but also cells for specific types of objects like

houses and nests. From these neurophysiological observa-

tions, one can infer that the semantic cognition system in

the brain is hierarchical, very much in the sense of Fig. 1.

A Hebbian Cell Assembly Implementation of Semantic

Knowledge Using Category and Concept Cells

Quian Quiroga [2] presents a model where abstract concept

cells are part of Hebbian cell assemblies. That model could

be extended to include category cells to build a semantic

system that is somewhat similar to Fig. 1. Thus, there could

be a cell assembly for each node of the hierarchical

semantic tree of Fig. 1. For each such node, a cell assembly

would consist of a cell for the category and separate cells

for the properties of that category. For example, for the

node bird in Fig. 1, the cell assembly would have a cell for

the category bird and additional concept cells for the

properties fly, feathers, and wings. Similarly, there could be

a cell assembly for the category fish and concept cells in

that assembly for the properties scales, swim, and gills.

Since a category and its properties are related, the firing of

a category cell, say the bird cell, would cause the property

cells to fire in the Hebbian sense. In this case, the cells for

fly, feathers, and wings would activate.

The cell assemblies could also be linked in a hierar-

chical fashion since categories at different levels of the tree

are related. Thus, the bird cell in the bird assembly and the

animal cell in the animal assembly are related, and the bird

cell activation would activate the animal cell and its

property cells. In this way, a hierarchy of cell assemblies

can produce a semantic system similar to the semantic tree

of Fig. 1. The concatenation of such cell assemblies and

the appropriate activation of categories and their properties

provide the supervisory system with relevant semantic

information.

There is obviously an efficiency aspect to such a

semantic cognition system: to the supervisory system, it

provides easy and quick access to semantic information

through just a few cells instead of through thousands or
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millions of cells in a population code-based system. Thus,

simplification, automation, and computational efficiency

are the key advantages of a semantic system based on

category and concept cells. Plus, a Hebbian cell assembly

system provides simultaneous activation of appropriate

concepts, something that is not feasible with a distributed

representation system. Thus, category and concept cells in

the brain solve many theoretical problems and that explains

their existence in the brain.

Conclusions

This paper tried to explain the existence of category and

other concept cells in the brain by presenting possible

theoretical justifications for them. The overarching con-

siderations were that of computational efficiency and

simultaneous processing and delivery of information to a

supervisory system. A distributed representation (popula-

tion coding) system, being a single-structure system built to

represent many different things, has the drawback of

becoming a serial processor when many different things

have to be recognized at the same time.

Note that category and concept cells tie well into a

semantic cognition theory, and such a theoretical connection

has not been made before in cognitive or neurosciences.

One can infer from the analysis here that the most

efficient, easily accessible, and compact form of semantic

knowledge exists in the brain in a network of abstract

concept and category cells, and that this semantic network

is used by the supervisory system in the brain for decision

making and problem-solving.
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