
IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261 1

A Parallel Neuromorphic Text Recognition
System and Its Implementation on a

Heterogeneous High Performance Computing
Cluster

Qinru Qiu, Qing Wu, Morgan Bishop, Robinson Pino, Members, IEEE,
and Richard Linderman, Fellow, IEEE

Abstract— Given the recent progress in the evolution of high performance computing (HPC) technologies, the research in
computational intelligence has entered a new era. In this paper, we present a HPC-based context-aware Intelligent Text
Recognition System (ITRS) that serves as the physical layer of machine reading. A parallel computing architecture is adopted
that incorporates the HPC technologies with advances in neuromorphic computing models. The algorithm learns from what has
been read and, based on the obtained knowledge, it forms anticipations of the word and sentence level context. The information
processing flow of the ITRS imitates the function of the neocortex system. It incorporates large number of simple pattern
detection modules with advanced information association layer to achieve perception and recognition. Such architecture
provides robust performance to images with large noise. The implemented ITRS software is able to process about 16 to 20
scanned pages per second on the 500 TFLOPS (trillion floating point operations per second) AFRL/RI Condor HPC after
performance optimization.

Index Terms — Heterogeneous (hybrid) systems, distributed architecture, natural language interfaces, machine learning.

——————————  ——————————

1 INTRODUCTION

ith the rapid development in high performance
computing (HPC) technologies, the research in
machine intelligence has entered a new era. How

to harness the huge amount of computing power and
memory storage provided by the modern HPC clusters
and convert it to useful computations that assist or even
replace the human cognition process? Will the perfor-
mance of current neuromorphic computing models scale
as the hardware resource increases? What is the bottle-
neck of current HPC architectures when applied to cogni-
tive computing and how can this be addressed by future
computing tools? The research work at Syracuse Univer-
sity and the Air Force Research Laboratory (AFRL) In-
formation Directorate (RI) makes a preliminary effort in
answering these questions.

Research discoveries in human psychology suggest
that human information processing is a multi-level pro-

cess [1] that mostly relies on pattern matching and senso-
ry association rather than calculation and logic inference.
Information is first processed by the sensory cortex where
the complex data is reduced to abstract representations.
The abstract representation is compared to stored pat-
terns in massively parallel neural networks in the basal
ganglia and neocortex to generate a quick reaction. If
more sophisticated processing such as reasoning is need-
ed then relatively slower sequential process will occur in
the prefrontal cortex. To cope with this information pro-
cess procedure, the neocortex of human brain consists of
the primary sensory area, the association area and the
higher order association area [2]. The primary sensory
cortex detects the basic dimensions of the external stimuli
to the five sensory systems. The sensory cortex is further
divided into cortical columns which could detect a specif-
ic input pattern (such as contour, color, or pitch, etc.) in a
specific area. Each sensory system has its own association
area that combines information from the primary sensory
cortex to produce perception (i.e. cognition). The higher
order sensory system carries out complex mental process-
es by combining information from several sensory associ-
ation areas. Sensory association is the most important
step in perception. The association area is by far the most
developed part of the cerebral cortex.

The above analysis partly reveals the answers to the
first question that we previously raised. In order to har-
ness the modern computer to imitate the human cogni-
tion process, we believe that the following architecture
should be considered:

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————
 Received and approved for public release by AFRL on 03/29/2011, case

number 88ABW-2011-1860.
 Q. Qiu is with the Syracuse University, Syracuse, NY 13244. E-mail:

qiqiu@syr.edu.
 Q. Wu is with the Air Force Research Laboratory, Rome, NY 13441. E-

mail: Qing.Wu@rl.af.mil.
 M. Bishop is with the Air Force Research Laboratory, Rome, NY 13441. E-

mail: Morgan.Bishop@rl.af.mil.
 R. Pino is with the Air Force Research Laboratory, Rome, NY 13441. E-

mail: Robinson.Pino@rl.af.mil.
 R. Linderman is with the Air Force Research Laboratory, Rome, NY 13441.

E-mail: Richard.Linderman@rl.af.mil.

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

W

2 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

1. Both the hardware and software should follow the
hierarchy of neocortex system, with the lower level
dedicated for pattern detection of the raw external in‐
put and the upper level dedicated for information as‐
sociation based perception.

2. The same input should be processed by multiple func‐
tion modules corresponding to different primary sen‐
sory cortical columns for the detection of different pat‐
terns. In this way the complexity of each function
module is reduced. Furthermore, all of the function
modules are independent to each other and can be
implemented in parallel.

3. Advanced and fast information association is more
important than accurate detection. With the help of in‐
formation association, relatively simple pattern match‐
ing algorithm can be used to achieve accurate percep‐
tion.
Many algorithms have been proposed for pattern de-

tection and information association. Clearly, different
algorithms favor different hardware configurations. In
general, pattern matching algorithms such as neural net-
works and support vector machines (SVM) are dominated
by matrix and vector operations while information asso-
ciation models such as Bayesian network and probabilis-
tic graph model require large storage space to capture
complex relations. If we try to replicate the human infor-
mation processing flow, it naturally requires machines
with massively parallel processing capability and high
computation speed at the bottom layer for pattern detec-
tion and machines with large memory space and high
memory access speed at the upper layer.

Such hierarchical architecture can be found in the
1,800-node 500 TFLOPS (trillion floating point operations
per second) Condor HPC cluster that has been built at
AFRL/RI in 2010. The Condor HPC consists of 78 sub-
clusters and each sub-cluster is composed of dual Intel
Xeon six-core processors as the head node, 22 Sony
PlayStation3 (PS3) computers based on the IBM Cell
Broadband Engine (Cell-BE) processor [12], and 2 NVID-
IA general purpose graphic processing unit (GPGPU)
cards. Each Cell-BE processor has one PowerPC processor
and 6 synergistic processing elements (SPE). Each SPE is a
self-contained vector processor that peaks at eight float-
ing point operations per clock cycle at 3.2 GHz. With 6 of
these SPEs, a cell processor provides 153 GFLOPS (billion
floating point operations per second) peak performance.
The vector processing capability of the SPE makes it suit-
able for matrix and vector operations used in pattern
matching algorithms such as neural networks and SVMs.
Overall, the 1,716 Cell-BE processors deliver 262 TFLOPs
computing power and form the first layer hardware of a
neuromorphic computing system. The second layer is
naturally the head nodes, each of which has 12 cores and
24GB memory. The memory access speed is up to 2GB/s
per core.

We believe that such brain inspired signal processing
flow could generally be applied to many cognitive appli-
cations, from image processing, to intruder detection, etc.
To investigate the software and hardware requirements of
this new information processing approach, a proof-of-

concept prototype of context-aware Intelligence Text
Recognition [13][14][15] software (ITRS) is developed on
the Condor HPC. Its architecture incorporates the Condor
HPC technologies with advances in neuromorphic com-
puting models. The lower layer of the ITRS performs pat-
tern matching of the input image using a simple non-
linear autoassociative neural network model called Brain-
State-in-a-Box (BSB) [6]. It matches the input image with
the stored alphabet. Each BSB model is analogy to a corti-
cal column in the primary sensory area that performs the
preliminary detection. Sometimes, multiple matching
patterns may be found for one input character image. The
upper layer of the ITRS performs information association
using the cogent confabulation model [11]. It enhances
those BSB outputs that have strong correlations in the
context of word and sentence and suppresses those BSB
outputs that are weakly related. In this way, it selects
those characters that form meaningful words and sen-
tences. Each confabulation model is analogy to a cortical
column in the sensory association area that associates the
primary detections to form high level cognition. Com-
pared to the existing optical character recognition (OCR)
system such as OCRopus [3][4][5], Tesseract [15][16], and
Microsoft OneNote, the proposed ITRS system has the
following uniqueness.
1. It has a much simpler bottom layer for image pro‐

cessing and pattern matching. The BSB model is a
simple and weak associative memory compared to
some more powerful networks using complex learning
rules [6]. However, we propose a novel racing mecha‐
nism that enables the BSB to generate fuzzy pattern
matching result which retain rich information that
could be processed by the upper association layer. By
contrast, most of the existing text recognition systems
heavily rely on image processing and pattern match‐
ing, which require complex algorithms and intensive
computation. They provide deterministic result and
cannot be integrated with an information association
layer.

2. The text recognition of ITRS is mainly achieved by a
powerful information association layer. The more than
6GB knowledgebase of the information association
layer contains information extracted from English lit‐
erature. It is trained by “reading’ more than 70 classi‐
cal texts. Our hash based technique enables us to up‐
date and query the knowledgebase efficiently [17].
Although many of the existing text recognition sys‐
tems also have integrated dictionary and language
models, compared to the one used in the ITRS, they
are rather preliminary.

3. The powerful information association technology and
extensive knowledge in English language enables the
ITRS to perform text recognition using information
beyond the input image. The experimental results
show that the ITRS system is capable of recognizing
more than 85% of words correctly when each word
has 30% characters occluded. Using the OCR function
of the Microsoft OneNote, less than 5% of words can
be read accurately.

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 3

4. The ITRS is intrinsically parallel and its software struc‐
ture fits nicely to the architecture of Condor HPC. To
recognize a sentence requires up to 10,400 BSB models,
20 confabulation models at word level and 1 confabu‐
lation models at sentence level. With medium optimi‐
zation effort in double buffering and latency hiding,
these models can be operated in parallel. The Cell‐BE
in the cluster is efficient in processing the BSB models
due to its vector processing capability and abundance.
The headnode in the cluster is the natural candidate
for the processing of the confabulation model, due to
its large storage space and fast memory access speed.
Compared to the ITRS, the existing text recognition
system does not have good scalability to distributed
and parallel computing hardware. Because they do not
have an intrinsic parallel structure, they usually focus
on the parallelization of a specific pattern matching
[18] or image processing [19] algorithm, which re‐
quires high design effort.
To implement the ITRS system on the Condor cluster

is not trivial. The major challenge is how to balance the
workload and hide the communication latency for better
performance. This paper will introduce the software and
hardware architecture of the ITRS system as well as some
implementation details. Its accuracy and performance
will be discussed based on the experiment data. The im-
pact of the available hardware resource on the system
throughput will also be analyzed.

The remainder of the paper is organized as follows. A
brief introduction of related works in text recognition is
provided in Section 2. In Section 3 we introduce the basics
of the two neuromorphic models used for the ITRS soft-
ware. Section 4 describes the overall system model and
the algorithms in different layers. Section 5 gives the de-
tails of implementation on the Condor HPC. The experi-
mental results and discussions are presented in Section 6.
Section 7 summarizes the work.

2 RELATED WORKS
The research in text recognition has a long history [20].

It consists of three major thrusts, optical character recog-
nition (OCR), pre-OCR image processing and post OCR
words correction.

Before 2000, the research efforts focus on general OCR
technology. Most of the works divides an OCR engine
into five stages: scanning, segmentation, feature extrac-
tion, and character classification [22]. Some typical used
feature extraction techniques for OCR include, template
matching [23], zoning [24], moments extraction [25][26],
contour information, etc. A detailed survey of feature
extraction techniques for OCR is provided in [21].

Based on the classification techniques, the OCR can be
divided into statistical identification [28], syntactic classi-
fication [28] and neural network based classification
[22][29][30][31]. In [29], the authors recognize handwrit-
ten numbers based on the features extracted from the di-
rectional code histogram and gray scale transformation. A
two stage neural network is developed to classify these
features. The first layer consists of a 256 input single layer

neural network that classifies the gray scale feature. The
second layer consists of 45 64-input and 3-output neural
networks that classify the directional features. The au-
thors of [31] utilize a back propagation neural network to
recognize the Japanese characters. The authors divide
character image into small regions and extract blob in-
formation of these regions. These features are classified
by a 4-layer neural network that has 2386 neurons and
185,580 connections.

In recent years, the research focus of text recognition
shifts to pre-processing and post processing techniques.
The former enhances the image quality for better OCR
accuracy [32][33][34], while the later relies on dictionary
of language information to correct OCR errors
[35][37][36][38]. For example, both references [35] and [37]
try to correct OCR error based on topic information. Their
goal is to obtain a maximum likelihood estimate of the
actual word t given the OCR output w by maximizing the
posteriori ݌ሺݓ|ݐሻ ൌ -ሻ. The word probabilݓሺ݌/ሻݐሺ݌ሻݐ|ݓሺ݌
ity p(t) is profiled for different topics, ݌ሺݓሻ (i.e. the prob-
ability of OCR output w) is assumed to be a uniform dis-
tribution. The error model ݌ሺݐ|ݓሻ is assumed to be known
by characterizing the OCR tools. This model assumes a
constant p(w|t) during the entire OCR process, which is
not reasonable, because the signal noise ratio will change
during OCR as the image quality changes. Furthermore,
the assumption that w is uniformly distributed is also not
realistic. The authors of [37] propose to verify the OCR
output by sending a query to search engine such as
Google for each recognized word, a correlation is built
based on the number of results returned. This verification
method requires no training and it is able to recognize
popular made-up words. However, it does not consider
any context information beyond word level. The authors
of [38] use the n-gram model to capture character correla-
tions at word level. A database is then developed for que-
ries that search for the closest match. Again, this work
only considers information at word level. None of the
above mentioned work addresses the performance of
OCR.

Our review shows that existing OCR technique usual-
ly requires complicated feature extraction and computa-
tion intensive pattern classification. It has a separate post-
OCR correction stage which usually only relies on word
level information. Our proposed ITRS overcomes these
limitations by combining OCR and post-OCR correction,
and utilizes context information at sentence level

3 BACKGROUND
The neuromorphic model adopted by the ITRS software is
mainly built based on the Brain-State-in-a-Box (BSB) at-
tractor model [10] and the Cogent Confabulation model
[11]. The BSB models provide the preprocessing of the
image of each character seeking a matching pattern. The
cogent confabulation algorithms combine information
from the BSB model to form more complex objects such as
words or sentences. During this procedure, it suppresses
the inputs that does not have strong association with oth-
ers and enhances the remaining inputs. In other words,

4 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

the confabulation model eliminates those BSB results that
do not form meaningful words and sentences.

3.1 Brain-State-in-a-Box model
The BSB model is a simple, auto-associative, nonlinear,
energy-minimizing neural network [7][8][9][10]. A com-
mon application of the BSB model is to recognize a pat-
tern from a given noisy version. It can also be used as a
pattern recognizer that employs a smooth nearness meas-
ure and generates smooth decision boundaries.

There are two main operations in a BSB model, Train-
ing and Recall. In this work, we focus on the BSB recall
operation. The mathematical model of a BSB recall opera-
tion can be represented in the following form:
))0(*)(*)(**()1(xxxAx   ttSt (1)
where:

 x is an N dimensional real vector
 A is an N-by-N connection matrix
 A*x(t) is a matrix-vector multiplication operation

  is a scalar constant feedback factor
  is an inhibition decay constant
  is a nonzero constant if there is a need to main-

tain the input stimulation
 S() is the “squash” function defined as follows:

















1

11

1

1

1

)(

y

y

y

if

if

if

yyS

 (2)

Note that in the proposed algorithm, we choose  to
be 0.1, to be 1.0 and  to be 0.0. But they can be easily
changed to other values during the implementation. Giv-
en an input pattern x(0), the recall process executes Equa-
tion (1) iteratively to reach convergence. A recall converg-
es when all entries of x(t+1) are either “1.0” or “-1.0”. In
our implementation, it usually takes more than 10 itera-
tions for recall to converge.

The BSB model is selected in the ITRS for two reasons.
First, it is simple to operate compared to other complex
neural network models [6]. Although it has lower accura-
cy, this can be compensated later in the information asso-
ciation stage. Second, its convergence roughly indicates
the similarity between the input and the stored pattern. It
is pointed out by [6] that the average convergence time of
the BSB model increases as the input goes further away
from the attractor. Such property enables the racing mod-
el in character recognition, which will be introduced in
Section 3.2.

3.2 Cogent confabulation
Cogent confabulation is a connection-based cognitive
computing model. It captures correlations between ob-
jects (or features) at the symbolic level and stores this in-
formation as a knowledge base. Given an observation,
familiar information with high relevancy will be recalled
from the knowledge base. Based on the theory, the cogni-
tive information process consists of two steps: learning
and recall. During learning, the knowledge links are es-
tablished and strengthened as symbols are co-activated.
During recall, a neuron receives excitations from other

activated neurons. A “winner-takes-all” strategy takes
place within each lexicon. Only the neurons (in a lexicon)
that represent the winning symbol will be activated and
the winner neurons will activate other neurons through
knowledge links. At the same time, those neurons that
did not win in this procedure will be suppressed.

Fig. 1 shows an example of lexicons, symbols, and
knowledge links. The three columns in Fig. 1 represent
three lexicons for the concept of shape, object, and color
with each box representing a neuron. Different combina-
tions of neurons represent different symbols. For exam-
ple, as shown in Fig. 1, the pink neurons in lexicon I rep-
resent the cylinder shape, the orange and yellow neurons
in lexicon II represent a fire extinguisher and a cup, while
the red neurons in lexicon III represent the red color.
When a cylinder shaped object is perceived, the neurons
that represent the concepts “fire extinguisher” and “cup”
will be excited. However, if a cylinder shape and a red
color are both perceived, the neurons associated with
“fire extinguisher” receive more excitation and become
activated while the neurons associated with the concept
“cup” will be suppressed. At the same time, the neurons
associated with “fire extinguisher” will further excite the
neurons associated with its corresponding shape and col-
or and eventually make those symbols stand out from
other symbols in lexicons I and III.

Fig. 1. A simple example of lexicons, symbols and knowledge links.

A computational model for cogent confabulation has
been proposed by Hecht-Nielsen [11]. Based on this mod-
el, a lexicon is a collection of symbols. A knowledge link
(KL) from lexicon I to II is a matrix with the row repre-
senting a source symbol in lexicon I and the column rep-
resenting a target symbol in lexicon II. The (i,j)th entry of
the matrix represents the strength of the synapse between
the source symbol si and the target symbol tj. It is quanti-
fied as the conditional probability P(si|tj). The collection
of all knowledge links is called a knowledge base (KB). The
knowledge bases are obtained during the learning proce-
dure. During recall, the excitation level of all symbols in
each lexicon is evaluated. Let l denote a lexicon, Fl denote
the set of lexicons that have knowledge links going into
lexicon l, and Sl denote the set of symbols that belong to
lexicon l. The excitation level of a symbol t in lexicon l
can be calculated as:
ሻݐሺܫ ൌ ∑ ∑ ሻݏሺܫ ቂln ቀ

௉ሺ௦|௧ሻ

௣బ
ቁ ൅ ௦∈ௌೖ௞∈ி೗		ቃܤ ݐ , ∈ ௟ܵ. (3)

The function I(s) is the excitation level of the source
symbol s. Due to the “winner-takes-all” policy, the value
of I(s) is either “1” or “0”. The parameter p0 is the smallest

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 5

meaningful value of P(si|tj). The parameter B is a positive
global constant called the band gap. The purpose of intro-
ducing B in the function is to ensure that a symbol receiv-
ing N active knowledge links will always have a higher
excitation level than a symbol receiving (N-1) active
knowledge links, regardless of the strength of the
knowledge links. For example, both symbols t1 and t2
belong to lexicon I. And both of them are activated by
two symbols from other lexicons. However, t1 is activat-
ed by two symbols that belong to the same lexicon, while
t2 is activated by two symbols that belong to different
lexicons. We consider t2 to be more highly activated than
t1 and the band gap B is introduced to increase the excita-
tion level of t2.

Compared to other information association models,
such as the Bayesian network, the confabulation model is
much simpler in training and recall due to its unique exci-
tation mechanism and the adoption of posterior probabil-
ity. For more information, please refer to [11].

4 ARCHITECTURE AND ALGORITHMS

4.1 System architecture
The ITRS is divided into three layers as shown in Fig. 2.
The input of the system is a text image. The first layer is
character recognition software based on BSB models. It
tries to recall the input image with stored images of the
English alphabet. If there is noise in the image, multiple
matching patterns may be found. The ambiguity can be
removed by considering the word level and sentence lev-
el context, which is achieved by the information associa-
tion in the second and third layer where word and sen-
tence is formed using cogent confabulation models. Im-
age processing front-end software is designed to read in
the scanned images of text and separate them into blocks
of smaller images of single characters. The ITRS system is
evaluated using images of scanned text with missing in-
formation, i.e., texts with hard-to-recognize or missing

characters. Its accuracy will be reported in Section 6.
In this work, we designed a new “racing” algorithm

for BSB recalls. The algorithm is based on the observa-
tions that the convergence speed of the BSB recall process
indicates the distance between the input and remembered
patterns. For a given character image, we consider all pat-
terns that converge within a certain number of iterations
as potential candidates that may match the input image.
Candidate BSB outputs will be activated and used to trig-
ger the corresponding symbols in the confabulation mod-
el for information association. By using the racing algo-
rithm, if there is noise in the image or the image is partial-
ly damaged, multiple matching patterns will be triggered
for the same input character image. For example, a hori-
zontal scratch will make the letter “T” look like the letter
“F”. In this case we have ambiguity in character recogni-
tion. The pattern that cannot form meaningful words and
sentences will be eliminated in the later stages.

Fig. 2. Layered architecture of intelligent text recognition.

Fig. 3 shows an example of using the ITRS to read
texts that have been occluded. The BSB algorithm recog-
nizes text images with its best effort. The word level con-
fabulation provides all possible words that associate with
the recognized characters while the sentence level con-
fabulation finds the combination among those words that
gives the most meaningful sentence.

Fig. 3. An example of occluded text recognition process.

6 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

4.2 The “racing” mechanism for BSB recalls
In this section we first describe the “racing” mechanism
that we use to implement the multi-answer character
recognition process.

Without loss of generality, assume that the set of char-
acters we want to recognize from images consists of 52
characters, which are the upper and lower case characters
of the English alphabet.

ܵ ൌ ሼᇱܽᇱ, ′ܾᇱ, … , ,ᇱݖ′ ᇱ,ᇱܣ′ ,ᇱܤ … , ′ܼ′ሽ
We also assume that for each character in S, there are

M typical variations in terms of different fonts, styles and
sizes. For example, the set of images of character ‘a’ with
different variations can be represented as:

ܵ௔ ൌ ሼܽଵ, ܽଶ, … , ܽெሽ
In terms of pattern recognition, there are a total of

52*M patterns to remember during training and to recog-
nize during recall. If we follow the traditional application
approaches of the BSB models, the solution is to train one
BSB model to remember all the 52*M patterns. During
recall, given an input image, this model will eventually
converge to one of the remembered patterns (attractors)
that represent the recognition result. The shortcomings of
this approach is that, firstly it requires a BSB model with
large dimensionality (N the dimension of vector X in
Equation 1) to remember all the patterns. This increases
the complexity (∝ ܰଶ) of the computation and also reduc-
es the scalability when implemented on parallel compu-
ting architectures. Secondly, this approach only provides
one answer to the input image. The BSB recall process
does not return the second or third closest attractor for
the image. For recognizing damaged texts, providing only
one answer is not adequate for the low-level pattern
recognition model to work with high-level language
models.

Therefore in our implementation, the primary goal is
to design a process that provides multiple candidates for
an input image. And the secondary goal is to have rea-
sonably-sized BSB models to have good scalability and
keep computation complexity under control.

The solution we designed is to use one BSB model for
each character in S. Therefore there will be a set of 52 256-
dimensional BSB models, that is:

ܵ஻ௌ஻ ൌ ሼܤܵܤ௔, ,௕ܤܵܤ … , ,	௭ܤܵܤ ,஺ܤܵܤ ,஻ܤܵܤ … , ሽ	௓ܤܵܤ
Each BSB model is trained for all variations of a char-

acter. For example, BSBa is trained to remember all the
variable patterns in Sa, BSBb will remember patterns in Sb,
and so forth. If we define the procedure “Recall(A, B)” as
the recall process using model A with input image B, re-
turning the number of iterations it takes to converge, the
recall and candidate selection process can be described in
Fig. 4.

In this algorithm, {K, Th_1, Th_2} are adjustable pa-
rameters based on overall reliability and robustness
needs.

Generally speaking, in our multi-answer implementa-
tion, we utilize the BSB model’s convergence speed to
represent the “closeness” of an input image to the re-
membered characters (with variations). Then we pick up
to K “closest” candidates (that satisfy conditions 3a and

3b) to work with high-level language models to deter-
mine the final output. On the AFRL/RI Condor HPC with
1,716 IBM Cell-BE processors, our implementation was
able to execute the recall operations in parallel. Because
each BSB model is small enough to fit on a single Cell-BE
processor, the overall performance scales linearly with the
number of Cell-BE processors used.

Fig. 4. The BSB recall and candidate selection process.

4.3 Word and sentence confabulations
The inputs of word confabulation are characters with am-
biguities referred as candidates. For each input image,
one or multiple character level candidates will be gener-
ated by the BSB model. In this work, we assume that each
word has less than 20 characters. Any word that is longer
than this will be truncated. Currently, if a word has less
than 20 characters, it will be padded with white spaces. In
the future, the length of the word will be considered as an
input to the confabulation model to avoid this type of
padding and to speed up the process.

The word level confabulation model consists of three
levels of lexicon units (LUs). There are 20 LUs in the first
level and the ith LU in the first level represents the ith
character in the word. There are 19 LUs in the second lev-
el and the ith LU in the second level represents a pair of
adjacent characters at location i and i+1. Finally, there are
18 LUs in the third level and the ith LU in the third level
represents a pair of characters located at i and i+2.

A knowledge link (KL) from lexicon I to II is an ܯ ൈܰ
matrix, where M and N are the cardinalities of symbol
sets SI and SII. The (i,j)th entry of the knowledge link gives
the conditional probability ܲሺ݅|݆ሻ, where ݅ ∈ ூܵ, and
݆ ∈ ூܵூ. Symbols i and j are referred to as the source symbol
and target symbol. Between any two LUs, there is a
knowledge link (KL). If we represent the lexicons as verti-
ces and represent the knowledge link from lexicon I to
lexicon II as a directed edge from vertex I to vertex II,
then we will obtain a complete graph.

Confabulation-based word level and sentence level
prediction heavily relies on the quality of the knowledge
base (KB). The training of the KB is the procedure to con-
struct the probability matrix between source symbols and
target symbols. The training program first scans through
the training corpus and counts the number of co-
occurrences of symbols in different lexicons. Then for
each symbol pair it calculates their posterior probability.
The word level recall algorithm finds all words from pos-
sible combinations of input character candidates. For ex-
ample, if the input candidates of a 3-letter word are: (w t s
r p o k e c a) for the first letter, (h) for the second letter,

Input: character image X.
1. For each trained BSB model BSBi in SBSB
 Conv[i] = Recall(BSBi, X);
2. Sort Conv[i] from low to high to form sorted list Conv_s[j];
3. Pick the first K in Conv_s[j] as recognition candidates, if it
satisfies both conditions listed below:
 a. Conv_s[j] <= Th_1; // Convergence speed threshold
 b. Conv_s[j] – Conv_s[j-1] <= Th_2; // Separation threshold

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 7

and (y t s r o m i h e a) for the third letter, then the word
level confabulation program will find 24 words, including
“why”, “who”, “wha”, “thy”, “thi”, “the”, “tha”, “shy”,
“sho”, “she”, “rho”, “phr”, “ohs”, “oho”, “ohm”, “kho”,
“eht”, “cha”, “aht”, “ahs”, “ahr”, “ahm”, “ahh”, and
“aha”. Although some of them are not dictionary words,
they appear at least once in the training corpus, which
consists of more than 70 fiction books. Some of these non-
dictionary words are names for special places or objects
and some of them are used to represent specific sounds. A
few of them are typos or errors in the training file.

For each input candidate in each lexicon, the recall
algorithm sets the corresponding symbols to be active. A
lexicon that has multiple symbols activated is referred to
as an ambiguious lexicon and the goal of the word level
confabulation is to eliminate such character level
ambiguity as much as possible or to transform it into
word level ambiguity which can be further eliminated by
sentence level confabulation.

For each lexicon that has multiple symbols activated,
we calculate the excitation level of each activated symbol.
The excitation level of a symbol i in lexicon B is defined
as:
஻ሾ݅ሿܮܧ ൌ ∑ ∑ ݈݇஺஻ሾ݆ሿሾ݅ሿ௝∈ሼ௔௖௧௜௩௘	௦௬௠௕௢௟௦	௜௡	஺ሽ஺ஷ஻ ,
where ݈݇஺஻ሾ݆ሿሾ݅ሿ is the knowledge value from symbol j in
lexicon A to symbol i in lexicon B. The N highest excited
symbols in this lexicon are kept active. These symbols
will further excite the symbols in other ambiguous
lexicons. This procedure will continue until the activated
symbols in all lexicons do not change anymore. If
convergence cannot be reached after a given number of
iterations, then we will force the procedure to stop.

For each word in a test sentence, the word level
confabulation model generates one or multiple word
candidates. They will be the input to the sentence level
confabulation model.

The sentence level confabulation model is very similar
to its word level counterpart except that there are only
two levels of LUs. The first level LUs represent single
words while the second level LUs represent adjacent
word pairs. The training and recall functions of sentence
level confabulation have the same principle as these
functions at word level. It is important to point out that,
each first level lexicon for word confabulation contains at
most 26 symbols representing 26 letters in the alphabet
and each second and third level lexicon for word
confabulation contains at most 26 ൈ 26 ൌ 676 symbols;
however, the maximum size of the symbols of each
sentence level lexicon equals the total number of English
words and word pairs. Without any compression, the
sentence level knowledge base will be extremely large.
For example, the English version of the book “Round the
Moon” has about 47 ൈ 10ଷ words. Our analysis shows
that it has 23 ൈ 10ଷ distinguished symbols (i.e. words and
word pairs). As we mentioned earlier, each knowledge
link is a ܯ ൈ ܰ matrix, where M and N are the symbol
size of the source and target lexicons. Without any
compression, the trained knowledge base will have
2.3 ൈ 10ଽ entries which are equivalent to be 9.2 GBytes.
Fortunately, the knowledge links are sparse matrices.

Only less than 0.1% of the matrix has non-zero values.
Therefore, an option to reduce the memory cost is to store
the knowledge using the list of list (LIL) format, which has
been widely used for sparse matrix storage. However,
this leads to the second problem. As the size of the
training corpus grows, the number of symbols of each
lexicon can easily go up to hundreds of thousands. Even
with the best search algorithm, the time to locate the entry
in the compressed matrix grows logarithmically and soon
the algorithm will become prohibitively slow. In this
work, two-level hash functions are used to speed up the
training and recall of the sentence level confabulation
model. It provides 10 to 15X speed ups to locate a
knowledge entry in a 6 GB compressed knowledge base.
More details of sentence level confabulation can be found
in our recent work [17].
We need to point out that, many state-of-the-art optical
character recognition (OCR) systems also have integrated
language model [3][16]. The most widely used existing
language model is the n-gram model which captures the
posterior probability p(wi|w) of the next n words wi,
1 ൑ ݅ ൑ ݊, given the observation of the current word w.
The confabulation based language model differs from the
n-gram model in several ways. First, the confabulation
model selects the ambiguous word in a way such that the
likelihood of the observation of the rest of the sentence is
maximized. In contrast, the n-gram model maximizes the
likelihood of the selected words given the observation of
the rest of the sentence. Although there is no definite
advantage of one approach over another, they sometimes
give different results.
Second, the n-gram model can only be applied in a
sequential way. It analyzes the sentence and predicts
words in a sequential order from left to right, while our
knowledge base provides the relations between all words
or word pairs in the sentence. This enables the software to
confabulate ambiguous words at the beginning of the
sentence based on the information provided later.

Finally, the recall function of the confabulation model
mimics the information processing in the human
neurology system, where neurons are exciting and being
excited at the same time. Therefore, when ambiguity
exists in multiple words, the selections of these entries
evolve simultaneously. These differences indicate that the
confabulation model is more suitable for information
association than the n-gram model.

5 IMPLEMENTATION ON AFRL/RI CONDOR HPC

5.1 Overall software architecture
The overview of the implementation of the ITRS software
is shown in Fig. 5. It explores the parallelism in hardware
and software to achieve a high throughput for the system.
We partition the entire workload into pages. All sub-
clusters run simultaneously and independently to process
different pages. In this way the cluster level parallelism is
achieved. There is a performance monitor that
periodically checks the utilization of the processor cores
in the cluster for performance characterization. Because
each sub-cluster loads pages on-demand, at cluster level,

8 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

our system behaves asynchronously.
Upon receiving the page image, the head node first slices
the image into small blocks, each of which contains one
character. The blocks are dispatched to the PS3s, on which
the BSB recalls are run for character recognition. The
results are sent back to the head node for word level and
sentence level confabulation. With a double buffering
technique, the confabulation and BSB processes can be
made parallel. Furthermore, all 132 SPEs in 22 PS3s are
running simultaneously to process different characters. In
this way we achieve processor level parallelism. At this
level, the system is loosely synchronous because each SPE
receives the same amount of image blocks and they
perform the same amount of computation. Because of the
limited buffer space, a periodic synchronization between
the BSB and the confabulation is necessary. All inter-
processor communication is implemented via the
Message Passing Interface (MPI).

Fig. 5. Overview of the software architecture.

Based on the results from the BSB recalls, the host will

fork multiple threads; each thread is a word level
confabulation procedure. After all words in a sentence
have been found, a sentence confabulation process is
executed. The word level and sentence level
confabulation threads are dispatched to different cores on
the Intel Xeon processor, and in this way we achieve core
level parallelism. The key reason that we choose thread
level parallelism instead of process level parallelism is
because it allows shared memory so that we do not have
to duplicate the word-level knowledge base, which is
more than 200MB in size. In order to avoid frequent
context switching, which usually happens when the

number of threads is greater than the number of cores, we
adopt a token passing mechanism to control the number
of threads. The program maintains a token pool. The
number of tokens in the pool is less than or equal to the
number of cores in the system. A token will be removed
from pool when a thread is created and be returned when
the thread ends. Because the threads are created on
demand and complete dynamically, at this level, all cores
work asynchronously.

5.2 Sub-cluster level task interactions
As we mentioned before, at the sub-cluster level, the
system is loosely synchronous. At the beginning of each
iteration, the head node processes the scanned page and
sends 96 character images to each PS3. Without waiting
for the PS3 to send back the BSB results, the head node
continues to work on the BSB results received in the
previous iteration. During the same time, all PS3s
perform similar computations and they will complete the
recalls at approximately the same time. The candidates
for matching patterns are returned to the head node and
stored in the MPI buffer. The head node will not process
the MPI message until it has finished processing the
previously returned results.

At the sub-cluster level, two techniques are used to
increase the throughput of the system. Firstly we
pipeline the BSB model and confabulation model on PS3s
and the head node. Therefore the throughput of the
system is determined by the maximum delay of BSB and
confabulation instead of the total delay of these two.
Secondly, by using the MPI for inter-processor
communication, we implicitly use a double buffering
technique to hide the communication latency.

Fig. 6 shows the sub-cluster level task scheduling.
When the confabulation delay is much greater than the
BSB delay, the communication latency for the send and
receive procedure as well as the computation latency of
the BSB recalls are hidden. The initiation interval of the
system is determined by the delay of image processing
and confabulation, i.e. ܶ ൌ ௜ܶ௠௚ ൅ ௖ܶ௢௡௙௔௕. When the
confabulation delay is smaller than the BSB delay, the
computation latency of the confabulation model is
hidden, the system initiation interval is determined by the
delay of image processing, the communication delay of
sending and receiving MPI messages and the delay of the
BSB recalls, i.e. ܶ ൌ ௜ܶ௠௚ ൅ ௦ܶ௘௡ௗ ൅ ௕ܶ௦௕ ൅ ௥ܶ௖௩. It is
important to point out that ௕ܶ௦௕ is a constant. For each
input image, the same number of BSB recalls is
performed. Each BSB recall is run for the fixed number of
iterations in order to check their convergence speed. The
quality of the input image does not affect the BSB
computation time. However, a lower image quality
means that more candidates will be found by the
character recognition process. Therefore it increases the
workload and execution time for word and sentence
confabulation processes.

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 9

Fig. 6. Sub-cluster level task scheduling.

Fig. 7. Task graph of the ITRS and token management for multi-threading system.

5.3 Multi-threading confabulation
To fully utilize the multi-core architecture of the head
node, layers 2 and 3 of the ITRS are implemented using
multi-threading techniques. Fig. 7 shows the task and
data dependency graph of the ITRS software. A word
confabulation process will not be triggered until all the
characters in that word have been processed by the BSB
processes. Similarly, a sentence confabulation process
cannot start until all the words in that sentence have been
confabulated. Obviously the word confabulation process
is triggered more frequently than the sentence
confabulation process. Furthermore, each word
confabulation takes a longer time than a sentence
confabulation process. This is because we need to find all
valid words from the combinations of the character
candidates while only the most meaningful sentence from
the combination of the word candidates.

In order to maximize the throughput, it is necessary to
parallelize the word confabulation processes. Fig. 8
shows how the ITRS tasks are mapped to a sub-cluster
with 22 Cell-BE processors and one N-core head node. At
anytime, on the N-core head node we can run one thread
of sentence confabulation and N-1 threads of word
confabulation. Each word confabulation thread processes
one word. The sentence confabulation thread is the main
thread which is always active. Besides sentence
confabulation, it also performs other tasks such as

character seperation and communicates with the BSB
processes. The word confabulation thread is dynamically
created when all characters belonging to a word have
been processed by the BSB processes. After the word
confabulation completes, the thread will be deleted.

Fig. 8. Mapping of ITRS tasks to a sub-cluster.

…Head node

Communication

PS3

…

…

Head node

Communication

PS3

…

…

…

Image processing Confabulation Send (image) BSB

(a) Sub-cluster level task scheduling for
confabulation dominated system

(b) Sub-cluster level task scheduling for BSB
dominated system

Receive (result)

Timg Tconfab Tsend Tbsb Trcv

Character
separation

BSB BSB BSB BSB BSB BSB BSB BSB BSB BSB BSB BSB

Word
confab

… … … …

Word
confab

Word
confab

Word
confab… …

Sentence
confab

Sentence
confab

……

(a) Task graph of the ITRS system

………

BSB BSB BSB

Word
confab

…

Sentence

confab

Word
confab

…

BSB BSB BSB…

BSB BSB BSB…

Sentence

confab

………

Character

separation

BSB BSB BSB…

BSB BSB BSB…

BSB BSB BSB…

Word
confab

Word

confab

Word

confab

…Word

confab

Word

confab

Word

confab

… …

Sentence

confab

…

Character
separation

Word

confab

Word

confab

Word

confab

PS3‐1 PS3‐2 PS3‐22 Core 1 Core 2 Core 3 Core N

10 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

We keep the number of threads to be exactly equal to
the number of cores in the head node, in order to avoid
excessive context switches. This is achieved by using a
token passing mechanism. A token is used to represent
the status of a core. It can be in 3 states: ready state,
running state and completion state. A token pool is
maintained in the main thread. The number of tokens in
the pool equals to the number of cores in the system. All
tokens in the pool are in the ready state. When all
characters of a word are received and if there is a token in
the pool, a new word confabulation thread is created and
a token is removed from the pool. The state of that token
is changed to “running”. When the word confabulation
completes, the thread is deleted and the token state is
changed to “completion.” Only after the results of the
word confabulation are collected by the main thread, will
the state of the corresponding token be changed to
“ready” and the token will return to the pool. The token
passing mechanism guarantees that at any time the
number of active threads is no more than the number of
processor cores.

Fig. 9. In-order/out-of-order double buffering system.

The multi-threading architecture leads to an
interesting synchronization problem. As shown in Fig. 9,
two circular buffers are maintained in the main thread.
The first buffer is referred as the “input buffer”. It stores
the outputs from the BSB processes that will be used as
the inputs by the word confabulation thread. The input
buffer is written in a sequential order. It is read by the
word confabulation also in a sequential order. The results
from word confabulation will be written into an “output
buffer”. The item in the ith location of the input buffer
will be written into the ith location of the output buffer.
There are up to N-1 threads of word confabulation
working simultaneously on N-1 different words. Their
processing speeds are different. Whenever a thread
completes processing a word, it writes the result to the
corresponding location in the output buffer and fetches
another word from the input buffer. As a result, the
output buffer will be written out-of-order. The output
buffer will be read by the sentence confabulation process
again in sequential order. A read pointer is used to
indicate the starting word of the next sentence. When the
next M entries from the read pointer have been filled (M
is the number of the words in the next sentence), the
sentence confabulation process will be started and those
entries will be removed from the output buffer.

In general, a new thread of word confabulation will
start as long as the input buffer is not empty and a token
is available. However, due to the variable confabulation
speed of different words, it is possible that one of the
threads is still working on a word that belongs to the
sentence that is to be read out next, while other threads
have already filled up the rest of the buffer. Because the
output buffer must be read out in sequential order, no
sentence can be read from the buffer before the current
sentence is read. In this scenario, the output buffer is
“full” and a stall happens. No new word will be fetched
from the input buffer until the next sentence is removed
from the output buffer. More strictly speaking, the stall
happens when the following three conditions are true:
 The read pointer of the output buffer is at the ith

location,
 There is one word confabulation thread working on

the jth location, ݆ െ ݅ ൏ where M ,ܯ is the number of
words in the next sentence,

 The current read pointer of the input buffer is at
location j‐1.
The stall is used to synchronize the speed of different

word confabulation processes; therefore we refer to the
delay that is introduced by the stall as synchronization
delay. The synchronization delay increases when the
variation of the word confabulation time gets larger.

6. EXPERIMENTAL RESULTS
The ITRS software is implemented on the AFRL/RI
Condor HPC and evaluated for accuracy and
performance.

6.1 Recognition accuracy
In the first experiment, we test the software using text
images with low level noise. Our test case is extracted
from the book “Great Expectations” by Charles Dickens.
The text consists of 96767 letters or 23912 words. The text
has not been read during the training process. In order to
explicitly control the noise in the input, we use generated
bit maps of text images instead of scanned text images.
Horizontal scratches are added to the images of letters
selected randomly. The amount of noise in the input is
controlled by two parameters: (1) the thickness of
horizontal scratches varies from one pixel wide to three
pixels wide. Fig. 10 shows examples of the three different
types of horizontal scratches. Note that the scratches are
located in the center of the text image, where most of the
information to distinguish amongst various characters is
found. Also note that each text image is 15x15 pixels, and
a 1~3 pixel scratch across the image is equivalent to
7~20% missing information. (2) The probability that a
character is scratched varies from 0.2, 0.4 to 0.6.

Fig. 10. Three different horizontal scratches.

The outputs of ITRS are compared against the original
text. A sentence (or a word) is considered inaccurately

1

2

3

N‐1

…
Written by BSB

1

2

3

45

6

…

N 1

2

3

45

6

…

N

Read by sentence confab
(In‐order)

(In‐order) (Out‐of‐order)

(In‐order)

Input Buffer Output Buffer
Read by word confab Written by word confab

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 11

recognized if there is one word (or one letter) mismatch
from the original text. TABLE 1 gives the accuracy of
word and sentence confabulation. They are calculated as
the number of sentences (words) that have been correctly
“read” divided by the number of sentence (word)
confabulations that have been invoked. The same table
also gives the percentage of correct words. It is calculated
as the total number of correct words (including both
confabulated and none-confabulated) divided by the total
number of words in the text. As we can see, the rate of
accurate word confabulation and the overall percentage
of correct words are very close to each other. This is
because the majority of words have at least one scratch.
Therefore, they all need to go through the word
confabulation process.

TABLE 1

RECOGNITION ACCURACY AT SENTENCE AND WORD LEVEL

Scratch

prob.

Sentence

confabulation

accuracy

Word confabulation

accuracy

Overall % correct

words

1

scratch

2

scratch

3

scratch

1

scratch

2

scratch

3

scratch

1

scratch

2

scratch

3

scratch

0.2 0.92 0.90 0.86 0.98 0.98 0.97 0.99 0.99 0.98

0.4 0.87 0.82 0.76 0.98 0.97 0.95 0.98 0.98 0.96

0.6 0.82 0.74 0. 65 0.97 0.95 0.93 0.98 0.97 0.94

(a) Comparison in sentence accuracy

(b) Comparison in word accuracy

Fig. 11. Impact of sentence knowledge base on the confabulation
accuracy.

Fig. 11 shows the rate of correct sentences and correct
words found by the ITRS when a well trained sentence
level knowledge base (i.e. “long KB”) is used and a poorly
trained sentence level knowledge base (i.e. “short KB”) is
used. The size of the high quality knowledge base (“long
KB”) is more than 6 GB, while the size of the low quality
knowledge base (“short KB”) is only 2.7 MB. The data

series of “% improve” gives the percentage improvement
of the results obtained using “long KB” over the results
obtained using “short KB”. These charts indicate that
better knowledge at the sentence level improves the
sentence accuracy up to 80% and word accuracy up to
8%.

In the second experiment, we test the ITRS system
using text images with completely occluded characters.
The two test files are extractions from the book “Great
Expectations” by Charles Dickens and the book “Lost
World” by Arthur Conan Doyle. Neither of these books
has been read during the training. We increase the
percentage of occluded letters from 10% to 30%. TABLE 2
gives the sentence level and word level accuracy for
different input files. As we can see, even with 30% of the
characters missing, the ITRS can recognize more than 85%
words correctly.

TABLE 2

ACCURACY WITH OCCLUDED CHARACTERS

Percentage
of occluded

letters

10% 20% 30%

Word
accu.

Sentence
accu.

Word
accu.

Sentence
accu.

Word
accu.

Sentence
accu.

Great Exp. 95.5% 60.2% 90.5% 33.6% 86.3% 23.9%

Lost World 97.0% 63.8% 92.7% 31.2% 86.4% 20.7%

The following two examples show the input text (with
occluded letters) and the recognized text from ITRS:

Input: bu█ █ █new the s█unds by this t█me and

co█ld █is█ociate th█m from the object o█ ██rs█it

Recognized sentence: but I knew the sounds by this time

and could dissociate them from the object of pursuit

Input: gra█ious █o█dne█s █r█c█o█s me what█ █one

wit█ th█ pi█

Recognized sentence: gracious goodness gracious me

whats gone with the pig

Correct sentence: gracious goodness gracious me whats

gone with the pie

Compared to existing text recognition system, the
uniqueness of the proposed ITRS is its ability to achieve
high accuracy from poor image detection and pattern
matching results. For example, given a text image with
about 20% characters occluded, the OCR function in
Microsoft OneNote system outputs less than 20% correct
words, which is much lower than the results from the
ITRS.
6.2 System performance
Fig. 12 shows the evolution of the ITRS software architec-
ture over time. We started with a base line implementa-
tion as shown in Fig. 12 (a), in which all the software
components are connected sequentially except for the BSB
engines that are running on 22 PS3s in parallel. Our first
step is to improve the confabulation speed by multi-
threading, as shown in Fig. 12 (b).

3 pixel scratch

0

2

4

6

8

10

0.8

0.85

0.9

0.95

1

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

%
im

p
ro
ve
m
en

t

A
cc
u
ra
cy

Scratch Probability

long KB short KB %improve

2 pixel scratch 1 pixel scratch

3 pixel scratch 2 pixel scratch 1 pixel scratch

0

20

40

60

80

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

%
im

p
ro
ve
m
en

t

A
cc
u
ra
cy

Scratch Probability

long KB short KB %improve

12 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

To evaluate the performance of the ITRS software, we
carried out experiments on three different input test
cases. In the first input file 20% of character images are
scratched by 1-pixel-wide horizontal bars. Compared to
the other two test cases, it has the highest image quality.
The second input file has 40% of character images
scratched by 2-pixel-wide horizontal bars. Compared to
test cases one and three, it has the medium image quality.
The last input file has 60% of character images scratched
by 3-pixel-wide horizontal bars. It is the lowest quality
input file. The number of word confabulation threads is
varied from one to seven and denoted as t. The total
runtime is broken down into BSB time, word
confabulation time, sentence confabulation time and
synchronization time. The concept of synchronization
delay is introduced in Section 5.3. The sizes of the
input/output buffers in the double buffering system are
set to be 100 sentences.

Fig. 13 shows the runtime information for the three
test cases when the number of word confabulation
threads increases from one to seven. It also reports the
performance improvements of the multi-threading
implementations compared to the baseline
implementation.
Several observations can be made from the results:
1. No matter how the image quality changes, the BSB

time remains constant.
2. When the quality of the input text image deteriorates,

the word/sentence confabulation time increases. This
is because we rely on the confabulation to resolve the
ambiguities in the input.

3. When the quality of the input text image deteriorates,
the synchronization delay gets longer. This is
because the variations in the word confabulation
speed increases as the level of ambiguity rises, and

the in‐order/out‐of‐order circular buffer will be
blocked more frequently.

With the multi-threading technique, we can improve
the runtime by up to 70%.

Fig. 12. Evolution of the ITRS software architecture.

Fig. 13. Performance improvement by multi-threading confabulation.

Fig. 14. Increase of buffer size reduces the synchronization delay.

(a) Base line ITRS (b) Multi-threading ITRS

(c) Parallel ITRS

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35

0
20
40
60
80

100
120
140

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence
word bsb
improvement

1 pixel scratch 20%

0
0.1
0.2
0.3
0.4
0.5
0.6

0
50

100
150
200
250
300

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence
word bsb
improvement

2 pixel scratch 40%

0

0.2

0.4

0.6

0.8

0

1000

2000

3000

4000

5000

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence
word bsb
improvement

3 pixel scratch 60%

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

5000

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=1

t=2

t=3

t=4

t=5

t=6

t=7

sync sentence word bsb overall imprv buffer imprv

Buffer = 100 Buffer = 200 Buffer = 300

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 13

Fig. 15. Performance improvement by parallelizing BSB and

confabulation.

The results in Fig. 13 show that with low quality input,

the synchronization delay becomes the bottleneck that
prevents us achieving linear speedups by using multi-
threading techniques. One way to relieve this bottleneck
is to increase the capacity of the double buffering system.
We increase the buffer size from 100 sentences to 200 and
300 sentences and run the experiment again on the low
quality input file. Fig. 14 gives the runtime information
for the systems with three different buffer configurations.
The last data series (i.e. “buffer imprv”) gives the
performance improvement due to the increased buffer
size. The results show that with seven word
confabulation threads, increasing the buffer size from 100
to 200 and 300, we reduce the runtime by 20% and 30%.

We further improve the ITRS software architecture by
parallelizing the BSB and confabulation processes, as
shown in Fig. 12(c). Fig. 15 shows the performance of the
improved system on high quality, medium quality and
low quality inputs. The buffer capacity is set to 300
sentences. The data series labeled “improvement” gives
the performance improvement of the system over the
base line implementation, while the data series labeled

“improv2” gives the percentage speed improvement by
comparing the parallel ITRS with multi-threading ITRS.
The number of word confabulation threads and the buffer
size of these two systems are kept the same. The results
show that parallelizing the BSB and confabulation is most
effective for the medium quality test cases, because the
BSB time and confabulation time are approximately equal
for this type of test cases and executing them
simultaneously can reduce the total runtime by 50%.

7 CONCLUSION
We have presented a HPC-based context-aware Intelligent
Text Recognition System (ITRS) that serves as the physical
layer of machine reading. A parallel computing architecture
is adopted that incorporates the HPC technologies with
advances in neuromorphic computing models. The algorithm
learns from what has been read and, based on the obtained
knowledge, it forms anticipations at the word and sentence
level. The knowledge helps to suppress the noise in during
pattern detection. The implemented ITRS software is able to
process about 16 to 20 scanned pages per second on the 500
TFLOPS AFRL/RI Condor HPC cluster with reasonable
effort put toward performance optimization.

ACKNOWLEDGMENT AND DISCLAIMER

Received and approved for public release by AFRL on
03/29/2011, case number 88ABW-2011-1860.

The contractor’s work is supported by the Air Force
Research Laboratory, under contract FA8750-09-2-0155.

Any Opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
AFRL or its contractors.

REFERENCES
[1] R. Wray, C. Lebiere, P. Weinstein, K. Jha, J. Springer, T. Belding, B. Best,

and V. Parunak, “Towards a Complete, Multi-level Cognitive
Architecture,” Proc. of the International Conference for Cognitive Modeling,
2007.

[2] R. S. Swenson, “Review of clinical and functional neuroscience,”
Educational Review Manual in Neurology, Castle Connolly Graduate
Medical Publishing, 2006.

[3] “The OCRopus Open Source Document Analysis and OCR System,”
http://code.google.com/p/ocropus/.

[4] T. M. Breuel, “The OCRopus open source OCR system,” Proc. Of SPIE
Document Recognition and Retrieval, Jan. 2008.

[5] F. Shafait, “Document Image Analysis with OCRopus,” Proc. Of IEEE
International Multitopic Conference, 2009.

[6] J. A. Anderson, “An Introduction to Neural Networks,” The MIT Press,
1995.

[7] J. A. Anderson, J. W. Silverstein, S. A. Ritz, and R. S. Jones, “Distinctive
features, categorical perception, probability learning: Some applications
of a neural model,” The MIT Press, 1989.

[8] M. H. Hassoun, Associative Neural Memories: Theory and Implementation,
Oxford University Press, 1993.

(a) Results for high quality test case

(b) Results for medium quality test case

(c) Results for low quality test case

0

0.1

0.2

0.3

0.4

0.5

0
10
20
30
40
50
60
70
80

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

sync sentence word
bsb improvement improv2

0

0.2

0.4

0.6

0.8

0

50

100

150

200

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

sync sentence word
bsb improvement improv2

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

5000

t=
1

t=
2

t=
3

t=
4

t=
5

t=
6

t=
7

sync sentence word
bsb improvement improv2

14 IEEE TRANSACTIONS ON COMPUTERS, TC-2011-04-0261

[9] A. Schultz, “Collective recall via the Brain-State-in-a-Box network,”
IEEE Transactions on Neural Networks, vol. 4, no. 4, pp. 580–587, July
1993.

[10] Q. Wu, P. Mukre, R. Linderman, T. Renz, D. Burns, M. Moore and Q.
Qiu, “Performance Optimization for Pattern Recognition using
Associative Neural Memory,” Proc. Of 2008 IEEE International Conference
on Multimedia & Expo, June 2008.

[11] R. Hecht-Nielsen, Confabulation Theory: The Mechanism of Thought,
Springer, August 2007.

[12] IBM, “IBM Cell Broadband Engine resource center,” http://www-
128.ibm.com/developerworks/power/cell/.

[13] J. Mantas, “An Overview of Character Recognition Methodologies,”
Pattern Recognition, 19(6); 425-430, 1986.

[14] G. Nagy, “Optical Character Recognition – Theory and Practice,”
Handbook of Statistics, Vol. 2, 621-649, 1982.

[15] Google, “Tesseract-OCR”, http://code.google.com/p/tesseract-ocr/
[16] R. Smith, “An Overview of the Tesseract OCR Engine,” Proc. Of

International Conference on Document Analysis and Recognition, 2007.
[17] Q. Qiu, Q. Wu, D. Burns, M. Moore, M. Bishop, R. Pino, R. Linderman,

“Confabulation Based Sentence Completion for Machine Reading,”
Proc. Of IEEE Symposium Series on Computational Intelligence, April 2011.

[18] D. Strigl, K. Kofler, and S. Podlipnig, “Performance and Scalability of
GPU-based Convolutional Neural Networks,” Proc. Of Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing, 2010.

[19] L. Lam, C. Y. Suen, “An Evaluation of Parallel Thinning Algorithms for
Character Recognition,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 17, Issue. 9, pp914-919, 2002.

[20] S. Mori, C. Y. Suen, K. Yamamoto, “Historical review of OCR
research and development,” Proceedings of the IEEE, Vol. 80, Issue. 7,
pp. 1029-1058, 1992.

[21] O. D. Trier, A. K. Jain, and T. Taxt, “Feature Extraction Methods for
Character Recognition – A Survey,” Pattern Recognition, Vol. 29, No. 4,
pp. 641-662, 1996.

[22] L. Fedorovici, E. Voisan, F. Dragan and D. Iercan, “Improved Neural
Network OCR based on Preprocessed Blob Cases,” Proc. Of
International Joint Conference on Computational Cybernetics and Technical
Informatics (ICCC-CONTI), 2010.

[23] W. K. Pratt, “Digital Image Processing,” Wiley, New York, 1991.
[24] M. Bokser, “Omnidocument Technologies,” Proceedings of the IEEE,

Vol. 80, pp 1066-1078, 1992.
[25] A. Khotanzad and Y. H. Hong, “Invariant Image Recognition by

Zernike Moments,” IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol. 12, Issue. 5, pp. 489-497, 1990.

[26] S. O. Belkasim, M. Shridhar and A. Ahmadi, “Pattern Recognition
with Moment Invariants: A Comparative Study and New Results,”
Pattern Recognition, Vol. 24, pp. 1117-1138, December, 1991.

[27] L. Devroye, L. Gyorfi, G. Lugosi, “A Probabilistic Theory of Pattern
Recognition,” Springer-Verlag, 1996.

[28] S. Lucas, E. Vidal, A. Amiri, S. Hanlon and J. C. Amengual, “A
Comparison of Syntactic and Statistical Techniques for Off-line
OCR,” Proc. Of International Colloquium on Grammatical Inference, 1994.

[29] J. Cao, M. Ahmadi and M. Shridhar, “Handwritten Numeral
Recognition with Multiple Features and Multistage Classifiers,” Proc.
Of IEEE International Symposium of Circuits Systems, Vol. 6, 1994.

[30] P. Shah, S. Karamchandani, T. Nadkar, N. Gulechha, K. Koli, K. Lad,
“OCR-based chassis-number recognition using artificial neural
networks,” Proc. Of IEEE International Conference on Vehicular
Electronics and Safety (ICVES), 2009.

[31] S. D. Budiwati, J. Haryatno, E. M. Dharma, “Japanese character
(Kana) pattern recognition application using neural network,” Proc.
Of International Conference on Electrical Engineering and Informatics
(ICEEI), 2011.

[32] J. Yi, Y. Peng, J. Xiao, “Using Multiple Frame Integration for the Text
Recognition of Video,” Proc. Of International Conference on Document
Analysis and Recognition, 2009.

[33] Y. Chiang, C. A. Knoblock, “Recognition of Multi-oriented, Multi-
sized, and Curved Text,” Proc. Of International Conference on Document
Analysis and Recognition, 2011.

[34] D. Brodic, D. R. Milivojevic, V. Tasic, “Preprocessing of binary
document images by morphological operators,” Proc. Of International
Convention of MIPRO, 2011.

[35] A. Bhardwaj, F. Farooq, H. Cao, V. Govindaraju, “Topic Based
Language Models for OCR Correction,” Proceedings of the second
workshop on Analytics for noisy unstructured text data, 2008.

[36] R. Jin, A. Hauptmann, C. Zhai, “A Content-based Probabilistic
Correction Model for OCR Document Retrieval,” Proceedings of
International ACJI SIGIR Conference on Research and Development in
Information Retrieval Workshop Program, 2002.

[37] M. Donoser, H. Bischof, S. Wagner, “Using Web Search Engines to
Improve Text Recognition,” Proceedings of International Conference on
Pattern Recognition, 2008.

[38] S. M. Harding, W. B. Croft and C. Weir, “Probabilistic Retrieval of
OCR Degraded Text Using N-Grams,” Proceedings of European
Conference on Digital Libraries, 1997.

Qinru Qiu received her M.S. and Ph.D. degrees from the
department of Electrical Engineering at University of Southern
California in 1998 and 2001 respectively. She received her B.S.
degree from the department of Information Science and Electronic
Engineering at Zhejiang University, China in 1994. Dr. Qiu is
currently an associate professor at the Department of Electrical
Engineering and Computer Science in Syracuse University. Before
joining Syracuse University, she has been an assistant professor
and then an associate professor at the Department of Electrical and
Computer Engineering in State University of New York, Binghamton.
Her research areas are energy efficient computing systems, energy
harvesting real-time embedded systems, and neuromorphic
computing. She has published more than 50 research papers in
referred journals and conferences. Her works are supported by NSF,
DoD and Air Force Research Laboratory.

Richard W. Linderman received his B.S., M.S. and Ph.D. degrees
from the department of Electrical Engineering at Cornell University in
1980, 1981 and 1984, respectively. Dr. Linderman, a member of the
scientific and professional cadre of senior executives, is the Chief
Scientist, Information Directorate, Air Force Research Laboratory,
Rome, N.Y. The Information Directorate leads the discovery,
development and integration of affordable warfighting information
technologies for air, space and cyberspace forces. Dr. Linderman
serves as the directorate's principal scientific and technical adviser
and primary authority for the technical content of the science and
technology portfolio. He provides principal technical oversight of a
broad spectrum of information technologies including fusion and
exploitation; command and control; advanced architectures;
information management; communications and networking;
defensive information warfare; and intelligent information systems
technologies. Dr. Linderman was commissioned as a second
lieutenant in May 1980. Upon completing four years of graduate
studies, he entered active-duty, teaching computer architecture
courses and leading related research at the Air Force Institute of
Technology. He was assigned to Rome Air Development Center in
1988, where he led surveillance signal processing architecture
activities. In 1991, he transitioned from active-duty to civil service as
a senior electronics engineer at Rome Laboratory, becoming a
principal engineer in 1997. During these years, he pioneered three
dimensional packaging of embedded architectures and led the
Department of Defense community exploring signal and image
processing applications of high performance computers. Dr.
Linderman holds six U.S. patents and has published more than 70
journal, conference and technical papers.

Qing Wu received his Ph.D. degree from the department of
Electrical Engineering at University of Southern California in 2002.
He received his B.S. and M.S. degrees from the department of
Information Science and Electronic Engineering at Zhejiang
University (Hangzhou, China) in 1993 and 1995, respectively. Dr.
Wu is currently a Senior Electronics Engineer at the United States
Air Force Research Laboratory (AFRL), Information Directorate (RI).
Before joining AFRL, he was an Assistant Professor in the
Department of Electrical and Computer Engineering at State
University of New York, Binghamton. His research interests include

QINRU QIU, ET AL.: A PARALLEL NEUROMORPHIC TEXT RECOGNITION SYSTEM AND ITS IMPLEMENTATION ON A HETEROGENEOUS HIGH PER-
FORMANCE COMPUTING CLUSTER 15

large-scale computational intelligence models, high-performance
computing architectures, circuits and systems for energy-efficient
computing. He has published more than forty research papers in
international journals and conferences.

Morgan Bishop received his B.A. in 2004 from the Computer
Science department at the State University of New York at Geneseo.
Mr. Bishop is currently a Computer Scientist at the United States Air
Force Research Laboratory (AFRL), Information Directorate, located
in Rome, New York. Prior to joining AFRL, he was the Lead
Developer for Jeansee Corporation where he investigated DNA
binding algorithms to achieve optimal DNA codes for use in parallel
computing architectures. His research interests include scalable
algorithm development for heterogeneous high performance
computers, basic research in next-generation massively parallel
systems, and the development of brain-inspired intelligence models
for real-world application. He has published more than fifteen
research papers in journals and conferences throughout the world.

Robison E. Pino received the B.E. degree in electrical engineering
with honors, summa cum laude, from the City University of New
York, City College, NY in 2002. Dr. Pino received the M.Sc. degree
and Ph.D. degree in Electrical Engineering from Rensselaer
Polytechnic Institute, Troy, NY in 2003 and 2005 respectively. Since
2009, Dr. Pino is a Senior Electronics Engineer at the United States
Air Force Research Laboratory (AFRL). Dr. Pino worked from 2005
to 2009 at IBM as an Advisory Scientist/Engineer Development
enabling advanced CMOS technologies, and as a Business Analyst
within IBM's Photomask business unit. He also served during 2006
to 2009 as an adjunct professor at the University of Vermont where
he taught electrical engineering courses at the graduate and
undergraduate levels. Dr. Pino was a Distinguished Lecturer of
IEEE, EDS, in 2010, AFRL Information Directorate
Scientist/Engineer of the year in 2011, and Top 200 Most Influential
Hispanics in Technology by HE&IT Magazine in 2011. Dr. Pino holds
2 patents, 4 pending, and has published over 40 technical papers
including one book.

