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Abstract— Given the recent progress in the evolution of high performance computing (HPC) technologies, the research in 
computational intelligence has entered a new era.  In this paper, we present a HPC-based context-aware Intelligent Text 
Recognition System (ITRS) that serves as the physical layer of machine reading.  A parallel computing architecture is adopted 
that incorporates the HPC technologies with advances in neuromorphic computing models. The algorithm learns from what has 
been read and, based on the obtained knowledge, it forms anticipations of the word and sentence level context. The information 
processing flow of the ITRS imitates the function of the neocortex system. It incorporates large number of simple pattern 
detection modules with advanced information association layer to achieve perception and recognition. Such architecture 
provides robust performance to images with large noise. The implemented ITRS software is able to process about 16 to 20 
scanned pages per second on the 500 TFLOPS (trillion floating point operations per second) AFRL/RI Condor HPC after 
performance optimization. 
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1 INTRODUCTION

ith the rapid development in high performance 
computing (HPC) technologies, the research in 
machine intelligence has entered a new era. How 

to harness the huge amount of computing power and 
memory storage provided by the modern HPC clusters 
and convert it to useful computations that assist or even 
replace the human cognition process? Will the perfor-
mance of current neuromorphic computing models scale 
as the hardware resource increases? What is the bottle-
neck of current HPC architectures when applied to cogni-
tive computing and how can this be addressed by future 
computing tools? The research work at Syracuse Univer-
sity and the Air Force Research Laboratory (AFRL) In-
formation Directorate (RI) makes a preliminary effort in 
answering these questions. 

Research discoveries in human psychology suggest 
that human information processing is a multi-level pro-

cess [1] that mostly relies on pattern matching and senso-
ry association rather than calculation and logic inference. 
Information is first processed by the sensory cortex where 
the complex data is reduced to abstract representations. 
The abstract representation is compared to stored pat-
terns in massively parallel neural networks in the basal 
ganglia and neocortex to generate a quick reaction. If 
more sophisticated processing such as reasoning is need-
ed then relatively slower sequential process will occur in 
the prefrontal cortex. To cope with this information pro-
cess procedure, the neocortex of human brain consists of 
the primary sensory area, the association area and the 
higher order association area [2].  The primary sensory 
cortex detects the basic dimensions of the external stimuli 
to the five sensory systems. The sensory cortex is further 
divided into cortical columns which could detect a specif-
ic input pattern (such as contour, color, or pitch, etc.) in a 
specific area. Each sensory system has its own association 
area that combines information from the primary sensory 
cortex to produce perception (i.e. cognition). The higher 
order sensory system carries out complex mental process-
es by combining information from several sensory associ-
ation areas. Sensory association is the most important 
step in perception. The association area is by far the most 
developed part of the cerebral cortex. 

The above analysis partly reveals the answers to the 
first question that we previously raised. In order to har-
ness the modern computer to imitate the human cogni-
tion process, we believe that the following architecture 
should be considered: 
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1. Both  the  hardware  and  software  should  follow  the 
hierarchy  of  neocortex  system, with  the  lower  level 
dedicated for pattern detection of the raw external in‐
put and the upper  level dedicated for  information as‐
sociation based perception.  

2. The same input should be processed by multiple func‐
tion modules corresponding  to different primary sen‐
sory cortical columns for the detection of different pat‐
terns.  In  this  way  the  complexity  of  each  function 
module  is  reduced.  Furthermore,  all  of  the  function 
modules  are  independent  to  each  other  and  can  be 
implemented in parallel.  

3. Advanced  and  fast  information  association  is  more 
important than accurate detection. With the help of in‐
formation association, relatively simple pattern match‐
ing algorithm can be used to achieve accurate percep‐
tion. 
Many algorithms have been proposed for pattern de-

tection and information association. Clearly, different 
algorithms favor different hardware configurations. In 
general, pattern matching algorithms such as neural net-
works and support vector machines (SVM) are dominated 
by matrix and vector operations while information asso-
ciation models such as Bayesian network and probabilis-
tic graph model require large storage space to capture 
complex relations. If we try to replicate the human infor-
mation processing flow, it naturally requires machines 
with massively parallel processing capability and high 
computation speed at the bottom layer for pattern detec-
tion and machines with large memory space and high 
memory access speed at the upper layer.  

Such hierarchical architecture can be found in the 
1,800-node 500 TFLOPS (trillion floating point operations 
per second) Condor HPC cluster that has been built at 
AFRL/RI in 2010. The Condor HPC consists of 78 sub-
clusters and each sub-cluster is composed of dual Intel 
Xeon six-core processors as the head node, 22 Sony 
PlayStation3 (PS3) computers based on the IBM Cell 
Broadband Engine (Cell-BE) processor [12], and 2 NVID-
IA general purpose graphic processing unit  (GPGPU) 
cards. Each Cell-BE processor has one PowerPC processor 
and 6 synergistic processing elements (SPE). Each SPE is a 
self-contained vector processor that peaks at eight float-
ing point operations per clock cycle at 3.2 GHz. With 6 of 
these SPEs, a cell processor provides 153 GFLOPS (billion 
floating point operations per second) peak performance. 
The vector processing capability of the SPE makes it suit-
able for matrix and vector operations used in pattern 
matching algorithms such as neural networks and SVMs. 
Overall, the 1,716 Cell-BE processors deliver 262 TFLOPs  
computing power and form the first layer hardware of a 
neuromorphic computing system. The second layer is 
naturally the head nodes, each of which has 12 cores and 
24GB memory. The memory access speed is up to 2GB/s 
per core. 

We believe that such brain inspired signal processing 
flow could generally be applied to many cognitive appli-
cations, from image processing, to intruder detection, etc. 
To investigate the software and hardware requirements of 
this new information processing approach, a proof-of-

concept prototype of context-aware Intelligence Text 
Recognition [13][14][15] software (ITRS) is developed on 
the Condor HPC. Its architecture incorporates the Condor 
HPC technologies with advances in neuromorphic com-
puting models. The lower layer of the ITRS performs pat-
tern matching of the input image using a simple non-
linear autoassociative neural network model called Brain-
State-in-a-Box (BSB) [6]. It matches the input image with 
the stored alphabet. Each BSB model is analogy to a corti-
cal column in the primary sensory area that performs the 
preliminary detection. Sometimes, multiple matching 
patterns may be found for one input character image. The 
upper layer of the ITRS performs information association 
using the cogent confabulation model [11]. It enhances 
those BSB outputs that have strong correlations in the 
context of word and sentence and suppresses those BSB 
outputs that are weakly related. In this way, it selects 
those characters that form meaningful words and sen-
tences. Each confabulation model is analogy to a cortical 
column in the sensory association area that associates the 
primary detections to form high level cognition. Com-
pared to the existing optical character recognition (OCR) 
system such as OCRopus [3][4][5], Tesseract [15][16], and 
Microsoft OneNote, the proposed ITRS system has the 
following uniqueness. 
1. It  has  a much  simpler  bottom  layer  for  image  pro‐

cessing  and  pattern  matching.  The  BSB  model  is  a 
simple  and  weak  associative  memory  compared  to 
some more powerful networks using complex learning 
rules [6]. However, we propose a novel racing mecha‐
nism  that  enables  the  BSB  to  generate  fuzzy  pattern 
matching  result  which  retain  rich  information  that 
could be processed by the upper association layer. By 
contrast, most of the existing text recognition systems 
heavily  rely on  image processing and pattern match‐
ing, which  require  complex  algorithms  and  intensive 
computation.  They  provide  deterministic  result  and 
cannot  be  integrated with  an  information  association 
layer.  

2. The  text  recognition of  ITRS  is mainly achieved by a 
powerful information association layer. The more than 
6GB  knowledgebase  of  the  information  association 
layer  contains  information extracted  from English  lit‐
erature. It is trained by “reading’ more than 70 classi‐
cal  texts. Our hash based  technique enables us  to up‐
date  and  query  the  knowledgebase  efficiently  [17]. 
Although many  of  the  existing  text  recognition  sys‐
tems  also  have  integrated  dictionary  and  language 
models,  compared  to  the  one used  in  the  ITRS,  they 
are rather preliminary.  

3. The powerful  information association  technology and 
extensive knowledge  in English  language enables  the 
ITRS  to  perform  text  recognition  using  information 
beyond  the  input  image.  The  experimental  results 
show  that  the  ITRS  system  is  capable  of  recognizing 
more  than  85%  of words  correctly when  each word 
has 30% characters occluded. Using the OCR function 
of  the Microsoft OneNote,  less  than 5% of words can 
be read accurately. 
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4. The ITRS is intrinsically parallel and its software struc‐
ture fits nicely  to  the architecture of Condor HPC. To 
recognize a sentence requires up to 10,400 BSB models, 
20 confabulation models at word level and 1 confabu‐
lation models at sentence level. With medium optimi‐
zation  effort  in double  buffering  and  latency  hiding, 
these models can be operated  in parallel. The Cell‐BE 
in the cluster is efficient in processing the BSB models 
due to its vector processing capability and abundance. 
The headnode  in  the  cluster  is  the natural  candidate 
for  the processing of  the confabulation model, due  to 
its  large storage space and  fast memory access speed. 
Compared  to  the  ITRS,  the  existing  text  recognition 
system  does  not  have  good  scalability  to  distributed 
and parallel computing hardware. Because they do not 
have an intrinsic parallel structure, they usually focus 
on  the  parallelization  of  a  specific  pattern matching 
[18]  or  image  processing  [19]  algorithm,  which  re‐
quires high design effort.  
To implement the ITRS system on the Condor cluster 

is not trivial. The major challenge is how to balance the 
workload and hide the communication latency for better 
performance. This paper will introduce the software and 
hardware architecture of the ITRS system as well as some 
implementation details. Its accuracy and performance 
will be discussed based on the experiment data. The im-
pact of the available hardware resource on the system 
throughput will also be analyzed. 

The remainder of the paper is organized as follows. A 
brief introduction of related works in text recognition is 
provided in Section 2. In Section 3 we introduce the basics 
of the two neuromorphic models used for the ITRS soft-
ware. Section 4 describes the overall system model and 
the algorithms in different layers. Section 5 gives the de-
tails of implementation on the Condor HPC. The experi-
mental results and discussions are presented in Section 6. 
Section 7 summarizes the work. 

2 RELATED WORKS 
The research in text recognition has a long history [20]. 

It consists of three major thrusts, optical character recog-
nition (OCR), pre-OCR image processing and post OCR 
words correction.  

Before 2000, the research efforts focus on general OCR 
technology. Most of the works divides an OCR engine 
into five stages: scanning, segmentation, feature extrac-
tion, and character classification [22]. Some typical used 
feature extraction techniques for OCR include, template 
matching [23], zoning [24], moments extraction [25][26], 
contour information, etc. A detailed survey of feature 
extraction techniques for OCR is provided in [21].  

Based on the classification techniques, the OCR can be 
divided into statistical identification [28], syntactic classi-
fication [28] and neural network based classification 
[22][29][30][31]. In [29], the authors recognize handwrit-
ten numbers based on the features extracted from the di-
rectional code histogram and gray scale transformation. A 
two stage neural network is developed to classify these 
features. The first layer consists of a 256 input single layer 

neural network that classifies the gray scale feature. The 
second layer consists of 45 64-input and 3-output neural 
networks that classify the directional features. The au-
thors of [31] utilize a back propagation neural network to 
recognize the Japanese characters. The authors divide 
character image into small regions and extract blob in-
formation of these regions. These features are classified 
by a 4-layer neural network that has 2386 neurons and 
185,580 connections.  

In recent years, the research focus of text recognition 
shifts to pre-processing and post processing techniques. 
The former enhances the image quality for better OCR 
accuracy [32][33][34], while the later relies on dictionary 
of language information to correct OCR errors 
[35][37][36][38]. For example, both references [35] and [37] 
try to correct OCR error based on topic information. Their 
goal is to obtain a maximum likelihood estimate of the 
actual word t given the OCR output w by maximizing the 
posteriori ݌ሺݓ|ݐሻ ൌ -ሻ. The word probabilݓሺ݌/ሻݐሺ݌ሻݐ|ݓሺ݌
ity p(t) is profiled for different topics, ݌ሺݓሻ (i.e. the prob-
ability of OCR output w) is assumed to be a uniform dis-
tribution. The error model ݌ሺݐ|ݓሻ is assumed to be known 
by characterizing the OCR tools. This model assumes a 
constant p(w|t) during the entire OCR process, which is 
not reasonable, because the signal noise ratio will change 
during OCR as the image quality changes. Furthermore, 
the assumption that w is uniformly distributed is also not 
realistic. The authors of [37] propose to verify the OCR 
output by sending a query to search engine such as 
Google for each recognized word, a correlation is built 
based on the number of results returned. This verification 
method requires no training and it is able to recognize 
popular made-up words. However, it does not consider 
any context information beyond word level. The authors 
of [38] use the n-gram model to capture character correla-
tions at word level. A database is then developed for que-
ries that search for the closest match. Again, this work 
only considers information at word level. None of the 
above mentioned work addresses the performance of 
OCR. 

Our review shows that existing OCR technique usual-
ly requires complicated feature extraction and computa-
tion intensive pattern classification. It has a separate post-
OCR correction stage which usually only relies on word 
level information. Our proposed ITRS overcomes these 
limitations by combining OCR and post-OCR correction, 
and utilizes context information at sentence level 

3 BACKGROUND 
The neuromorphic model adopted by the ITRS software is 
mainly built based on the Brain-State-in-a-Box (BSB) at-
tractor model [10] and the Cogent Confabulation model 
[11]. The BSB models provide the preprocessing of the 
image of each character seeking a matching pattern. The 
cogent confabulation algorithms combine information 
from the BSB model to form more complex objects such as 
words or sentences. During this procedure, it suppresses 
the inputs that does not have strong association with oth-
ers and enhances the remaining inputs. In other words, 



4 IEEE TRANSACTIONS ON COMPUTERS,  TC-2011-04-0261 

 

the confabulation model eliminates those BSB results that 
do not form meaningful words and sentences. 

3.1 Brain-State-in-a-Box model 
The BSB model is a simple, auto-associative, nonlinear, 
energy-minimizing neural network [7][8][9][10].  A com-
mon application of the BSB model is to recognize a pat-
tern from a given noisy version.  It can also be used as a 
pattern recognizer that employs a smooth nearness meas-
ure and generates smooth decision boundaries.  

There are two main operations in a BSB model, Train-
ing and Recall. In this work, we focus on the BSB recall 
operation. The mathematical model of a BSB recall opera-
tion can be represented in the following form: 
            ))0(*)(*)(**()1( xxxAx   ttSt              (1) 
where: 

 x is an N dimensional real vector 
 A is an N-by-N connection matrix  
 A*x(t) is a matrix-vector multiplication operation 

  is a scalar constant feedback factor 
  is an inhibition decay constant  
  is a nonzero constant if there is a need to main-

tain the input stimulation 
 S() is the “squash” function defined as follows:                                                 
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Note that in the proposed algorithm, we choose  to 
be 0.1, to be 1.0 and  to be 0.0. But they can be easily 
changed to other values during the implementation. Giv-
en an input pattern x(0), the recall process executes Equa-
tion (1) iteratively to reach convergence. A recall converg-
es when all entries of x(t+1) are either “1.0” or “-1.0”. In 
our implementation, it usually takes more than 10 itera-
tions for recall to converge. 

The BSB model is selected in the ITRS for two reasons. 
First, it is simple to operate compared to other complex 
neural network models [6]. Although it has lower accura-
cy, this can be compensated later in the information asso-
ciation stage. Second, its convergence roughly indicates 
the similarity between the input and the stored pattern. It 
is pointed out by [6] that the average convergence time of 
the BSB model increases as the input goes further away 
from the attractor. Such property enables the racing mod-
el in character recognition, which will be introduced in 
Section 3.2. 

3.2 Cogent confabulation 
Cogent confabulation is a connection-based cognitive 
computing model. It captures correlations between ob-
jects (or features) at the symbolic level and stores this in-
formation as a knowledge base. Given an observation, 
familiar information with high relevancy will be recalled 
from the knowledge base. Based on the theory, the cogni-
tive information process consists of two steps: learning 
and recall. During learning, the knowledge links are es-
tablished and strengthened as symbols are co-activated. 
During recall, a neuron receives excitations from other 

activated neurons. A “winner-takes-all” strategy takes 
place within each lexicon. Only the neurons (in a lexicon) 
that represent the winning symbol will be activated and 
the winner neurons will activate other neurons through 
knowledge links. At the same time, those neurons that 
did not win in this procedure will be suppressed. 

Fig. 1 shows an example of lexicons, symbols, and 
knowledge links.  The three columns in Fig. 1 represent 
three lexicons for the concept of shape, object, and color 
with each box representing a neuron. Different combina-
tions of neurons represent different symbols. For exam-
ple, as shown in Fig. 1, the pink neurons in lexicon I rep-
resent the cylinder shape, the orange and yellow neurons 
in lexicon II represent a fire extinguisher and a cup, while 
the red neurons in lexicon III represent the red color. 
When a cylinder shaped object is perceived, the neurons 
that represent the concepts “fire extinguisher” and “cup” 
will be excited. However, if a cylinder shape and a red 
color are both perceived, the neurons associated with 
“fire extinguisher” receive more excitation and become 
activated while the neurons associated with the concept 
“cup” will be suppressed. At the same time, the neurons 
associated with “fire extinguisher” will further excite the 
neurons associated with its corresponding shape and col-
or and eventually make those symbols stand out from 
other symbols in lexicons I and III. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. A simple example of lexicons, symbols and knowledge links. 

A computational model for cogent confabulation has 
been proposed by Hecht-Nielsen [11]. Based on this mod-
el, a lexicon is a collection of symbols. A knowledge link 
(KL) from lexicon I to II is a matrix with the row repre-
senting a source symbol in lexicon I and the column rep-
resenting a target symbol in lexicon II. The (i,j)th entry of 
the matrix represents the strength of the synapse between 
the source symbol si and the target symbol tj. It is quanti-
fied as the conditional probability P(si|tj). The collection 
of all knowledge links is called a knowledge base (KB).  The 
knowledge bases are obtained during the learning proce-
dure. During recall, the excitation level of all symbols in 
each lexicon is evaluated.  Let l denote a lexicon, Fl denote 
the set of lexicons that have knowledge links going into 
lexicon l, and Sl denote the set of symbols that belong to 
lexicon l.  The excitation level of a symbol t in lexicon l 
can be calculated as: 
ሻݐሺܫ         ൌ ∑ ∑ ሻݏሺܫ ቂln ቀ

௉ሺ௦|௧ሻ

௣బ
ቁ ൅ ௦∈ௌೖ௞∈ி೗		ቃܤ ݐ   , ∈ ௟ܵ.        (3) 

The function I(s) is the excitation level of the source 
symbol s. Due to the “winner-takes-all” policy, the value 
of I(s) is either “1” or “0”.  The parameter p0 is the smallest 
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meaningful value of P(si|tj).  The parameter B is a positive 
global constant called the band gap.  The purpose of intro-
ducing B in the function is to ensure that a symbol receiv-
ing N active knowledge links will always have a higher 
excitation level than a symbol receiving (N-1) active 
knowledge links, regardless of the strength of the 
knowledge links.  For example, both symbols t1 and t2 
belong to lexicon I. And both of them are activated by 
two symbols from other lexicons.  However, t1 is activat-
ed by two symbols that belong to the same lexicon, while 
t2 is activated by two symbols that belong to different 
lexicons.  We consider t2 to be more highly activated than 
t1 and the band gap B is introduced to increase the excita-
tion level of t2. 

Compared to other information association models, 
such as the Bayesian network, the confabulation model is 
much simpler in training and recall due to its unique exci-
tation mechanism and the adoption of posterior probabil-
ity. For more information, please refer to [11]. 

4 ARCHITECTURE AND ALGORITHMS 

4.1 System architecture 
The ITRS is divided into three layers as shown in Fig. 2. 
The input of the system is a text image. The first layer is 
character recognition software based on BSB models. It 
tries to recall the input image with stored images of the 
English alphabet. If there is noise in the image, multiple 
matching patterns may be found. The ambiguity can be 
removed by considering the word level and sentence lev-
el context, which is achieved by the information associa-
tion in the second and third layer where word and sen-
tence is formed using cogent confabulation models. Im-
age processing front-end software is designed to read in 
the scanned images of text and separate them into blocks 
of smaller images of single characters. The ITRS system is 
evaluated using images of scanned text with missing in-
formation, i.e., texts with hard-to-recognize or missing 

characters. Its accuracy will be reported in Section 6.  
In this work, we designed a new “racing” algorithm 

for BSB recalls. The algorithm is based on the observa-
tions that the convergence speed of the BSB recall process 
indicates the distance between the input and remembered 
patterns. For a given character image, we consider all pat-
terns that converge within a certain number of iterations 
as potential candidates that may match the input image. 
Candidate BSB outputs will be activated and used to trig-
ger the corresponding symbols in the confabulation mod-
el for information association. By using the racing algo-
rithm, if there is noise in the image or the image is partial-
ly damaged, multiple matching patterns will be triggered 
for the same input character image. For example, a hori-
zontal scratch will make the letter “T” look like the letter 
“F”.  In this case we have ambiguity in character recogni-
tion. The pattern that cannot form meaningful words and 
sentences will be eliminated in the later stages. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Layered architecture of intelligent text recognition. 

Fig. 3 shows an example of using the ITRS to read 
texts that have been occluded. The BSB algorithm recog-
nizes text images with its best effort. The word level con-
fabulation provides all possible words that associate with 
the recognized characters while the sentence level con-
fabulation finds the combination among those words that 
gives the most meaningful sentence. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. An example of occluded text recognition process. 
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4.2 The “racing” mechanism for BSB recalls 
In this section we first describe the “racing” mechanism 
that we use to implement the multi-answer character 
recognition process. 

Without loss of generality, assume that the set of char-
acters we want to recognize from images consists of 52 
characters, which are the upper and lower case characters 
of the English alphabet. 

ܵ ൌ ሼᇱܽᇱ, ′ܾᇱ, … , ,ᇱݖ′ ᇱ,ᇱܣ′ ,ᇱܤ … , ′ܼ′ሽ 
We also assume that for each character in S, there are 

M typical variations in terms of different fonts, styles and 
sizes. For example, the set of images of character ‘a’ with 
different variations can be represented as: 

ܵ௔ ൌ ሼܽଵ, ܽଶ, … , ܽெሽ 
In terms of pattern recognition, there are a total of 

52*M patterns to remember during training and to recog-
nize during recall. If we follow the traditional application 
approaches of the BSB models, the solution is to train one 
BSB model to remember all the 52*M patterns. During 
recall, given an input image, this model will eventually 
converge to one of the remembered patterns (attractors) 
that represent the recognition result. The shortcomings of 
this approach is that, firstly it requires a BSB model with 
large dimensionality (N the dimension of vector X in 
Equation 1) to remember all the patterns. This increases 
the complexity (∝ ܰଶ) of the computation and also reduc-
es the scalability when implemented on parallel compu-
ting architectures. Secondly, this approach only provides 
one answer to the input image. The BSB recall process 
does not return the second or third closest attractor for 
the image. For recognizing damaged texts, providing only 
one answer is not adequate for the low-level pattern 
recognition model to work with high-level language 
models.  

Therefore in our implementation, the primary goal is 
to design a process that provides multiple candidates for 
an input image. And the secondary goal is to have rea-
sonably-sized BSB models to have good scalability and 
keep computation complexity under control. 

The solution we designed is to use one BSB model for 
each character in S. Therefore there will be a set of 52 256-
dimensional BSB models, that is: 

ܵ஻ௌ஻ ൌ ሼܤܵܤ௔, ,௕ܤܵܤ … , ,	௭ܤܵܤ ,஺ܤܵܤ ,஻ܤܵܤ … ,  ሽ	௓ܤܵܤ
Each BSB model is trained for all variations of a char-

acter. For example, BSBa is trained to remember all the 
variable patterns in Sa, BSBb will remember patterns in Sb, 
and so forth. If we define the procedure “Recall(A, B)” as 
the recall process using model A with input image B, re-
turning the number of iterations it takes to converge, the 
recall and candidate selection process can be described in 
Fig. 4.  

In this algorithm, {K, Th_1, Th_2} are adjustable pa-
rameters based on overall reliability and robustness 
needs. 

Generally speaking, in our multi-answer implementa-
tion, we utilize the BSB model’s convergence speed to 
represent the “closeness” of an input image to the re-
membered characters (with variations). Then we pick up 
to K “closest” candidates (that satisfy conditions 3a and 

3b) to work with high-level language models to deter-
mine the final output. On the AFRL/RI Condor HPC with 
1,716 IBM Cell-BE processors, our implementation was 
able to execute the recall operations in parallel. Because 
each BSB model is small enough to fit on a single Cell-BE 
processor, the overall performance scales linearly with the 
number of Cell-BE processors used. 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The BSB recall and candidate selection process. 

4.3 Word and sentence confabulations 
The inputs of word confabulation are characters with am-
biguities referred as candidates. For each input image, 
one or multiple character level candidates will be gener-
ated by the BSB model. In this work, we assume that each 
word has less than 20 characters. Any word that is longer 
than this will be truncated. Currently, if a word has less 
than 20 characters, it will be padded with white spaces. In 
the future, the length of the word will be considered as an 
input to the confabulation model to avoid this type of 
padding and to speed up the process. 

The word level confabulation model consists of three 
levels of lexicon units (LUs). There are 20 LUs in the first 
level and the ith LU in the first level represents the ith 
character in the word. There are 19 LUs in the second lev-
el and the ith LU in the second level represents a pair of 
adjacent characters at location i and i+1. Finally, there are 
18 LUs in the third level and the ith LU in the third level 
represents a pair of characters located at i and i+2. 

A knowledge link (KL) from lexicon I to II is an ܯ ൈܰ 
matrix, where M and N are the cardinalities of symbol 
sets SI and SII. The (i,j)th entry of the knowledge link gives 
the conditional probability ܲሺ݅|݆ሻ, where ݅ ∈ ூܵ, and  
݆ ∈ ூܵூ. Symbols i and j are referred to as the source symbol 
and target symbol. Between any two LUs, there is a 
knowledge link (KL). If we represent the lexicons as verti-
ces and represent the knowledge link from lexicon I to 
lexicon II as a directed edge from vertex I to vertex II, 
then we will obtain a complete graph. 

Confabulation-based word level and sentence level 
prediction heavily relies on the quality of the knowledge 
base (KB). The training of the KB is the procedure to con-
struct the probability matrix between source symbols and 
target symbols. The training program first scans through 
the training corpus and counts the number of co-
occurrences of symbols in different lexicons. Then for 
each symbol pair it calculates their posterior probability.  
The word level recall algorithm finds all words from pos-
sible combinations of input character candidates. For ex-
ample, if the input candidates of a 3-letter word are: (w t s 
r p o k e c a ) for the first letter, (h ) for the second letter, 

Input: character image X. 
1. For each trained BSB model BSBi in SBSB 
            Conv[i] = Recall(BSBi, X); 
2. Sort Conv[i] from low to high to form sorted list Conv_s[j]; 
3. Pick the first K in Conv_s[j] as recognition candidates, if it 
satisfies both conditions listed below: 
    a. Conv_s[j] <= Th_1; // Convergence speed threshold 
    b. Conv_s[j] – Conv_s[j-1] <= Th_2; // Separation threshold 
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and (y t s r o m i h e a) for the third letter, then the word 
level confabulation program will find 24 words, including 
“why”, “who”, “wha”, “thy”, “thi”, “the”, “tha”, “shy”, 
“sho”, “she”, “rho”, “phr”, “ohs”, “oho”, “ohm”, “kho”, 
“eht”, “cha”, “aht”, “ahs”, “ahr”, “ahm”, “ahh”, and 
“aha”. Although some of them are not dictionary words, 
they appear at least once in the training corpus, which 
consists of more than 70 fiction books. Some of these non-
dictionary words are names for special places or objects 
and some of them are used to represent specific sounds. A 
few of them are typos or errors in the training file. 

For each input candidate in each lexicon, the recall 
algorithm sets the corresponding symbols to be active. A 
lexicon that has multiple symbols activated is referred to 
as an ambiguious lexicon and the goal of the word level 
confabulation is to eliminate such character level 
ambiguity as much as possible or to transform it into 
word level ambiguity which can be further eliminated by 
sentence level confabulation.  

For each lexicon that has multiple symbols activated, 
we calculate the excitation level of each activated symbol. 
The excitation level of a symbol i in lexicon B is defined 
as: 
஻ሾ݅ሿܮܧ               ൌ ∑ ∑ ݈݇஺஻ሾ݆ሿሾ݅ሿ௝∈ሼ௔௖௧௜௩௘	௦௬௠௕௢௟௦	௜௡	஺ሽ஺ஷ஻ ,  
where ݈݇஺஻ሾ݆ሿሾ݅ሿ is the knowledge value from symbol j in 
lexicon A to symbol i in lexicon B. The N highest excited 
symbols in this lexicon are kept active. These symbols 
will further excite the symbols in other ambiguous 
lexicons. This procedure will continue until the activated 
symbols in all lexicons do not change anymore. If 
convergence cannot be reached after a given number of 
iterations, then we will force the procedure to stop. 

For each word in a test sentence, the word level 
confabulation model generates one or multiple word 
candidates. They will be the input to the sentence level 
confabulation model.  

The sentence level confabulation model is very similar 
to its word level counterpart except that there are only 
two levels of LUs. The first level LUs represent single 
words while the second level LUs represent adjacent 
word pairs. The training and recall functions of sentence 
level confabulation have the same principle as these 
functions at word level. It is important to point out that, 
each first level lexicon for word confabulation contains at 
most 26 symbols representing 26 letters in the alphabet 
and each second and third level lexicon for word 
confabulation contains at most 26 ൈ 26 ൌ 676 symbols; 
however, the maximum size of the symbols of each 
sentence level lexicon equals the total number of English 
words and word pairs. Without any compression, the 
sentence level knowledge base will be extremely large. 
For example, the English version of the book “Round the 
Moon” has about 47 ൈ 10ଷ words. Our analysis shows 
that it has 23 ൈ 10ଷ distinguished symbols (i.e. words and 
word pairs). As we mentioned earlier, each knowledge 
link is a ܯ ൈ ܰ matrix, where M and N are the symbol 
size of the source and target lexicons. Without any 
compression, the trained knowledge base will have 
2.3 ൈ 10ଽ entries which are equivalent to be 9.2 GBytes. 
Fortunately, the knowledge links are sparse matrices. 

Only less than 0.1% of the matrix has non-zero values. 
Therefore, an option to reduce the memory cost is to store 
the knowledge using the list of list (LIL) format, which has 
been widely used for sparse matrix storage. However, 
this leads to the second problem. As the size of the 
training corpus grows, the number of symbols of each 
lexicon can easily go up to hundreds of thousands. Even 
with the best search algorithm, the time to locate the entry 
in the compressed matrix grows logarithmically and soon 
the algorithm will become prohibitively slow. In this 
work, two-level hash functions are used to speed up the 
training and recall of the sentence level confabulation 
model. It provides 10 to 15X speed ups to locate a 
knowledge entry in a 6 GB compressed knowledge base. 
More details of sentence level confabulation can be found 
in our recent work [17]. 
We need to point out that, many state-of-the-art optical 
character recognition (OCR) systems also have integrated 
language model [3][16]. The most widely used existing 
language model is the n-gram model which captures the 
posterior probability p(wi|w) of the next n words wi, 
1 ൑ ݅ ൑ ݊, given the observation of the current word w. 
The confabulation based language model differs from the 
n-gram model in several ways. First, the confabulation 
model selects the ambiguous word in a way such that the 
likelihood of the observation of the rest of the sentence is 
maximized. In contrast, the n-gram model maximizes the 
likelihood of the selected words given the observation of 
the rest of the sentence. Although there is no definite 
advantage of one approach over another, they sometimes 
give different results.  
Second, the n-gram model can only be applied in a 
sequential way. It analyzes the sentence and predicts 
words in a sequential order from left to right, while our 
knowledge base provides the relations between all words 
or word pairs in the sentence. This enables the software to 
confabulate ambiguous words at the beginning of the 
sentence based on the information provided later. 

Finally, the recall function of the confabulation model 
mimics the information processing in the human 
neurology system, where neurons are exciting and being 
excited at the same time. Therefore, when ambiguity 
exists in multiple words, the selections of these entries 
evolve simultaneously. These differences indicate that the 
confabulation model is more suitable for information 
association than the n-gram model. 

5 IMPLEMENTATION ON AFRL/RI CONDOR HPC 

5.1 Overall software architecture 
The overview of the implementation of the ITRS software 
is shown in Fig. 5.  It explores the parallelism in hardware 
and software to achieve a high throughput for the system. 
We partition the entire workload into pages.  All sub-
clusters run simultaneously and independently to process 
different pages.  In this way the cluster level parallelism is 
achieved.  There is a performance monitor that 
periodically checks the utilization of the processor cores 
in the cluster for performance characterization. Because 
each sub-cluster loads pages on-demand, at cluster level, 



8 IEEE TRANSACTIONS ON COMPUTERS,  TC-2011-04-0261 

 

our system behaves asynchronously. 
Upon receiving the page image, the head node first slices 
the image into small blocks, each of which contains one 
character. The blocks are dispatched to the PS3s, on which 
the BSB recalls are run for character recognition. The 
results are sent back to the head node for word level and 
sentence level confabulation. With a double buffering 
technique, the confabulation and BSB processes can be 
made parallel.  Furthermore, all 132 SPEs in 22 PS3s are 
running simultaneously to process different characters. In 
this way we achieve processor level parallelism. At this 
level, the system is loosely synchronous because each SPE 
receives the same amount of image blocks and they 
perform the same amount of computation. Because of the 
limited buffer space, a periodic synchronization between 
the BSB and the confabulation is necessary. All inter-
processor communication is implemented via the 
Message Passing Interface (MPI). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Overview of the software architecture. 

 
Based on the results from the BSB recalls, the host will 

fork multiple threads; each thread is a word level 
confabulation procedure.  After all words in a sentence 
have been found, a sentence confabulation process is 
executed.  The word level and sentence level 
confabulation threads are dispatched to different cores on 
the Intel Xeon processor, and in this way we achieve core 
level parallelism. The key reason that we choose thread 
level parallelism instead of process level parallelism is 
because it allows shared memory so that we do not have 
to duplicate the word-level knowledge base, which is 
more than 200MB in size. In order to avoid frequent 
context switching, which usually happens when the 

number of threads is greater than the number of cores, we 
adopt a token passing mechanism to control the number 
of threads.  The program maintains a token pool.  The 
number of tokens in the pool is less than or equal to the 
number of cores in the system.  A token will be removed 
from pool when a thread is created and be returned when 
the thread ends.  Because the threads are created on 
demand and complete dynamically, at this level, all cores 
work asynchronously. 

5.2 Sub-cluster level task interactions 
As we mentioned before, at the sub-cluster level, the 
system is loosely synchronous.  At the beginning of each 
iteration, the head node processes the scanned page and 
sends 96 character images to each PS3.  Without waiting 
for the PS3 to send back the BSB results, the head node 
continues to work on the BSB results received in the 
previous iteration.  During the same time, all PS3s 
perform similar computations and they will complete the 
recalls at approximately the same time.  The candidates 
for matching patterns are returned to the head node and 
stored in the MPI buffer.  The head node will not process 
the MPI message until it has finished processing the 
previously returned results.  

At the sub-cluster level, two techniques are used to 
increase the throughput of the system.  Firstly we 
pipeline the BSB model and confabulation model on PS3s 
and the head node.  Therefore the throughput of the 
system is determined by the maximum delay of BSB and 
confabulation instead of the total delay of these two. 
Secondly, by using the MPI for inter-processor 
communication, we implicitly use a double buffering 
technique to hide the communication latency. 

Fig. 6 shows the sub-cluster level task scheduling.  
When the confabulation delay is much greater than the 
BSB delay, the communication latency for the send and 
receive procedure as well as the computation latency of 
the BSB recalls are hidden.  The initiation interval of the 
system is determined by the delay of image processing 
and confabulation, i.e. ܶ ൌ ௜ܶ௠௚ ൅ ௖ܶ௢௡௙௔௕. When the 
confabulation delay is smaller than the BSB delay, the 
computation latency of the confabulation model is 
hidden, the system initiation interval is determined by the 
delay of image processing, the communication delay of 
sending and receiving MPI messages and the delay of the 
BSB recalls, i.e. ܶ ൌ ௜ܶ௠௚ ൅ ௦ܶ௘௡ௗ ൅ ௕ܶ௦௕ ൅ ௥ܶ௖௩.  It is 
important to point out that ௕ܶ௦௕ is a constant.  For each 
input image, the same number of BSB recalls is 
performed.  Each BSB recall is run for the fixed number of 
iterations in order to check their convergence speed.  The 
quality of the input image does not affect the BSB 
computation time.  However, a lower image quality 
means that more candidates will be found by the 
character recognition process.  Therefore it increases the 
workload and execution time for word and sentence 
confabulation processes. 
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Fig. 6. Sub-cluster level task scheduling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Task graph of the ITRS and token management for multi-threading system. 

 

5.3 Multi-threading confabulation 
To fully utilize the multi-core architecture of the head 
node, layers 2 and 3 of the ITRS are implemented using 
multi-threading techniques.  Fig. 7 shows the task and 
data dependency graph of the ITRS software.  A word 
confabulation process will not be triggered until all the 
characters in that word have been processed by the BSB 
processes.  Similarly, a sentence confabulation process 
cannot start until all the words in that sentence have been 
confabulated.  Obviously the word confabulation process 
is triggered more frequently than the sentence 
confabulation process.  Furthermore, each word 
confabulation takes a longer time than a sentence 
confabulation process.  This is because we need to find all 
valid words from the combinations of the character 
candidates while only the most meaningful sentence from 
the combination of the word candidates. 

In order to maximize the throughput, it is necessary to 
parallelize the word confabulation processes.  Fig. 8 
shows how the ITRS tasks are mapped to a sub-cluster 
with 22 Cell-BE processors and one N-core head node.  At 
anytime, on the N-core head node we can run one thread 
of sentence confabulation and N-1 threads of word 
confabulation.  Each word confabulation thread processes 
one word.  The sentence confabulation thread is the main 
thread which is always active.  Besides sentence 
confabulation, it also performs other tasks such as 

character seperation and communicates with the BSB 
processes.  The word confabulation thread is dynamically 
created when all characters belonging to a word have 
been processed by the BSB processes.  After the word 
confabulation completes, the thread will be deleted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Mapping of ITRS tasks to a sub-cluster. 
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We keep the number of threads to be exactly equal to 
the number of cores in the head node, in order to avoid 
excessive context switches.  This is achieved by using a 
token passing mechanism. A token is used to represent 
the status of a core.  It can be in 3 states: ready state, 
running state and completion state.  A token pool is 
maintained in the main thread.  The number of tokens in 
the pool equals to the number of cores in the system.  All 
tokens in the pool are in the ready state.  When all 
characters of a word are received and if there is a token in 
the pool, a new word confabulation thread is created and 
a token is removed from the pool.  The state of that token 
is changed to “running”.  When the word confabulation 
completes, the thread is deleted and the token state is 
changed to “completion.”  Only after the results of the 
word confabulation are collected by the main thread, will 
the state of the corresponding token be changed to 
“ready” and the token will return to the pool.  The token 
passing mechanism guarantees that at any time the 
number of active threads is no more than the number of 
processor cores. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. In-order/out-of-order double buffering system. 

The multi-threading architecture leads to an 
interesting synchronization problem.  As shown in Fig. 9, 
two circular buffers are maintained in the main thread.  
The first buffer is referred as the “input buffer”.  It stores 
the outputs from the BSB processes that will be used as 
the inputs by the word confabulation thread.  The input 
buffer is written in a sequential order.  It is read by the 
word confabulation also in a sequential order.  The results 
from word confabulation will be written into an “output 
buffer”.  The item in the ith location of the input buffer 
will be written into the ith location of the output buffer.  
There are up to N-1 threads of word confabulation 
working simultaneously on N-1 different words.  Their 
processing speeds are different. Whenever a thread 
completes processing a word, it writes the result to the 
corresponding location in the output buffer and fetches 
another word from the input buffer.  As a result, the 
output buffer will be written out-of-order.  The output 
buffer will be read by the sentence confabulation process 
again in sequential order.  A read pointer is used to 
indicate the starting word of the next sentence.  When the 
next M entries from the read pointer have been filled (M 
is the number of the words in the next sentence), the 
sentence confabulation process will be started and those 
entries will be removed from the output buffer. 

In general, a new thread of word confabulation will 
start as long as the input buffer is not empty and a token 
is available.  However, due to the variable confabulation 
speed of different words, it is possible that one of the 
threads is still working on a word that belongs to the 
sentence that is to be read out next, while other threads 
have already filled up the rest of the buffer.  Because the 
output buffer must be read out in sequential order, no 
sentence can be read from the buffer before the current 
sentence is read.  In this scenario, the output buffer is 
“full” and a stall happens.  No new word will be fetched 
from the input buffer until the next sentence is removed 
from the output buffer.  More strictly speaking, the stall 
happens when the following three conditions are true: 
 The  read  pointer  of  the  output  buffer  is  at  the  ith 

location,  
 There  is  one word  confabulation  thread working  on 

the  jth  location,  ݆ െ ݅ ൏  where M ,ܯ is  the number of 
words in the next sentence, 

 The  current  read  pointer  of  the  input  buffer  is  at 
location j‐1.  
The stall is used to synchronize the speed of different 

word confabulation processes; therefore we refer to the 
delay that is introduced by the stall as synchronization 
delay.  The synchronization delay increases when the 
variation of the word confabulation time gets larger. 

6. EXPERIMENTAL RESULTS 
The ITRS software is implemented on the AFRL/RI 
Condor HPC and evaluated for accuracy and 
performance.  

6.1 Recognition accuracy 
In the first experiment, we test the software using text 
images with low level noise. Our test case is extracted 
from the book “Great Expectations” by Charles Dickens. 
The text consists of 96767 letters or 23912 words. The text 
has not been read during the training process. In order to 
explicitly control the noise in the input, we use generated 
bit maps of text images instead of scanned text images. 
Horizontal scratches are added to the images of letters 
selected randomly. The amount of noise in the input is 
controlled by two parameters: (1) the thickness of 
horizontal scratches varies from one pixel wide to three 
pixels wide.  Fig. 10 shows examples of the three different 
types of horizontal scratches. Note that the scratches are 
located in the center of the text image, where most of the 
information to distinguish amongst various characters is 
found. Also note that each text image is 15x15 pixels, and 
a 1~3 pixel scratch across the image is equivalent to 
7~20% missing information. (2) The probability that a 
character is scratched varies from 0.2, 0.4 to 0.6. 
 
 
 
 
 

Fig. 10. Three different horizontal scratches. 

The outputs of ITRS are compared against the original 
text. A sentence (or a word) is considered inaccurately 
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recognized if there is one word (or one letter) mismatch 
from the original text. TABLE 1 gives the accuracy of 
word and sentence confabulation. They are calculated as 
the number of sentences (words) that have been correctly 
“read” divided by the number of sentence (word) 
confabulations that have been invoked. The same table 
also gives the percentage of correct words.  It is calculated 
as the total number of correct words (including both 
confabulated and none-confabulated) divided by the total 
number of words in the text. As we can see, the rate of 
accurate word confabulation and the overall percentage 
of correct words are very close to each other. This is 
because the majority of words have at least one scratch. 
Therefore, they all need to go through the word 
confabulation process. 

TABLE 1  

RECOGNITION ACCURACY AT SENTENCE AND WORD LEVEL 

Scratch 

prob. 

Sentence 

confabulation 

accuracy 

Word confabulation 

accuracy 

Overall % correct 

words 

1 

scratch

2 

scratch 

3 

scratch

1 

scratch

2 

scratch 

3 

scratch

1 

scratch

2 

scratch

3 

scratch

0.2 0.92 0.90 0.86 0.98 0.98 0.97 0.99 0.99 0.98 

0.4 0.87 0.82 0.76 0.98 0.97 0.95 0.98 0.98 0.96 

0.6 0.82 0.74 0. 65 0.97 0.95 0.93 0.98 0.97 0.94 

 
 
 
 
 
 
 
 
 
 

(a) Comparison in sentence accuracy 
 
 
 
 
 
 
 
 
 
 

(b) Comparison in word accuracy 
 

Fig. 11. Impact of sentence knowledge base on the confabulation 
accuracy. 

Fig. 11 shows the rate of correct sentences and correct 
words found by the ITRS when a well trained sentence 
level knowledge base (i.e. “long KB”) is used and a poorly 
trained sentence level knowledge base (i.e. “short KB”) is 
used. The size of the high quality knowledge base (“long 
KB”) is more than 6 GB, while the size of the low quality 
knowledge base (“short KB”) is only 2.7 MB.  The data 

series of “% improve” gives the percentage improvement 
of the results obtained using “long KB” over the results 
obtained using “short KB”.  These charts indicate that 
better knowledge at the sentence level improves the 
sentence accuracy up to 80% and word accuracy up to 
8%. 

In the second experiment, we test the ITRS system 
using text images with completely occluded characters. 
The two test files are extractions from the book “Great 
Expectations” by Charles Dickens and the book “Lost 
World” by Arthur Conan Doyle. Neither of these books 
has been read during the training.  We increase the 
percentage of occluded letters from 10% to 30%. TABLE 2 
gives the sentence level and word level accuracy for 
different input files. As we can see, even with 30% of the 
characters missing, the ITRS can recognize more than 85% 
words correctly.  

TABLE 2  

ACCURACY WITH OCCLUDED CHARACTERS 

Percentage 
of occluded 

letters 

10% 20% 30% 

Word 
accu. 

Sentence 
accu. 

Word 
accu. 

Sentence 
accu. 

Word 
accu. 

Sentence 
accu. 

Great Exp. 95.5% 60.2% 90.5% 33.6% 86.3% 23.9% 

Lost World 97.0% 63.8% 92.7% 31.2% 86.4% 20.7% 

The following two examples show the input text (with 
occluded letters) and the recognized text from ITRS: 

 
Input: bu█   █   █new    the   s█unds   by    this    t█me   and  

co█ld  █is█ociate  th█m  from  the  object  o█  ██rs█it  

Recognized sentence: but I knew the sounds by this time 

and could dissociate them from the object of pursuit 

 

Input: gra█ious  █o█dne█s  █r█c█o█s  me  what█  █one  

wit█  th█  pi█ 

Recognized  sentence:  gracious  goodness  gracious  me 

whats gone with the pig  

Correct  sentence:  gracious  goodness  gracious me whats 

gone with the pie 

Compared to existing text recognition system, the 
uniqueness of the proposed ITRS is its ability to achieve 
high accuracy from poor image detection and pattern 
matching results. For example, given a text image with 
about 20% characters occluded, the OCR function in 
Microsoft OneNote system outputs less than 20% correct 
words, which is much lower than the results from the 
ITRS. 
6.2 System performance 
Fig. 12 shows the evolution of the ITRS software architec-
ture over time. We started with a base line implementa-
tion as shown in Fig. 12 (a), in which all the software 
components are connected sequentially except for the BSB 
engines that are running on 22 PS3s in parallel.  Our first 
step is to improve the confabulation speed by multi-
threading, as shown in Fig. 12 (b). 
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To evaluate the performance of the ITRS software, we 
carried out experiments on three different input test 
cases. In the first input file 20% of character images are 
scratched by 1-pixel-wide horizontal bars. Compared to 
the other two test cases, it has the highest image quality.  
The second input file has 40% of character images 
scratched by 2-pixel-wide horizontal bars.  Compared to 
test cases one and three, it has the medium image quality.  
The last input file has 60% of character images scratched 
by 3-pixel-wide horizontal bars.  It is the lowest quality 
input file.  The number of word confabulation threads is 
varied from one to seven and denoted as t.  The total 
runtime is broken down into BSB time, word 
confabulation time, sentence confabulation time and 
synchronization time.  The concept of synchronization 
delay is introduced in Section 5.3. The sizes of the 
input/output buffers in the double buffering system are 
set to be 100 sentences. 

Fig. 13 shows the runtime information for the three 
test cases when the number of word confabulation 
threads increases from one to seven.  It also reports the 
performance improvements of the multi-threading 
implementations compared to the baseline 
implementation. 
Several observations can be made from the results:  
1. No matter  how  the  image  quality  changes,  the BSB 

time remains constant. 
2. When the quality of the input text image deteriorates, 

the word/sentence confabulation time increases.  This 
is because we rely on the confabulation to resolve the 
ambiguities in the input.   

3. When the quality of the input text image deteriorates, 
the  synchronization  delay  gets  longer.    This  is 
because  the  variations  in  the  word  confabulation 
speed  increases  as  the  level  of  ambiguity  rises,  and 

the  in‐order/out‐of‐order  circular  buffer  will  be 
blocked more frequently. 

With the multi-threading technique, we can improve 
the runtime by up to 70%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Evolution of the ITRS software architecture. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. Performance improvement by multi-threading confabulation. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Increase of buffer size reduces the synchronization delay. 
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Fig. 15. Performance improvement by parallelizing BSB and 

confabulation. 

 
The results in Fig. 13 show that with low quality input, 

the synchronization delay becomes the bottleneck that 
prevents us achieving linear speedups by using multi-
threading techniques. One way to relieve this bottleneck 
is to increase the capacity of the double buffering system. 
We increase the buffer size from 100 sentences to 200 and 
300 sentences and run the experiment again on the low 
quality input file. Fig. 14 gives the runtime information 
for the systems with three different buffer configurations. 
The last data series (i.e. “buffer imprv”) gives the 
performance improvement due to the increased buffer 
size. The results show that with seven word 
confabulation threads, increasing the buffer size from 100 
to 200 and 300, we reduce the runtime by 20% and 30%. 

We further improve the ITRS software architecture by 
parallelizing the BSB and confabulation processes, as 
shown in Fig. 12(c). Fig. 15 shows the performance of the 
improved system on high quality, medium quality and 
low quality inputs. The buffer capacity is set to 300 
sentences. The data series labeled “improvement” gives 
the performance improvement of the system over the 
base line implementation, while the data series labeled 

“improv2” gives the percentage speed improvement by 
comparing the parallel ITRS with multi-threading ITRS.  
The number of word confabulation threads and the buffer 
size of these two systems are kept the same.  The results 
show that parallelizing the BSB and confabulation is most 
effective for the medium quality test cases, because the 
BSB time and confabulation time are approximately equal 
for this type of test cases and executing them 
simultaneously can reduce the total runtime by 50%. 

7 CONCLUSION 
We have presented a HPC-based context-aware Intelligent 
Text Recognition System (ITRS) that serves as the physical 
layer of machine reading.  A parallel computing architecture 
is adopted that incorporates the HPC technologies with 
advances in neuromorphic computing models. The algorithm 
learns from what has been read and, based on the obtained 
knowledge, it forms anticipations at the word and sentence 
level. The knowledge helps to suppress the noise in during 
pattern detection. The implemented ITRS software is able to 
process about 16 to 20 scanned pages per second on the 500 
TFLOPS AFRL/RI Condor HPC cluster with reasonable 
effort put toward performance optimization. 
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