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Motivation: temporal phenomena in Motivation: temporal phenomena in 
biological systemsbiological systems

RhythmsRhythms
Circadian rhythmsCircadian rhythms
HeartbeatsHeartbeats
Central pattern generators for locomotionCentral pattern generators for locomotion

NeuroscienceNeuroscience
SpikesSpikes
Oscillations observed in EEG recordingsOscillations observed in EEG recordings
Binding ProblemBinding Problem
Representation of stimuli (odors): Representation of stimuli (odors): WinnerlessWinnerless networksnetworks

E.g. recent work in neuroscience indicates increasing importanceE.g. recent work in neuroscience indicates increasing importance of timingof timing
"Driving fast"Driving fast--spiking cells induces gamma rhythm and controls sensory spiking cells induces gamma rhythm and controls sensory 
responses." J. A. Cardin, et al.  Nature, 2009. responses." J. A. Cardin, et al.  Nature, 2009. 
"Millisecond"Millisecond--Timescale Optical Control of Neural Dynamics in the Nonhuman Timescale Optical Control of Neural Dynamics in the Nonhuman 
Primate Brain." X. Han et al. Neuron, 2009.Primate Brain." X. Han et al. Neuron, 2009.
““Timing, Timing, Timing: Fast Decoding of Object Information fromTiming, Timing, Timing: Fast Decoding of Object Information from Intracranial Intracranial 
Field Potentials in Human Visual Cortex,Field Potentials in Human Visual Cortex,”” H. Liu et al, Neuron, 2009.H. Liu et al, Neuron, 2009.

Nevertheless, a significant amount of research in the neural netNevertheless, a significant amount of research in the neural networks field does not works field does not 
take the temporal dimension into account effectivelytake the temporal dimension into account effectively



Comparison of different models of Comparison of different models of 
neural activityneural activity
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1D and 2D differential equations1D and 2D differential equations
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λ = 3, ° = 1

F
dx

dt
= λ − γx

F Solution:

x(t) = x0e
−γt +

λ

γ
(1 − e−γt)

F Initial condition determines evolution of the system

F In two dimensions, we consider Ẋ = AX

F The initial values, and eigenvalues of A determine the evolution of the
system

F X(t) = α1e
λ1tc1+α2e

λ2tc2 where λ are eigenvalues, and c are eigenvectors,
and α is determined by initial conditions

F Solving differential equations using Eulers method:

F Taylor series approximation

x(t0 +∆t) = x(t0) +∆t
dx

dt
|t0

F For better accuracy, use methods like Runge-Kutta



Qualitative theory of differential Qualitative theory of differential 
equations: use signsequations: use signs

At equilibrium
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Izhikevich, Dynamical systems in Neuroscience



Mechanistic interpretation: energy Mechanistic interpretation: energy 
landscapelandscape

Izhikevich, Dynamical systems in Neuroscience



Attraction domainsAttraction domains

Two attraction domains

are separated by an

unstable equilibrium

Izhikevich, Dynamical systems in Neuroscience



Phase portrait of a 1D systemPhase portrait of a 1D system

Depiction of equilibrium states, trajectories and attraction domains
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Izhikevich, Dynamical systems in Neuroscience



These two systems are qualitatively identical

These two systems are qualitatively different

Izhikevich, Dynamical systems in Neuroscience



HartmanHartman--GrobmanGrobman
 

theorem: theorem: 
linearizationlinearization

Can replace a more complex system with a simpler one with identical phase portrait

Izhikevich, Dynamical systems in Neuroscience



TwoTwo--dimensional phase portraitsdimensional phase portraits

AXX =
.

Haykin, Neural Networks



Equivalence classes for 2D phase Equivalence classes for 2D phase 
portraitsportraits

Powerful descriptive tool

Stable Node

Unstable Node

Stable Focus

Unstable Focus

Saddle

Center

Haykin, Neural Networks



OscillationsOscillations

Oscillations occur in a linear system when there Oscillations occur in a linear system when there 
is one pair of is one pair of eigenvalueseigenvalues that is purely that is purely 
imaginary.imaginary.



Phase portrait when A = [0 Phase portrait when A = [0 --1; 1 0]1; 1 0]
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Example: Creating 2D phase Example: Creating 2D phase 
portraits in MATLABportraits in MATLAB

Governing equation is Governing equation is XdotXdot = AX= AX
A is a 2x2 matrixA is a 2x2 matrix
X consists of a 2d coordinate [x1 x2]X consists of a 2d coordinate [x1 x2]
First select range for x values: x1 = First select range for x values: x1 = --2:0.1:22:0.1:2
x2 = x2 = --2:0.1:22:0.1:2
Use Use meshgridmeshgrid to create a grid of 2D pointsto create a grid of 2D points
[X1, X2] = meshgrid(x1,x2);[X1, X2] = meshgrid(x1,x2);
[[m,nm,n] = size(X1); (should be 41x41)] = size(X1); (should be 41x41)



Creating 2D phase portraitsCreating 2D phase portraits

reshape(X1, 1, m*n) gives a 1x1681 matrix. reshape(X1, 1, m*n) gives a 1x1681 matrix. 
X = [reshape(X1, 1, m*n); reshape(X2, 1, m*n)] gives a X = [reshape(X1, 1, m*n); reshape(X2, 1, m*n)] gives a 
2x1681 matrix2x1681 matrix
Compute Compute XdotXdot at each grid point: at each grid point: XdotXdot = AX= AX
V1 = reshape(Xdot(1,:), m, n); V2 = reshape(Xdot(2,:), V1 = reshape(Xdot(1,:), m, n); V2 = reshape(Xdot(2,:), 
m, n); m, n); 
Normalize velocity vectors:Normalize velocity vectors:
V1 = V1./sqrt(V1.^2 + V2.^2 + 0.00001);V1 = V1./sqrt(V1.^2 + V2.^2 + 0.00001);
V2 = V2./sqrt(V1.^2 + V2.^2 + 0.00001)V2 = V2./sqrt(V1.^2 + V2.^2 + 0.00001)

quiver(X1, X2, V1, V2);  axes([quiver(X1, X2, V1, V2);  axes([--2 2 2 2 --2 2]);2 2]);



Example: tracing the trajectory of a Example: tracing the trajectory of a 
solutionsolution

Select the matrix ASelect the matrix A
Select a starting point: say x1 = 0.5, x2 = 0.5Select a starting point: say x1 = 0.5, x2 = 0.5
Select an integration step, say Select an integration step, say dtdt = 0.01= 0.01
Select number of steps, say 2000Select number of steps, say 2000
x1 = zeros(2000, 1); x2 = zeros(2000, 1);x1 = zeros(2000, 1); x2 = zeros(2000, 1);
x1(1) = 0.5; x2(1) = 0.5;x1(1) = 0.5; x2(1) = 0.5;
for i = 2:2000for i = 2:2000
x1(i) = x1(ix1(i) = x1(i--1) + 1) + dtdt

 

* (A(1,1)*x1(i* (A(1,1)*x1(i--1) + A(1,2)*x2(i1) + A(1,2)*x2(i--1));1));
x2(i) = x2(ix2(i) = x2(i--1) + 1) + dtdt

 

* (A(2,1)*x1(i* (A(2,1)*x1(i--1) + A(2,2)*x2(i1) + A(2,2)*x2(i--1));1));
end;end;

Overlay with phase portrait plot: hold on; Overlay with phase portrait plot: hold on; 
plot(x1, x2, plot(x1, x2, ‘‘kk’’););
This plots one trajectoryThis plots one trajectory
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Linear stability analysisLinear stability analysis
dX

dt
= F (X)

F (xeq) = 0

A =

⎡⎢⎢⎢⎣
∂F1
∂x1

∂F1
∂x2

. . .

∂F2
∂x1

∂F2
∂x2

. . .

...
... ∂FN

∂xN

⎤⎥⎥⎥⎦

Given the following nonlinear system

Compute an equilibrium point, xeq

Compute the Jacobian matrix A at xeq

If all eigenvalues of the linear system have negative real parts, the nonlinear
system is asymptotically stable. If at least one eigenvalue has positive real part,
the system is unstable



Simple ways of generating Simple ways of generating 
oscillationsoscillations

Integrate and fire neural Integrate and fire neural 
model with constant model with constant 
inputinput

Feedback with delaysFeedback with delays

Mutual inhibition with Mutual inhibition with 
fatiguefatigue

t

Activity

Threshold

reset

light

Pupil

t

A B

Glass and Mackey, From Clocks to Chaos, 1988



WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

E EE EEE E

I

E E

Cortical Position

Short range excitation

Long range inhibitory feedback

(Only one inhibitory neuron is shown for clarity)

Anatomical considerations:
All types of connections exist



WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

F E(t) = proportion of excitatory cells firing per unit time

F I(t) = proportion of inhibitory cells firing per unit time

F Let r be the refractory period. Some cells cannot fire during this period.

F Then at time t+ τ , proportion of sensitive E cells, Es = 1− reE
F Let ce = average number of excitatory synapses per E cell

F Let ge = average number of inhibitory synapses per E cell

F Let P (t) be external excitation for E cells, Q(t) that for I cells

F Net input excitation for E cells is ceE − geI + P (t)
F Net response is Se[ceE − geI + P (t)] for E cells and Si[ciE − giI +Q(t)]
where S is a sigmoid

F Probability of cell being sensitive is independent of its input excitation,
so E(t+ τ) = (1− reE)Se[ceE − geI + P (t)]

F Use Taylor series expansion: E(t+ τ) = E(t) + (dE/dt)τ

Wilson, “Spikes, decisions and actions”, 2006



WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

F
τ
dE

dt
= −E + (1− reE)Se[ceE − geI + P (t)]

τ
dI

dt
= −I + (1− riE)Si[ciE − giI +Q(t)]

F Introducing spatial coordinates x, a spatial weight distribution w, and
setting r = 0 we obtain

F
τ
dE

dt
= −E(x) + Se[

X
x

wEEE(x)−
X
x

wIEI(x) + P (x)]

τ
dI

dt
= −I(x) + Si[

X
x

wEIE(x)−
X
x

wIII(x) +Q(x)]

F These pairs of equations exhibit the same dynamics

F The choice of model parameters affects the behavior of the network, as we
will see Wilson, “Spikes, decisions and actions”, 2006



WCcortexSTM.m
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WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

Monotonically decreasing distance
function

F EE and IN are 1D arrays of neural units.
F Sigmoidal function is S(x) = 100x2/(θ2 + x2)
F synEE, synEI, synII are spatial patterns of synaptic weights.
F Weights vary as wij(∆x) = bijexp(−∆x/σij).
F σEE = 40,σEI = 60,σII = 30.
F bEE = 1.95, bEI = 1.4, bII = 2.2
F Parameters are chosen to prohibit the formation of spatially uniform states.
F Use Euler method for integration. Time step DelT=0.5msec

Wilson, “Spikes, decisions and actions”, 2006



EEresp

 

= NeuralConv(synEE, EE) -

 

NeuralConv(synEI, IN) + P;
EEresp

 

= (EEresp.*(EEresp

 

> 0)).^2;
INresp

 

= NeuralConv(synEI, EE) -

 

NeuralConv(synII, IN) + Q;
INresp

 

= (INresp.*(INresp

 

> 0)).^2;
EE = EE

 

+ (DelT/DT)*(-EE + 100*EEresp./(20^2 + EEresp));
IN = IN + (DelT/DT)*(-IN + 100*INresp./(40^2 + INresp));

WCcortexSTM.m

WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

Inner loop of computation

P is the stimulus. Here, P is 1.0 for 10 ms.
Q = 0

Wilson, “Spikes, decisions and actions”, 2006



WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodelWCcortexSTM.m

Cortex stimulated with a narrow pulse, width=100 microns,  for 10ms
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Movie of spatial cortical response Temporal response of central neural unit at 
1000 microns

•

 

Network reaches an asymptotically stable state that retains information about 
the stimulus location. 
• This represents a short term memory mode. 
• Short-range recurrent excitation stabilizes a narrow pulse of activity
•Longer range inhibition prevents excitation from spreading

Wilson, “Spikes, decisions and actions”, 2006




WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodelWCcortexSTM.m

Cortex stimulated with a narrow pulse, width=100 microns,  for 10ms

Movie of phase portrait plot

WCCortexSTM_movie_small_stimulus_phase_plot_WMV
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WCcortexSTM.m
Cortex stimulated with a wider pulse, width=500 microns for 10ms
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Network reaches an asymptotically stable state that retains information about 
the stimulus location. 
• This represents a short term memory mode. 
• Short-range recurrent excitation stabilizes a narrow pulse of activity
•Longer range inhibition prevents excitation from spreading

Movie of spatial cortical response Temporal response of central neural unit at 
1000 microns

WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel




WCcortexSTM.m
Cortex stimulated with a wider pulse, width=500 microns for 10ms
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Network reaches an asymptotically stable state that retains information about 
the stimulus location. 
• This represents a short term memory mode. 
• Short-range recurrent excitation stabilizes a narrow pulse of activity
•Longer range inhibition prevents excitation from spreading

Movie of spatial cortical response Temporal response of central neural unit at 
1000 microns

WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel




WCcortexOSC.m

WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

F All parameters are the same as before, except that
F bEE = 1.9, bEI = 1.5, bII = 1.5
F Parameters are chosen to prohibit the formation of spatially uniform states.



WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodelWCcortexOSC.m

Cortex stimulated with a narrow pulse, width=100 microns,  for 10ms

Movie of spatial cortical response Temporal response of central neural unit at 
1000 microns

• Connectivity parameters have been changed
• Spatially localized oscillations, about 20 Hz

WCCortexOSC_movie_small_stimulus_WMV
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Wilson, “Spikes, decisions and actions”, 2006



WCcortexOSC.m
Cortex stimulated with a wider pulse, width=400 microns for 10ms

• More spatially complex oscillations are produced. 
• There is a spatially adjacent pair of synchronized oscillations.

Movie of spatial cortical response Temporal response of central neural unit at 
1000 microns

WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

WCCortexOSC_movie_large_stimulus_WMV
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WCcortexOSC.m
Cortex stimulated with a wider pulse, width=400 microns for 10ms

WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

Movie of phase portrait plot

WCCortexOSC_movie_large_stimulus_phase_plot_WMV
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WilsonWilson--Cowan cortical dynamics Cowan cortical dynamics 
modelmodel

Several interesting phenomena are exhibited through this model

• An Active Transient Mode
• Gives rise to a dramatic response amplification
• This transient amplification may be a mechanism for detection of weak stimuli

• Generation of standing waves
• Explanation of visual hallucinations by extending model to 2D
• Image processing tasks are possible with a 2D model

• Mantere

 

et al, Journal of Mathematical Imaging and Vision 2, 251-259 (1992)

Input Cortical representation



Linear vs. nonlinear oscillationsLinear vs. nonlinear oscillations
In linear systems, the only possible oscillations involve In linear systems, the only possible oscillations involve 
sinessines and cosinesand cosines
If initial conditions are changed, amplitude of oscillation If initial conditions are changed, amplitude of oscillation 
changeschanges
Noise in biological systems can play havoc with such Noise in biological systems can play havoc with such 
oscillatorsoscillators
Clearly unsuitable for control of vital functions, e.g. Clearly unsuitable for control of vital functions, e.g. 
breathing, heartbeats, locomotionbreathing, heartbeats, locomotion
This implies the use of nonThis implies the use of non--linear oscillatorslinear oscillators
ExampleExample

Robust Robust wrtwrt initial conditions, noise, numerical initial conditions, noise, numerical 
imprecisionimprecision
Stable limit cycle: Stable limit cycle: 

when r > 1, when r > 1, dr/dtdr/dt is negative, which reduces ris negative, which reduces r
when r < 1, when r < 1, dr/dtdr/dt is positive, which increases ris positive, which increases r
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Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006 
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Nonlinear oscillation: Limit cyclesNonlinear oscillation: Limit cycles

A trajectory A trajectory X(tX(t) of a dynamical system is an ) of a dynamical system is an oscillationoscillation if if 
X(T+tX(T+t) = ) = X(tX(t) for some unique T>0 for all t) for some unique T>0 for all t
T is the period of oscillationT is the period of oscillation
Uniqueness of T implies equilibrium points are excludedUniqueness of T implies equilibrium points are excluded
For linear systems there are infinitely many periodic solutions For linear systems there are infinitely many periodic solutions 
within any small neighborhood of a given oscillation.within any small neighborhood of a given oscillation.
Behavior exhibited by nonlinear systems: limit cyclesBehavior exhibited by nonlinear systems: limit cycles
Def. All trajectories in a sufficiently small region of a limit Def. All trajectories in a sufficiently small region of a limit cycle cycle 
are spirals. are spirals. 
Limit cycle can be asymptotically stable, or unstableLimit cycle can be asymptotically stable, or unstable

Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006 
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Nonlinear oscillations: PoincareNonlinear oscillations: Poincare--
 BendixonBendixon

 
TheoremTheorem

Given an annular region in a constantGiven an annular region in a constant--
coefficient 2D system satisfying (1) annulus coefficient 2D system satisfying (1) annulus 
contains no equilibrium points (2) all trajectories contains no equilibrium points (2) all trajectories 
crossing the boundary of the annulus enter it.crossing the boundary of the annulus enter it.
Then, the annulus must contain at least one Then, the annulus must contain at least one 
asymptotically stable limit cycleasymptotically stable limit cycle

Region A contains a steady state (unstable)
Trajectories enter the annulus from Regions B
and A.

The annulus must contain a limit cycle

Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006 



WilsonWilson--Cowan network oscillatorCowan network oscillator

Localized (nonLocalized (non--spatial) version of the original Wilsonspatial) version of the original Wilson--Cowan (1972) equationsCowan (1972) equations
Simplest demonstration of those equations showing a limit cycleSimplest demonstration of those equations showing a limit cycle
Assume all E neurons receive identical stimuli and have identicaAssume all E neurons receive identical stimuli and have identical synaptic l synaptic 
strengthsstrengths
Reduces to a 2 neuron model, where S is the sigmoid functionReduces to a 2 neuron model, where S is the sigmoid function

dE

dt
= 0.2[−E + S(1.6E − I +K)]

dI

dt
= 0.1[−I + S(1.5E)]

Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006 



WilsonWilson--Cowan network oscillatorCowan network oscillator
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Movie: WCoscillator_movie_1_WMV V9.wmv

Robustness: All trajectories approach the limit cycle asymptotically 

WCoscillator.m

• Input, K=20
• Equilibrium: Unstable spiral point
• Trajectories that enter the box [0 100 0 100] always stay within it
• Using Poincare-Bendixon

 

theorem, this implies existence of a limit cycle

Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006 



FitzHughFitzHugh--NagumoNagumo
 

modelmodel
Simplest equations for neural spike generationSimplest equations for neural spike generation
Represent a 2D simplification of the original 4D HodgkinRepresent a 2D simplification of the original 4D Hodgkin--Huxley neural Huxley neural 
equationsequations
V = voltage across the axon membraneV = voltage across the axon membrane
IIinpinp = input current= input current
R = recovery variable (outward KR = recovery variable (outward K+ + current)current)

Time constant for V is 0.1ms, and for R is 1.25msTime constant for V is 0.1ms, and for R is 1.25ms
Activation process is much faster than the recovery processActivation process is much faster than the recovery process
Fast vs. slowFast vs. slow

dV

dt
= 10[V − V

3

3
−R+ Iinp]

dR

dt
= 0.8[−R+ 1.25V + 1.5]

Ref: H.R.Wilson, Spikes, Decisions & Actions, 2006 
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Robustness: All trajectories approach the limit cycle asymptotically 

FitzHugh.m

• Input, Iinp=1.5 generates action potentials 
• Subthrehold

 

input, Iinp=0.5 
•generates no action potential

• Equilibrium: Unstable spiral point
• Trajectories enter the dotted green box as shown

• E.g. at #1, choose sufficiently large value of V
• The line to the left intersects trajectories moving down, left

• Using Poincare-Bendixon

 

theorem, this implies existence of a limit cycle

FitzHugh_movie_WMVFitzHugh_movie_WMV V9.wmvV9.wmv

dv/dt

 

= 0

#1
dv/dt

 

< 0, dR/dt

 

< 0

Ref: H.R.Wilson, 
Spikes, Decisions & Actions, 2006 



Network of interconnected Network of interconnected 
oscillators: synchronizationoscillators: synchronization

Synchronization is observed in natural Synchronization is observed in natural 
phenomena phenomena 

Networks of heart pacemaker cellsNetworks of heart pacemaker cells
Synchronously flashing firefliesSynchronously flashing fireflies

Sync.aviSync.avi from from 
http://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/indhttp://go.owu.edu/~physics/StudentResearch/2005/BryanDaniels/indee
x.htmlx.html
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to Crawford: exploring the to Crawford: exploring the 
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D, 2000D, 2000



WinfreeWinfree--KuramotoKuramoto
 

ModelModel
Based on Winfrees initial work, Kuramoto showed that for weakly coupled,

near identical limit-cycle oscillators:

θ̇i = ω̄i +
NX
j=1

Γij(θj − θi)

The simplest case, the Kuramoto model, corresponds to

Γij(θj − θi) = K

N
sin(θj − θi)

where K > 0 is the coupling strength. Given the rotational symmetry of the
equations, one can write

θ̇i = ωi +
K

N

NX
j=1

sin(θj − θi)

where ωi = Ω−ω̄i is the deviation with respect to the ensemble mean frequency.

StrogatzStrogatz, , ““From From KuramotoKuramoto

 

to Crawford: exploring the to Crawford: exploring the 
onset of synchronization in populations of coupled onset of synchronization in populations of coupled 
oscillators, oscillators, PhysicaPhysica

 

D, 2000D, 2000



WinfreeWinfree--KuramotoKuramoto
 

ModelModel

By introducing an order parameter

reiψ =
1

N

NX
n=1

eiθn

it becomes evident that this model is based on a mean field approximation:

θ̇i = ωi +Kr sin(ψ − θi)
That is, each oscillator is coupled to the mean field quantities r and ψ, as the
ensemble amplitude and phase.
The ensemble synchronization depends on the value of K, and the spread of

natural frequencies. For a given spread, there is a phase transition as a function
of K.

StrogatzStrogatz, , ““From From KuramotoKuramoto

 

to Crawford: exploring the to Crawford: exploring the 
onset of synchronization in populations of coupled onset of synchronization in populations of coupled 
oscillators, oscillators, PhysicaPhysica

 

D, 2000D, 2000



WinfreeWinfree--KuramotoKuramoto
 

ModelModel

Phase transition: un-synchronized behavior to global synchronization as a
function of the coupling strength

K=Coupling strength



WinfreeWinfree--KuramotoKuramoto
 

ModelModel

K/N=0.05
N=100

K/N=0.65
N=100

K=Coupling strength
N=number of nodes

in the network



Synchronization and TopologySynchronization and Topology

The synchronization of an array of oscillators depends heavily on the network
topology.

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008



SmallSmall--world: structured, but shortworld: structured, but short

Watts & Strogatz, 1998“shortcut”

 

parameter

regular small-world random

Regimes

L(p) = characteristic
path length

(shortest path length
between 2 vertices, 
averaged).

(probability of reconnection)

C(p) = clustering
coefficient

(measures local
Density of 
triangulation).



ScaleScale--free: a few hubsfree: a few hubs

Barabasi, 2000

Random (Ërdos):
All nodes are equal
Mean degree well defined

Scale-free:
Some nodes are hubs
Mean degree not defined

E.g. Map of roads E.g. Map of airline routes

degrees scale as

d(k) ∼ k−°



Synchronization: smallSynchronization: small--worldworld

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008

Assume a systems of oscillators:

ẋi = F (xi)− d
X
j

Wijxj

Such that
P

jWij = 0 ∀i, and F determines the autonomous dynamics. The
coupling strength is d. If all oscillators are identical, the completely synchronized
state, xi(t) = s(t) ∀i, ṡ = F (s), is a solution of the above equation. Let X be
the mean field oscillation

X =
1

N

NX
i=1

xi

We can measure the phase organization with two variables:

V ar(X)

and
hV ar(xi)i

The small-world shortcut parameter p determines the degree of synchroniza-
tion, as a function of the coupling parameter d: intuitively, for the same total
number of links, the shortcuts spread synchrony around.



Synchronization: smallSynchronization: small--worldworld

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008

Individual units oscillate, uncoupled

Individual oscillations are 
killed, without synchrony

Global synchrony emerges

more shortcuts less shortcuts

coupling



Synchronization: smallSynchronization: small--worldworld
Similar behavior for Var(X) as a function of the shortcut parameter p, for

the same coupling constant.

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008

Disordered regime Oscillator 
death

Global synchrony

Shortcut parameter



Synchronization: scaleSynchronization: scale--freefree

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008

Synchronization for different scaling constants: ° = 3 (±), ° = 4 (¤) and
° = ∞ (4). Solid line: analytic result for ° = ∞ (i.e., homogenous network)
and N →∞

Coupling strength

Mean degree = 10

Critical value

Coherent oscillations

Networks with more 
heterogeneous degrees
generate weaker 
collective synchronization



Synchronization: scaleSynchronization: scale--freefree

Order parameter Distance to the mean

Osipov, Kurths, Zhou, Synchronization in oscillatory networks, 2008

degree

∆φj is the phase difference w.r.t. the mean field

Order parameter sj = hsin(∆φj)i2 + hcos(∆φj)i2

There is a clear dependency between the degree of a node and its synchroniz-
ability: for the hubs, the order parameter approaches 1

The distance to the mean ∆X(k) = V ar(X̄ − x(k)) is an inverse power-law in
k. The larger k is, the smaller is the distance ∆X(k)



Relevance: the binding problem, and Relevance: the binding problem, and 
a learning network that addresses ita learning network that addresses it

A central problem: the A central problem: the 
binding of distributed binding of distributed 
representations representations 
Known as the binding Known as the binding 
problem (or Rosenblattproblem (or Rosenblatt’’s s 
Superposition Catastrophe)Superposition Catastrophe)



Specific Solutions and Design Specific Solutions and Design 
InspirationInspiration

The binding problem (or The binding problem (or 
RosenblattRosenblatt’’s Superposition s Superposition 
Catastrophe)Catastrophe)
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Specific Solutions and Design Specific Solutions and Design 
InspirationInspiration

The binding problem (or The binding problem (or 
RosenblattRosenblatt’’s Superposition s Superposition 
Catastrophe)Catastrophe)



Specific Solutions and Design Specific Solutions and Design 
InspirationInspiration

The binding problem (or RosenblattThe binding problem (or Rosenblatt’’s s 
Superposition Catastrophe)Superposition Catastrophe)

Brain networks decompose visual information Brain networks decompose visual information 
into maps of different attributesinto maps of different attributes
Brain networks recombine attributesBrain networks recombine attributes
Information about relationships between Information about relationships between 
attributes is lostattributes is lost

Neuroscience observationNeuroscience observation
Synchronous neural activity reflecting global Synchronous neural activity reflecting global 
visual input properties (Gray & Singer)visual input properties (Gray & Singer)

InspirationInspiration
Modulate classification information with timing Modulate classification information with timing 
information containing the lost relationship information containing the lost relationship 
information information 



Synchronous NetworksSynchronous Networks
Allows coordination among Allows coordination among 
weakly or indirectly connected weakly or indirectly connected 
unitsunits

Varela, Nature, 1999



Networks of oscillatory unitsNetworks of oscillatory units

Observations by Observations by AltmannAltmann, , EckhornEckhorn and Singer and Singer 
(1986), Gray and Singer (1987) on synchronous (1986), Gray and Singer (1987) on synchronous 
oscillations in the cortexoscillations in the cortex
Von Von derder MalsburgMalsburg first proposed a network of first proposed a network of 
oscillatory units to solve the oscillatory units to solve the ““cocktail party cocktail party 
problemproblem”” (1986)(1986)
Cheng, Wang and Liu: applications to image Cheng, Wang and Liu: applications to image 
segmentation (2000).segmentation (2000).



Network connectivityNetwork connectivity

Lower 
Layer

Upper
Layer

(A) (B) (C)

LateralFeedforward Feedback

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Objective FunctionObjective Function

Reward faithfulness of representation Reward faithfulness of representation 
(alignment between y and (alignment between y and WxWx))
Constrain y and WConstrain y and W
Reward sparsenessReward sparseness

E = 〈yWx −
1

2
y2 −

1

2

∑

n

W2

n +
1

2
λS(y)〉E

le. The first term is related to the faithfulness of repr
S(y) = N

(
〈y2

n〉N − 〈yn〉
2

N

)
=

N∑

n=1

y2

n −
1

N
(

N∑

n=1

yn)2

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Objective functionObjective function

E = 〈yWxT +
1

2
λS(y) −

1

2
y2〉E

nforced during the maximization process

Imposing synaptic normalizationImposing synaptic normalization

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Extension to oscillatory unitsExtension to oscillatory units

C(E) = qWp +
1

2
λS(q) −

1

2
qq

Es = E + βRe[C(E)]

Use complex extension of energy

re pn = xneiφn , qn = yneiθn ,

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



VarianceVariance

S(q) =

N∑

n=1

qnqn −
1

N
(

N∑

n=1

qn)(

N∑

n=1

qn)

ese equations, the parameter determines th

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Gradient ascentGradient ascent
ES = 〈

∑

n,m

ynWnmxm(1 + β cosΨnm)

−α
∑

n

y2

n(1 + β) − γ
∑

n�=m

ynym(1 + β cosΦnm)〉E

re Ψnm = θn − φm,
/XY model [16].

, Φnm = θn − θm,

Δyn ∼
∂ES

∂yn
Δθn ∼

1

yn

∂ES

∂θn

Upper unit phase Lower unit phase

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Gradient ascent: update Gradient ascent: update 
equationsequations

Δyn ∼
∑

j

Wnjxj [1 + cos(φj − θn)] − αyn

− γ
∑

k

yk[1 + β cos(θk − θn)]

Δθn ∼ β
∑

j

Wnjxj sin(φj − θn)

− βγ
∑

k

yk sin(θk − θn)

Δφn ∼
∑

j

Wjnyj sin(θj − φn)

ΔWij ∼ yixj [1 + β cos(φj − θi)]
Modified Hebbian update

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Network behavior: inputsNetwork behavior: inputs

0 250
0

4

Amplitude response over 
10 oscillation cycles
Hebbian learning rule is 
applied to weights after the 
network settles (~250 
iterations)
This procedure is repeated 
1000 times. 

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Network behavior after training:Network behavior after training:
 Superposition of inputsSuperposition of inputs

0 250
0

4

(a)

0 250
0

4

(b)

200 250
0

(c)

200 250
0

(d)

2π 2π
Blue: upper layer
Red: lower layer

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Phase behaviorPhase behavior

1 2 3 4 5 6 7 8
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(a)

(b) (c)
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1 2 3 4 5 6 7 8
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(d) (e)

Input  = +

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Phase behaviorPhase behavior
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(d) (e)

+Input  =
Object

Rao, Cecchi, Peck, Kozloski, IEEE Trans. NN, 2008



Stimulus representation through Stimulus representation through 
temporal coding: temporal coding: WinnerlessWinnerless

 CompetitionCompetition
Computation is Computation is spatiospatio--temporaltemporal
The system never reaches a fixed pointThe system never reaches a fixed point
However, responses to different stimuli are repeatableHowever, responses to different stimuli are repeatable



Background: attractor autoBackground: attractor auto--
 associative networksassociative networks

Computation is based on Computation is based on fixed pointsfixed points
Dynamics is a nuisance: the answer is obtained Dynamics is a nuisance: the answer is obtained whenwhen
the system reaches a stable point of the dynamicsthe system reaches a stable point of the dynamics



Hopfield ModelHopfield Model
In

pu
t r

ea
do

ut

Non-linear (Boolean) Units

R
ec

al
le

d 
In

pu
t

Hopfield, 1982, 1984



Hopfield ModelHopfield Model
Providing that Tij = Tji, it is possible to construct an energy function:

E = −1
2

X
i,j

TijViVj

That is minimized by the evolution of the network:

∆E = −∆Vi
X

TijVj < 0

Being a quadratic form, it will reach a (local) minimum. Similarly, a Hebbian
learning rule can be derived by prescribing minimization over weight updates:

∆Tij ∼ ViVj ⇒ ∆E = −∆TijViVj < 0
But synaptic normalization is required during learning so that |T | stays bounded.



Hopfield ModelHopfield Model
But the storage capacity is severely limited; for a network with N neurons,

the number of patterns that can be stored without errors is:

M =
N

2 logN

If a small amount of noise is accepted, the storage capacity improves to:

M = 0.14N

In fact, there is a phase transition at this threshold.

Training set



Hopfield and classificationHopfield and classification

In
pu

t r
ea

do
ut
Classifier 
(e.g. LVQ)

R
ec

al
le

d 
In

pu
t

The codebook vectors { ~Wi} are the stored patterns, and can be used with
symmetric connections, or learned in a third layer, to reconstitute the memory,
regardless of the network implementation of the classifier.



Attractor Attractor vsvs
 

WinnerlessWinnerless
 CompetitionCompetition

λ+

λ−

λ−

λ−

Linear stability analysis of a fixed point Global stability



In
pu

t r
ea

do
ut

E
nc

od
in

g

FitzHugh-Nagumo (reduced Hodgkin-Huxley):
Other non-linearities (e.g. Integrate-and-Fire).
gij 6= gji implies no energy functional

WinnerlessWinnerless
 

CompetitionCompetition
Inhibition

Abarbanel, 2001



WinnerlessWinnerless
 

CompetitionCompetition

Abarbanel, 2001

Laurent, 2001

Winnerless modelOdor response (insect)

0
2

4

0
2

4

0

2

4

0

2

4

ξ1
ξ2

ξ3

Activity proceeds along heteroclinic

 

orbits 
(those connecting saddle points)



Introduction to temporal analysis Introduction to temporal analysis 
of neural recordings: of neural recordings: spike metricsspike metrics

What is the right way to measure What is the right way to measure ““distancesdistances”” between spike between spike 
trains?trains?
Neuroscientists often rely on just counting the total number of Neuroscientists often rely on just counting the total number of 
spikesspikes
Precise temporal information is known to be relevant in some Precise temporal information is known to be relevant in some 
casescases
EchoEcho--locationlocation
Auditory processingAuditory processing
How to include time in the distance?How to include time in the distance?
A very popular method was introduced by Victor & A very popular method was introduced by Victor & PurpuraPurpura
(1997)(1997)
Spike train metricsSpike train metrics



Spike CountSpike Count

Commonly used, but …

All these trains, from the same or different units, cannot be distinguished

time

spikes



VictorVictor--PurpuraPurpura
 

MetricMetric

Adapted from for genetic sequence alignment Adapted from for genetic sequence alignment 
(Sellers, 1984)(Sellers, 1984)
Accounts for the total number of spikesAccounts for the total number of spikes
Considers temporal locality of spikesConsiders temporal locality of spikes
Operations to measure the distance between Operations to measure the distance between 
spike trains as spike trains as costscosts

Spike count: Spike count: insert/deleteinsert/delete costcost
Spike distortion: Spike distortion: time shifttime shift costcost



Insert/Delete: the cost to pay for having more or less spikesInsert/Delete: the cost to pay for having more or less spikes
Cost = Cost = 11

Shifting spikes for the same neuron: the cost to pay for moving Shifting spikes for the same neuron: the cost to pay for moving the same the same 
spike back or forth in timespike back or forth in time

Cost = Cost = q |q |ΔΔt|t|
q q is a is a ““temporal resolutiontemporal resolution”” parameterparameter

qq=0 is equivalent to spike count=0 is equivalent to spike count
Increasing Increasing qq is increasing sensitivityis increasing sensitivity

Obtain distance, Obtain distance, D(qD(q))
Shifting spikes across neurons: Shifting spikes across neurons: 

MultiMulti--neuronal recording is considered to be a sequence of neuronal recording is considered to be a sequence of labeledlabeled eventsevents
Add a rule that sets the cost of changing the labels: obtain Add a rule that sets the cost of changing the labels: obtain D(q,kD(q,k))
kk is the cost to pay for shifting in time the same spike in diffeis the cost to pay for shifting in time the same spike in different neuronsrent neurons
k = 0 : k = 0 : origin of the spike is irrelevantorigin of the spike is irrelevant
If If kk<2 spikes can be switched between neurons<2 spikes can be switched between neurons
If If kk>2 they can>2 they can’’t, as it is cheaper to insert and delete a spike in the same neut, as it is cheaper to insert and delete a spike in the same neuronron

The Sellers algorithm requires only one forward sweepThe Sellers algorithm requires only one forward sweep

VictorVictor--PurpuraPurpura
 

MetricMetric



VictorVictor--PurpuraPurpura
 

MetricMetric

Victor, Purpura, “Metric space analysis of spike trains,”

 

Network: Comput. Neural Syst, 1997



DeleteInsert
Cost: 1

VictorVictor--PurpuraPurpura
 

MetricMetric

Victor, Purpura, “Metric space analysis of spike trains,”

 

Network: Comput. Neural Syst, 1997



Shift within Neurons
Cost: q|Δt|

Δt

VictorVictor--PurpuraPurpura
 

MetricMetric



Shift Between Neurons
Cost: k

VictorVictor--PurpuraPurpura
 

MetricMetric



ApplicationApplication
Discrimination of amplitudeDiscrimination of amplitude--modulated auditory modulated auditory 
stimuli in locusts (stimuli in locusts (WohlgemuthWohlgemuth & & RonacherRonacher, , 
2007)2007)
Classification of neural responses based on spike Classification of neural responses based on spike 
metricsmetrics

Provides information about Provides information about 
The necessary evaluation time window that a neuron usesThe necessary evaluation time window that a neuron uses
The optimal temporal resolution of processing (q The optimal temporal resolution of processing (q 
parameter)parameter)

Yields clues about coding principlesYields clues about coding principles
Helps us understand respective contributions of spike Helps us understand respective contributions of spike 
counts vs. spike timingcounts vs. spike timing



ApplicationApplication

input

input

response

response

WohlgemuthWohlgemuth

 

& & RonacherRonacher, 2007, 2007



Spike trains for 
different stimuli

Classification
based on

spike metric

WohlgemuthWohlgemuth

 
& & RonacherRonacher, , 
20072007

Three classes
of neurons

Auditory receptor
neurons

Local neurons

Ascending
neurons



Classification accuracy as a function of temporal resolution, i.e. the q parameter

WohlgemuthWohlgemuth

 

& & RonacherRonacher, 2007, 2007

Rec

 

= Auditory Receptor neuron

TN = local neurons
with primary-like
responses
BSN = bisgemental
neuron (interneuron)

AN = ascending 
interneuron



Discrepancies between models and Discrepancies between models and 
actual actual neurophysiologicalneurophysiological

 
datadata

Models are idealizedModels are idealized
Neural data are noisyNeural data are noisy

E.g. there may be gaps in a neuronE.g. there may be gaps in a neuron’’s firing (cycle s firing (cycle 
skipping)skipping)
How can models be built to accommodate such How can models be built to accommodate such 
imprecision?imprecision?
See See ““Model this! Seven empirical phenomena Model this! Seven empirical phenomena 
missing in the models of cortical oscillatory missing in the models of cortical oscillatory 
dynamics,dynamics,”” DankoDanko NikolicNikolic, IJCNN 2009., IJCNN 2009.



Relevance of this research to our Relevance of this research to our 
daily livesdaily lives

NY Times article, 5/5/09 NY Times article, 5/5/09 ““Ear Plugs to Lasers: The Science Ear Plugs to Lasers: The Science 
of Concentrationof Concentration””
Based on "Driving fastBased on "Driving fast--spiking cells induces gamma spiking cells induces gamma 
rhythm and controls sensory responses." J. A. Cardin, et al.  rhythm and controls sensory responses." J. A. Cardin, et al.  
Nature, 2009Nature, 2009
Interplay between bottomInterplay between bottom--up and topup and top--down processes:down processes:

Neurons in preNeurons in pre--frontal cortex (planning center) oscillate in unisonfrontal cortex (planning center) oscillate in unison
prepre--frontal cortex can override sensory inputfrontal cortex can override sensory input
However, significant concentration is required to override a strHowever, significant concentration is required to override a strong ong 
input like a TV commercialinput like a TV commercial
Limit multitasking; start your day with the most important task;Limit multitasking; start your day with the most important task;
meditate; build a stimulus sheltermeditate; build a stimulus shelter
Implications for our own lives, and for educationImplications for our own lives, and for education



ConclusionsConclusions
We have reviewed a rich area of research and explorationWe have reviewed a rich area of research and exploration

Tried to achieve a balance between breadth & depthTried to achieve a balance between breadth & depth
Several questions still open for investigationSeveral questions still open for investigation

Using oscillatory networks on more realistic input data, scalingUsing oscillatory networks on more realistic input data, scaling up the up the 
network sizesnetwork sizes
Combining different sensory modalitiesCombining different sensory modalities
Closing the perceptionClosing the perception--action loopaction loop

Opportunities for interaction with neuroscienceOpportunities for interaction with neuroscience
Analysis of spike train recordingsAnalysis of spike train recordings
Developing explanatory and predictive modelsDeveloping explanatory and predictive models

Thanks for your attention. Feedback is always welcome!Thanks for your attention. Feedback is always welcome!
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