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Motivation: temporal phenomena in
biological systems

Rhythms
m  Circadian rhythms
m Heartbeats
m  Central pattern generators for locomotion
Neuroscience
m Spikes
m Oscillations observed in EEG recordings
® Binding Problem
m Representation of stimuli (odors): Winnerless networks
E.g. recent work in neuroscience indicates increasing impotrtance of timing

® "Driving fast-spiking cells induces gamma rhythm and controls sensory
responses.” J. A. Cardin, et al. Nature, 20009.

= "Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman
Primate Brain." X. Han et al. Neuron, 2009.

m “Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial
Field Potentials in Human Visual Cortex,” H. Liu et al, Neuron, 2009.

Nevertheless, a significant amount of research in the neural networks field does not
take the temporal dimension into account effectively



Comparison of different models of

neural activity
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1D and 2D differential equatlons

=3,°
X
Z—:: =A—"x
Solution:
r(t) = voe 7" + é(1 —e )

Y
Initial condition determines evolution of the system
In two dimensions, we consider X = AX .
The initial values, and eigenvalues of A determine the evolution of the
system
X (t) = areMici+ase??cy where \ are eigenvalues, and c are eigenvectors,
and « is determined by initial conditions
Solving differential equations using Eulers method:
Taylor series approximation

d
z(to + At) = a(t) + At—x 4

For better accuracy, use methods like Runge-Kutta



Qualitative theory of differential
equations: use signs

stable unstable At equilibrium

equilibrium equilibrium

F(V)

Figure 3.9: The sign of the slope,
A = F'(V). determines the stability

. of the equilibrium.
negative slope positive slope

F'(V)<0 F'(V)>0

F(V)>0
Y

F(V)<( )_‘_-

Izhikevich, Dynamical systems in Neuroscience



Mechanistic interpretation: energy
landscape

Izhikevich, Dynamical systems in Neuroscience



Attraction domains

Unstable Two attraction domains
Equilibrium

are separated by an

unstable equilibrium

Attraction Domain

Attraction

Izhikevich, Dynamical systems in Neuroscience



Phase portrait of a 1D system

Attraction domains

\%
— - - O Pat-— -—D— —G +-— O— > P -—

Phase Portrait

Depiction of equilibrium states, trajectories and attraction domains

Izhikevich, Dynamical systems in Neuroscience



These two systems are qualitatively identical

These two systems are qualitatively different

Izhikevich, Dynamical systems in Neuroscience



Hartman-Grobman theorem:
linearization

Can replace a more complex system with a simpler one with identical phase portrait

1zhikevich, Dynamical systems in Neuroscience



Two-dimensional phase portraits

TABLE 14.1 Classification of the Equilibrium State of a Second-
Order System

Type of Equilibrium
State x Eigenvalues of the Jacobian Matrix A

L — e A e e e

Stable node Real and negative

Stable focus Complex conjugate with negative real parts
Unstable node Real and positive

Unstable focus Complex conjugate with positive real parts
Saddle point Real with opposite signs

Center Conjugate purely imaginary

R ————————— R —————————

Haykin, Neural Networks



Equivalence classes for 2D phase
portraits

Powerful descriptive tool

Haykin, Neural Networks



Oscillations

m Oscillations occur in a linear system when there
is one pair of eigenvalues that is purely
imaginary.
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Example: Creating 2D phase
portraits in MATILLAB

m Governing equation 1s Xdot = AX

B A is a 2x2 matrix

m X consists of a 2d coordinate [x1 x2]

m First select range for x values: x1 = -2:0.1:2
mx2 = -2:0.1:2

m Use meshgrid to create a grid of 2D points
m [X1, X2] = meshgrid(x1,x2);

m [m,n| = size(X1); (should be 41x41)



Creating 2D phase portraits

reshape(X1, 1, m*n) gives a 1x1681 matrix.

X = [reshape(X1, 1, m*n); reshape(X2, 1, m*n)| gives a
2x1681 matrix

Compute Xdot at each grid point: Xdot = AX
V1 = reshape(Xdot(1,:), m, n); V2 = reshape(Xdot(2,:),
m, 1);

Normalize velocity vectors:

V1 = V1./sqet(V1.22 + V2.°2 + 0.00001);

V2 = V2./5qee(V1. 2 + V2.2 + 0.00001)

quiver(X1, X2, V1, V2); axes(|-2 2 -2 2]);



Example: tracing the trajectory of a

solution

Select the matrix A

Select a starting point: say x1 = 0.5, x2 = 0.5

Select an integration step, say dt = 0.01

Select number of steps, say 2000

x1 = zeros(2000, 1); x2 = zeros(2000, 1);

x1(1) = 0.5; x2(1) = 0.5;

for 1 = 2:2000
x1() = x1(i-1) + de * (A(L,D)*x1(E-1) + A(1,2)*x2(-1));
2() = x2(-1) + de * (AR, D)*x1(i-1) + A2,2)*x2(i-1));
end;

Opverlay with phase portrait plot: hold on;

plot(x1, x2, k’);

This plots one trajectory
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Linear stability analysis

Given the following nonlinear system

Compute an equilibrium point, .,

Compute the Jacobian matrix A at z,

dX
— = F (X
F(zeq) =0
-0 F, OF, -
0x1 0o S
OF5 OF>
(9:131 8392
OFn
_—_— * 833'N'

If all eigenvalues of the linear system have negative real parts, the nonlinear
system is asymptotically stable. If at least one eigenvalue has positive real part,

the system is unstable



Simple ways of generating
oscillations

Activity
m Integrate and fire neural
model with constant = g

reset

Threshold

input
Pupil t
m Feedback with delays P IQ P
light

®m Mutual inhibition with
fatigue e.a

Glass and Mackey, From Clocks to Chaos, 1988



Wilson-Cowan cortical dynamics
Anatomical considerations: mmo del

All types of connections exist
Cortical Position

d
<

Short range excitation

A

QO
E

1)

.

Long range inhibitory feedback

A
\ 4

(Only one inhibitory neuron is shown for clarity)

E E E =

\ 4



Wilson-Cowan cortical dynamics

model

% FE(t) = proportion of excitatory cells firing per unit time

% I(t) = proportion of inhibitory cells firing per unit time

% Let r be the refractory period. Some cells cannot fire during this period.
% Then at time t + 7, proportion of sensitive E cells, £y =1 —r . E

% Let c. = average number of excitatory synapses per E cell

* Let g. = average number of inhibitory synapses per E cell

* Let P(t) be external excitation for E cells, Q(¢) that for I cells

% Net input excitation for E cells is c.E — g.I + P(t)

* Net response is Se|ceEE — g + P(t)] for E cells and S;|c; E — g;1 + Q(t)]
where S is a sigmoid

% Probability of cell being sensitive is independent of its input excitation,
so E(t4+7) = (1 —r.E)Se|ccE — geI + P(t)]
% Use Taylor series expansion: E(t+ 7) = E(t) + (dE/dt)r

Wilson, “Spikes, decisions and actions”, 2006



Wilson-Cowan cortical dynamics

model
*
Tcil—f = —F —+ (]. — TeE)Se[CeE i geI + P(t)]
7—% — —J + (1 — TzE)SZ[CZE — gz‘I + Q(t)]

% Introducing spatial coordinates x, a spatial weight distribution w, and
setting »r = 0 we obtain

*
dE

dt ( —|—S ZwEEE ZwIEI )]

CCZ; ZwE[E ZU]][I )]

% These pairs of equations exhibit the same dynamics

% The choice of model parameters affects the behavior of the network, as we

will see Wilson, “Spikes, decisions and actions”, 2006



Wilson-Cowan cortical dynamics

WCcortexSTM.m 10810 del

% EE and IN are 1D arrays of neural units.

% Sigmoidal function is S(z) = 100z% /(6% + z2)

 synEE, synEI, synll are spatial patterns of synaptic weights.

* Weights vary as w;; (Az) = b;exp(—Az/o;;).

* OFEE — 40,0‘E[ — 60,0']] = 30.

* bpg =1.95,bp; = 1.4,b;7 = 2.2

% Parameters are chosen to prohibit the formation of spatially uniform states.
% Use Euler method for integration. Time step DelT=0.5msec

Monotonically decreasing distance
function

Wilson, “Spikes, decisions and actions”, 2006



Wilson-Cowan cortical dynamics

model
WCcortexSTM.m

Inner loop of computation

EEresp = NeuralConv(synEE, EE) - NeuralConv(synEIL, IN) + P;
EEresp = (EEresp.*(EEresp > 0)).72;

INresp = NeuralConv(synEI, EE) - NeuralConv(synll, IN) + Q;
INresp = (INresp.*(INresp > 0)).”2;

EE = EE + (DelT/DT)*(-EE + 100*EEresp./ (20”2 + EEresp));
IN = IN + (DelT/DT)*(-IN + 100*INresp./ (40”2 + INresp));

P is the stimulus. Here, P is 1.0 for 10 ms.

Q=0

Wilson, “Spikes, decisions and actions”, 2006



Wilson-Cowan cortical dynamics
WCcortexSTM.m model

Cortex stimulated with a narrow pulse, width=100 microns, for 10ms
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Movie of spatial cortical response Temporal response of central neural unit at
1000 microns
* Network reaches an asymptotically stable state that retains information about

the stimulus location.
* This represents a short term memory mode.
* Short-range recurrent excitation stabilizes a narrow pulse of activity

*Longer range inhibition prevents excitation from spreading

Wilson, “Spikes, decisions and actions”, 2006




Wilson-Cowan cortical dynamics
WCcortexSTM.m 10010 del

Cortex stimulated with a narrow pulse, width=100 microns, for 10ms

Movie of phase portrait plot

WCCortexSTM_movie_small_stimulus_phase_plot_ WMV V9.wmv
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Wilson-Cowan cortical dynamics
WCcortexSTM.m 10010 del

Cortex stimulated with a wider pulse, width=500 microns for 10ms
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* Network reaches an asymptotically stable state that retains information about

the stimulus location.
* This represents a short term memory mode.
* Short-range recurrent excitation stabilizes a narrow pulse of activity

*Longer range inhibition prevents excitation from spreading




Wilson-Cowan cortical dynamics
WCcortexSTM.m 10010 del

Cortex stimulated with a wider pulse, width=500 microns for 10ms
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Wilson-Cowan cortical dynamics
WCcortexOSC.m 10810 del

* All parameters are the same as before, except that
) ¢ bEE = 1.9,bE[ = 1.5,b[] =1.5
% Parameters are chosen to prohibit the formation of spatially uniform states.



Wilson-Cowan cortical dynamics
WCcortexOSC.m model

Cortex stimulated with a narrow pulse, width=100 microns, for 10ms

sponses

WCCortexOSC_movie_small stimulus WMV V9.wmv
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Movie of spatial cortical response Temporal response of central neural unit at
1000 microns

* Connectivity parameters have been changed
* Spatially localized oscillations, about 20 Hz

Wilson, “Spikes, decisions and actions”, 2006



Wilson-Cowan cortical dynamics
WCcortexOSC.m 10010 del

Cortex stimulated with a wider pulse, width=400 microns for 10ms
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* More spatially complex oscillations are produced.
* There is a spatially adjacent pair of synchronized oscillations.

Wilson, “Spikes, decisions and actions”, 2006



Wilson-Cowan cortical dynamics
WCcortexOSC.m model

Cortex stimulated with a wider pulse, width=400 microns for 10ms
Movie of phase portrait plot

WCCortexOSC_movie_large_stimulus_phase_plot WMV V9.wmv
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Wilson-Cowan cortical dynamics
model

Several interesting phenomena are exhibited through this model

* An Active Transient Mode
* Gives rise to a dramatic response amplification
* This transient amplification may be a mechanism for detection of weak stimuli
* Generation of standing waves
* Explanation of visual hallucinations by extending model to 2D
* Image processing tasks are possible with a 2D model
* Mantere et al, Journal of Mathematical Imaging and

Vision 2, 251-259 (1992)
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Cortical representation



Linear vs. nonlinear oscillations

Linear Oscillator

In linear systems, the only possible oscillations involve
sines and cosines

If initial conditions are changed, amplitude of oscillation
changes

Noise in biological systems can play havoc with such
oscillators

Clearly unsuitable for control of vital functions, e.g.
breathing, heartbeats, locomotion

This implies the use of non-linear oscillators

Example q Initial condition 1
d_r —1— 2 Initial condition 2

t
do Non-linear Oscillator

dat "
Robust wrt initial conditions, noise, numerical
imprecision
Stable limit cycle:
®  when r > 1, dr/dt is negative, which reduces r
= when r <1, dr/dt is positive, which increases r

-15 1 -0.5

Ref: H.R.Wilson, Spikes, Decisions & Actions, 20006



Nonlinear oscillation: Limit cycles

A trajectory X(t) of a dynamical system is an oscillation if
X(T+t) = X(t) for some unique T>0 for all t

T 1s the period of oscillation
Uniqueness of T implies equilibrium points are excluded

For linear systems there are infinitely many periodic solutions
within any small neighborhood of a given oscillation.

Behavior exhibited by nonlinear systems: limit cycles

Def. All trajectories in a sufficiently small region of a limit cycle
are spirals.

Limit cycle can be asymptotically stable, or unstable [§ |

Ref: H.R.Wilson, Spikes, Decisions & Actions, 20006



Nonlinear oscillations: Poincare-
Bendixon Theorem

m Given an annular region 1n a constant-
coetficient 2D system satistying (1) annulus
contains no equilibrium points (2) all trajectories
crossing the boundary of the annulus enter it.

B Then, the annulus must contain at least one
asymptotically stable limit cycle

Region A contains a steady state (unstable)
Trajectories enter the annulus from Regions B

and A.

The annulus must contain a limit cycle

Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006



Wilson-Cowan network oscillator

m Localized (non-spatial) version of the original Wilson-Cowan (1972) equations
m  Simplest demonstration of those equations showing a limit cycle

m  Assume all E neurons recetve identical stimuli and have identical synaptic
strengths

m  Reduces to a 2 neuron model, where S is the sigmoid function

C;_f — 0.2[-E + S(1.6E — I + K)]
% = 0.1[-T + S(L5E),

Ref: H.R.Wilson, Spikes, Decisions & Actions, 20006



Wilson-Cowan network oscillator

WCoscillator.m
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« Input, K=20 Movie: WCoscillator_movie_1_WMV V9.wmv
* Equilibrium: Unstable spiral poing
* Trajectories that enter the box [0 100 0 100] always stay within it
* Using Poincare-Bendixon theorem, this implies existence of a limit cycle

Robustness: All trajectories approach the limit cycle asymptotically
Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006



FitzHugh-Nagumo model

Simplest equations for neural spike generation

Represent a 2D simplification of the original 4D Hodgkin-Huxley neural
equations

V = voltage across the axon membrane

L, = Input current

R = recovery variable (outward K" current)
dVv 1%
=10V — — — R+ 1In
o = W0V = = R Ly
dR

Time constant for V is 0.1ms, and for R is 1.25ms
m  Activation process 1s much faster than the recovery process
m Fast vs. slow

Ref: H.R.Wilson, Spikes, Decisions & Actions, 20006



FitzHugh-Nagumo model

FitzHugh.m V/ 4= 8
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e
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Time course

* Input, [inp=1.5 generates action potentials
* Subthrehold input, Iinp=0.5 _
sgenerates no action potential Phase portrait
* Equilibrium: Unstable spiral point aFitzHugh_movie. WMV V9.wmv
* Trajectories enter the dotted green box as shown o a
* E.g. at #1, choose sufficiently large value of V
* The line to the left intersects trajectories moving down, left

* Using Poincare-Bendixon theorem, this implies existence of a limit cycle
. . A . Ref: H.R.Wilson,
Robustness: All trajectories approach the limit cycle asymptotically Spikes, Decisions & Actions, 2006



Network of interconnected
oscillators: synchronization

m Synchronization is observed in natural
phenomena
® Networks of heart pacemaker cells
® Synchronously flashing fireflies

m Sync.avi from

m http://go.owu.edu/~physics/StudentResearch /2005 /BryanDaniels/inde
x.html

Strogatz, “From Kuramoto to Crawford: exploring the

onset of synchronization in populations of coupled
oscillators, Physica D, 2000



Winfree-Kuramoto Model

Based on Winfrees initial work, Kuramoto showed that for weakly coupled,
near identical limit-cycle oscillators:

N
9,- = w; + Zrij((gj — 0@')
j=1

The simplest case, the Kuramoto model, corresponds to

Fij((gj — Qz) = %Sil’l(@j — 91)

where K > 0 is the coupling strength. Given the rotational symmetry of the
equations, one can write

: K
0@' = () = N ;sm(ﬁj — 01)

where w; = {1 —@; is the deviation with respect to the ensemble mean frequency.

Strogatz, “From Kuramoto to Crawford: exploring the

onset of synchronization in populations of coupled
oscillators, Physica D, 2000



Winfree-Kuramoto Model

By introducing an order parameter m

1 N
mp__z i0,,
e _Nn_le

it becomes evident that this model is based on a mean field approximation:

0, = w; + Kr sin(y) — 6;)

That is, each oscillator is coupled to the mean field quantities r and ¢, as the
ensemble amplitude and phase.

The ensemble synchronization depends on the value of K, and the spread of
natural frequencies. For a given spread, there is a phase transition as a function

of K.

Strogatz, “From Kuramoto to Crawford: exploring the
onset of synchronization in populations of coupled

oscillators, Physica D, 2000



Winfree-Kuramoto Model

K=Coupling strength

Phase transition: un-synchronized behavior to global synchronization as a
function of the coupling strength



Winfree-Kuramoto Model

K=Coupling strength
N=number of nodes
in the network

K/N=0.05
N=100

K/N=0.65
N=100




Synchronization and Topology

The synchronization of an array of oscillators depends heavily on the network
topology.

Fig. 14.1. The three basic classes of complex networks. (a) ER random networks.
(b) small-world networks (SWNs), (¢) scale-free networks (SFNs)

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



Small-world: structured, but short

reqular | ——

L(p) / L(0)

“shortcut” parameter |— >

Regimes

small-world —

Clp) / C(0)

random

L(p) = characteristic

path length
(shortest path length
between 2 vertices,
averaged).

C(p) = clustering
coefficient
(measures local
Density of
triangulation).

jell (probability of reconnection)

Watts & Strogatz, 1998




Scale-free: a few hubs

Exponential Scale-free
N e

degrees scale as

d(k) ~ k=

Random (Erdos): Scale-free:
All nodes are equal Some nodes are hubs
Mean degree well defined Mean degree not defined

Barabasi, 2000

E.g. Map of roads E.g. Map of airline routes




Synchronization: small-world

Assume a systems of oscillators:
J

Such that > ; W;; =0 Vi, and F' determines the autonomous dynamics. The
coupling strength is d. If all oscillators are identical, the completely synchronized
state, x;(t) = s(t) Vi, $ = F(s), is a solution of the above equation. Let X be
the mean field oscillation

1 N
X = N ; 75
We can measure the phase organization with two variables:
Var(X)
and
(Var(z;))

The small-world shortcut parameter p determines the degree of synchroniza-
tion, as a function of the coupling parameter d: intuitively, for the same total
number of links, the shortcuts spread synchrony around.

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



Synchronization: small-world

more shortcuts less shortcuts

0 W{ﬁ“ﬁﬁ;ﬂgﬁimmu““u-'}' 0 | 'l-'EMM&'-.-&':‘-A:- ' :
0.0 1.0. 2.0. 3.0 40 5.0 0:01.0,.2:.0. 3:0. ‘4.0 .50

coupling

Individual oscillations a}e
killed, without synchrony

Global synchrony emerges

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



Synchronization: small-world

Similar behavior for Var(X) as a function of the shortcut parameter p, for
the same coupling constant.

o Var(X)
o <Var(x)>

“...’. .'I.

15 -10 -05 0.0

ool St ortcut parameter

< > P ¢
Disordered regime Oscillator  Global synchrony
death

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



Synchronization: scale-free

Coherent oscillations

Mean degree = 10

Networks with more

heterogeneous degrees

generate weaker
collective synchronization

y _|—|—|—:___I—I—I_

0. 0.8 1.0

Bl Coupling strength

Critical value

Synchronization for different scaling constants: ° = 3 (¢), ° = 4 () and

= 00 (A). Solid line: analytic result for ° = oo (i.e., homogenous network)
and N — oo

o

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



Synchronization: scale-free

Order parameter s; = (sin(A¢;))? + (cos(A¢,))?
A¢; is the phase difference w.r.t. the mean field

Order parameter Distance to the mean

There is a clear dependency between the degree of a node and its synchroniz-
ability: for the hubs, the order parameter approaches 1

The distance to the mean AX (k) = Var(X — z(k)) is an inverse power-law in
k. The larger k is, the smaller is the distance AX (k)

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



Relevance: the binding problem, and
a learning network that addresses it

m A central problem: the
binding of distributed

representations o

m Known as the binding
problem (or Rosenblatt’s
Superposition Catastrophe) =1 =




Specific Solutions and Design
Inspiration
m The binding problem (or

Rosenblatt’s Superposition
Catastrophe) O
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Inspiration
m The binding problem (or
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Specific Solutions and Design
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Rosenblatt’s Superposition
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Specific Solutions and Design
Inspiration

The binding problem (or Rosenblatt’s
Superposition Catastrophe)

B Brain networks decompose visual information
into maps of different attributes

B Brain networks recombine attributes

m Information about relationships between
attributes is lost

Neuroscience observation
m Synchronous neural activity reflecting global
visual input properties (Gray & Singer)
Inspiration

®  Modulate classification information with timing
information containing the lost relationship
information




Synchronous Networks

m  Allows coordination among
weakly or indirectly connected

units _ N u-p.m_'ceptum Perct.‘p. tion
| condition condition

Primary motor cortex

Recognition

_Primary somatic sensory cortex

180 - 360 msecs
rior parietal

Higher-order visual cortex
Synchrony scatter
360 - 540 msecs

12 Significant

Gamma emission {.l'-‘. Synchrony significantly

less than background

Varela, Nature, 1999



Networks of oscillatory units

m Observations by Altmann, Eckhorn and Singer
(1986), Gray and Singer (1987) on synchronous

oscillations 1n the cortex

® Von der Malsburg first proposed a network of
oscillatory units to solve the “cocktail party

problem™ (1986)

m Cheng, Wang and Liu: applications to image
segmentation (2000).



Network connectivity

"'."' [ T T T T 777

AT
[T
A A  a— — — AL L L L

L LS

L L 7 7 777
L L A7 T 77 77 L L 7 7 7 7 77 7
L L 7 7 77 7 7 ."'.".
L 7 7 7 7 2

L 7 7T 7 7 7 7 7 7
L 7 7 7 7 7 7 7
Yy o~ 7 7 7 7 7 7 7

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Objective Function

m Reward faithfulness of representation
(alignment between y and Wx)

m Constrain y and W

m Reward sparseness

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Objective function

® [mposing synaptic normalization

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Extension to oscillatory units

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Variance

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Gradient ascent

Eg = { Zyn nmTm (1 4+ Bcos V)

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Gradient ascent: update
equations

> W[l + cos(¢; —

J

v Z Ykl + B cos(0r — 6)]

6] Z Whyix;sin(¢; — 60,)
mZyk sin(0r, — On)

Z Winy; sin(0; — ¢n)

Modified Hebbian update
AWij ~ yixj|[1 + Bcos(¢; — 0;)]

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Network behavior: inputs

Amplitude response over
10 oscillation cycles

Hebbian learning rule is
applied to weights after the
network settles (~250
iterations)

This procedure is repeated
1000 times.

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Blue: upper layer

Red: lower layer
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Phase behavior

Input = + E—P D

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Phase behavior

o - =

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Stimulus representation through
temporal coding: Winnerless
Competition

® Computation is spatio-temporal
® The system never reaches a fixed point

m However, responses to different stimuli are repeatable



Background: attractor auto-
associlative networks

®m Computation 1s based on fixed points

® Dynamics is a nuisance: the answer is obtained when
the system reaches a stable point of the dynamics



Input readout

Hopfield Model

!

Non-linear (Boolean) Units

L L

Hopfield, 1982, 1984




Hopftield Model

Providing that T;; = Tj;, it is possible to construct an energy function:
1
B=—3 Y TV,
4,7

That is minimized by the evolution of the network:
AE =—-AV; Y T,;V; <0

Being a quadratic form, it will reach a (local) minimum. Similarly, a Hebbian
learning rule can be derived by prescribing minimization over weight updates:

AT,; ~ViV; = AE=—-AT,;V,V; <0

But synaptic normalization is required during learning so that || stays bounded.



Hopftield Model

But the storage capacity is severely limited; for a network with /N neurons,
the number of patterns that can be stored without errors is:

N
~ 2log N

If a small amount of noise is accepted, the storage capacity improves to:
M = 0.14N

In fact, there is a phase transition at this threshold.

Training set

0
i 100 200 300 400 5600 GO0 FOO GO0 900 1000
Neurons




Hopfield and classification

Classifier
(e.g. LVQ)

Input readout

Recalled Input

The codebook vectors {WZ} are the stored patterns, and can be used with
symmetric connections, or learned in a third layer, to reconstitute the memory,
regardless of the network implementation of the classifier.



Attractor vs Winnerless
Competition

A N /
/N

Linear stability analysis of a fixed point

Global stability



Winnerless Competition
-~ Inhibition

C

Input readout
Encoding

Ldl

:’—; = flxi(t)] — vi(t) — zi(6)[x;i () — ]
+ 035 + S,

N N FitzHugh-Nagumo (reduced Hodgkin-Huxley):

= x(t) = byi(1) + a, Other non-linearities (e.g. Integrate-and-Fire).

gij # g;; implies no energy functional

dyi(r)
dt
dz; (1)
" dr

= > ¢iGlx;(0] — z(0).
J

Abarbanel, 2001




Winnetrless Competition
Odor response (insect) Winnerless model

CHERRY

A L

c
2
3
]
=

Laurent, 2001

Activity proceeds along heteroclinic orbits

(those connecting saddle points) ' %

U



Introduction to temporal analysis

of neural recordings: spike metrics

What is the right way to measure “distances” between spike
trains?

Neuroscientists often rely on just counting the total number of
spikes

Precise temporal information is known to be relevant in some
cases

Echo-location

Auditory processing

How to include time in the distance?

A very popular method was introduced by Victor & Purpura
(1997)

Spike train metrics



Spike Count

_ Commonly used, but ...
spikes

» time

All these trains, from the same or different units, cannot be distinguished

v



Victor-Purpura Metric

Adapted from for genetic sequence alignment

(Sellers, 1984)
Accounts for the total number of spikes
Considers temporal locality of spikes

Operations to measure the distance between
spike trains as costs

. Spike count: insert/delete cost

. Spike distortion: time shift cost



Victor-Purpura Metric

Insert/Delete: the cost to pay for having more or less spikes

o Cost=1
Shifting spikes for the same neuron: the cost to pay for moving the same
spike back or forth in time

« Cost=gq |A¢|

o g1isa “temporal resolution” parameter

« ¢g=0is equivalent to spike count

o Increasing ¢ is increasing sensitivity
o Obtain distance, D(q)
Shifting spikes across neurons:
» Multi-neuronal recording is considered to be a sequence of labeled events
» Add a rule that sets the cost of changing the labels: obtain D(q,k)
» K is the cost to pay for shifting in time the same spike in different neurons
» fk =0: origin of the spike is irrelevant
o If <2 spikes can be switched between neurons

o If £>2 they can’t, as it is cheaper to insert and delete a spike in the same neuron

The Sellers algorithm requires only one forward sweep



Victor-Purpura Metric

A diagram of a sequence of elementary steps that transforms spike frain A into spike rain B. Each rectangle represents one spike, and the line
that they rest on denotes time. Each elementary step is one of three types: deletion of a spike (deleted spike shown in red), insertion of a spike
(inserted spike shown in green), or shifing a spike in ime (blue arrows).

Victor, Purpura, “Metric space analysis of spike trains,” Network: Comput. Neural Syst, 1997



Victor-Purpura Metric

Cost: 1

Dedeté

Victor, Purpura, “Metric space analysis of spike trains,” Network: Comput. Neural Syst, 1997



Victor-Purpura Metric

Cost: g|At|

Shift within Neurons



Victor-Purpura Metric

Cost: k
Shift Between Neurons



Application

m Discrimination of amplitude-modulated auditory

stimuli 1n locusts (Wohlgemuth & Ronacher,
2007)

m Classification of neural responses based on spike
Mmetrics

m Provides information about
m The necessary evaluation time window that a neuron uses

m The optimal temporal resolution of processing (q
parameter)

® Yields clues about coding principles

m Helps us understand respective contributions of spike
counts vs. spike timing



Application

LA

L L
20 Hz mm.’“




Spike trains for

different stimuli

Three classes

Spike Trains Distances Classification
of neurons

rain Mo,
0 48 56 64 T2
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Auditory receptor
neurons

Classification
«— Dbased on
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Rec = Auditory Receptor neuron

TN = local neurons
with primary-like
responses

BSN = bisgemental
neuron (Interneuron)

Fercent Correct
Percent Correct

10 100 1000 , 10 100 1000

AN = ascending

interneuron
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e o
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k] i
S o
QL i}
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Classification accuracy as a function of temporal resolution, i.e. the g parameter

Wohlgemuth & Ronacher, 2007



Discrepancies between models and
actual neurophysiological data

m Models are ideal

1zed

m Neural data are noisy

= H.o. there may be gaps in a neuron’s firing (cycle

skipping)

B How can models be built to accommodate such

imptrecisions

m See “Model this! Seven empirical phenomena

missing in the models of cortical oscillatory

dynamics,” Danko Nikolic, [JCNN 2009.



Relevance of this research to our

daily lives

m NY Times article, 5/5/09 “Ear Plugs to Lasers: The Science
of Concentration”

= Based on "Driving fast-spiking cells induces gamma

rhythm and controls sensory responses." J. A. Cardin, et al.
Nature, 2009

m Interplay between bottom-up and top-down processes:

Neurons in pre-frontal cortex (planning center) oscillate in unison
pre-frontal cortex can override sensory input

However, significant concentration is required to ovetrride a strong
input like a TV commercial

Limit multitasking; start your day with the most important task;
meditate; build a stimulus shelter

Implications for our own lives, and for education



Conclusions

We have reviewed a rich area of research and exploration
m Tried to achieve a balance between breadth & depth

Several questions still open for investigation

= Using oscillatory networks on more realistic input data, scaling up the
network sizes

= Combining different sensory modalities
= Closing the perception-action loop

Opportunities for interaction with neuroscience
m  Analysis of spike train recordings

m= Developing explanatory and predictive models

Thanks for your attention. Feedback is always welcome!
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