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1.1 INTRODUCTION

Heterogeneous ordered networks or, more specifically,rreatineural networks
(RNN) are convenient and flexible computational structumeglicable to a broad
spectrum of problems in system modeling and control. Thquire efficient algo-

rithms to achieve successful learning for the given taskckBeopagation through
time (BPTT), henceforth assumed to be its truncated vemsitina sufficient depth
of truncation, and derivative adaptive critics (DAC) ar@tseemingly quite different
approaches to solve temporal differentiable optimizagiooblems with continuous
variables. In fact, both BPTT and DAC are means to obtainvetvies for training

parameters of RNN.

We show that both approaches are related. BPTT is used in DABtain targets
for derivative critic adaptation in RNN training. DAC canioeerpreted as a method
to reduce the need for introducing a potentially large tation depth in BPTT by
providing estimates of derivatives from the future timegsteThis realization allows
us to establish a common framework for comparison of devieatof BPTT and
those of DAC and summarize their differences. The main difiee stems from
the fact that derivatives provided by DAC are learned via @esentation (critic
network), and such derivatives can be averages of derdsfivovided by BPTT. It
should be kept in mind that some derivative averaging njuoecurs in the training
process during which RNN parameters are being adjuste@liysacrementally).

TPortions of this chapter were previously published in [7], P], [12], [13], [14] and [23].
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Depending on the problem setup and critic training meclsamiAC derivatives may
or may not be sufficiently accurate for successful RNN trajni

Both BPTT and DAC must also be equipped with a parameter ad@rg rule
or algorithm. BPTT equipped with various forms of the Kalnféter algorithm
has shown its power in tackling difficult RNN training proiyls. Training a single
RNN to model or control multiple systems with its weights fixepon completion
of the training is particularly remarkable because it defigscessful applications of
feedforward or time-delay NN. In spite of several succdstgmonstrations of DAC
and in contrastto BPTT, DAC has mostly been restricted foitrg feedforward NN
(neurocontrollers) using a gradient descent rule. It igiatfor DAC to reinforce
itself with more powerful architectures and training aigfons to be capable of
solving truly difficult optimization problems.

Sufficiently detailed comparisons between BPTT and DACairitrig approaches
to RNN are essentially lacking. Careful comparisons shdaddbased not only
on the results of comprehensive testing of the solutionsatagt on assessments of
the computational requirements of the approaches. It iswanthy that the critic
network is discarded as soon as RNN parameter training shdi, which is wasteful.
Furthermore, comparisons for a clearly formulated andyeasicessible modeling
problem may be preferable over comparisons for controllprob because modeling
problems usually have a relatively simple setup. We suggashstationary system
modeling problem as a possible benchmark for comparing BRWIIDAC.

This chapter is structured as follows. In Section 1.2 we showelationship
between BPTT and DAC that gives rise to a common frameworkdonparison of
the two methods. In Section 1.3 we discuss critic repreienta In Section 1.4
we propose a hybrid between BPTT and DAC which can be usefdmparative
studies. In Section 1.5 we emphasize the need to base cawpsrof the two
methods not only on the final result but also on computaticegalirements for each
method. We discuss two classes of challenging problemshauald form a core of
future comparative studies of BPTT and DAC in Section 1.6.

1.2 RELATIONSHIP BETWEEN BPTT AND DAC

We would like to show how BPTT is used within the DAC approatte consider
differentiable optimization with criterion

k+h

No
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where0 < v < 1is a discount, depth (horizo)is as large as required;(t) is
an instantaneous cost (or utility) function. Without logsgenerality, eactU; is
assumed to be a function of state variables of the followairtgredheterogeneous
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network
zi(t) = z'(t), 1<i<m (1.2)
i—1
neti(t) = > Wi;(t)z;(t) E:I ot —1) (1.3)
j=1 Jj=m+1
zi(t) = fi(neti(t)), m+1<i<N (1.4)

wherez;(-) € R, fi(-) € C*, m is a number of external inputs®* to the network,
andm +1 < (Ni,N;) < N is a set of indexes for whicl/; are defined. The
execution order is assumed to be from node 1 to n¥deWe want to determine
parameters$V; ;, W1 delivering a minimum to (1.1) in the mean square sense in the
domain of mteresK z; € X.

Ordered derivatives [1] of the criteriash with respect tar; are determined by
taking into account (1.2)—(1.4):

Fzi(t) = E+F+R (1.5)
where
_ o 0U(1)
E = waaﬁu) (1.6)
Ofj(net;(t
F = E:LV, —éig%%DExﬂﬂ (1.7)
Jj=i+1
af‘ ti(t+1
R = 7]§;let+ —7%gﬁ§:BﬁFxﬂt+n (1.8)

Equation (1.5) is run backwardslimmthspace{ = N, N —1,...,1)andtime { = k+
h,k+h—1,... k)initializing ¥ z;(k+h+1) = 0andW},(k+h+1) = W} (k+h).
The expression foF_z;(t) consists of three components. The tefhof (1.6) is
an explicit derivative ofl /2U?(t) with respect taz;(t) (if exists). If the noder;
feeds other nodes through feedforward connections,khef(1.7) should reflect all
such connections. Likewis&, of (1.8) reflects all time-delayed connections through
which the node:; feeds others.
Ordered derivatives with respect to parameMfsandW*! are determined using
E z;(t) and (1.2)—(1.4):

EW,,(t) = Eﬂxngggg%%ﬁxﬂw (1.9)
EWl () = Exxwg%%g%gﬁxﬂt—1) (1.10)

Equations (1.5)—(1.10) are called BPTT [1]. Here they egpi@truncated form of
BPTT, henceforth denoted as BPTT(h) [2].
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Updates of paramete andW! can be made by usinE:if:t0 EW; ;(t) and

:f:to EW},(t), respectively, wherey,¢; are suitably chosen time steps of the
trajectory (e.9.tg = k, ty = k + h, another possibility ig, = t; = k).

We now consider another optimization criterion (cf. (1.1))

No
J'(t) = % S U+ (t+1) (1.11)
Jj=N1

The criterionJ of (1.1) is an approximation of’ which becomes increasingly more
accurate for sufficiently largke and~y < 1. On the other hand, the criterion (1.11) is
approximated by critic in approximate (heuristic) dynamic programming.[3]

Let us examine derivatives of'(t) with respect tox;(t) taking into account
(1.2)—(1.4):

N(@t) = E'+F +R (1.12)
where
/. ) aUZ(t)
E = Ut PO (1.13)
N
Fo= 3 Wj,i(t)ag?(l’;iﬁgt))&(t) (1.14)
j=i+1 J
N
R = v ) Wj{,»(t+1)—8J:;122::Zt(t++1;))/\}(t+1) (1.15)
j=m+1

where\; = 9.J'/dx;. Note that equation (1.12) rearly identical to (1.5) express-
ing backpropagation between two consecutive moments in tien(BPTT(1)) [4].
(Replacing\;(t) and\(t + 1) in (1.12),(1.14),(1.15) with_z; (¢) andF_z;(t + 1),
respectively, makes them identical.) Equations (1.9}8)lmay also be used for
minimization of (1.11) except thdt.z;(¢) should be replaced by, (¢).

In a popular DAC approach calletial heuristic programmingDHP), each\; is
to be approximated by outpit of A critic [3]. One can demonstrate that traditional
DHP equations (see, e.g., equations (7) and (8) in [5]) gpeaial case of (1.12). The
A critic is expressed as a suitable representaiot(t), W) with outputs); (-) and
adjustable weight®V . The critic is supposed to be trained with the error between
Aj(t) from (1.12) and its corresponding output(t). (Each))(¢ + 1) in (1.15) is
replaced by the appropriate outpyt(t + 1) of the critic.)

We just revealed the similarity between a particular fornBBfTT and a popular
DAC formulation for the network (1.2)—(1.4), but this is @galid for much more
general networks (see [4] and Section 1.4 of this chapter¥gstems including those
with distributed parameters [6]. Recognizing this sintilaenables us to create a
hybrid of BPTT and DAC in which DAC may act as a means to redwgahh in
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BPTT(h) by providing estimates of derivatives from the fettime steps (see Section
1.4).

Many researchers have pointed out similarities betweenTB&Td the Euler-
Lagrange/Hamiltonian formulation (see, e.g., [19], [17]Jhe expression (1.12)
or (1.5) may be recognized as the Lagrange multipliers igdaderivatives of a
Hamiltonian with respect to state variables) for the neknvdr.2)—(1.4) with the
criterion (1.11) [18], [17]. The derivatives (1.9), (1.1@y partial derivatives of a
Hamiltonian with respect to contro andW !, can be used to update incrementally
the network parameters in order to minimize the criteriocd L

We describe a typical application of BPTT to functional miigation. First, we
initialize the state variables of (1.2)—(1.4). We run (3(@)4) forward for one or more
time steps and compute the appropriate valués(of : U(t),U(t+1),...,U(t + k),
whereU is a known function of state variables and their targets (&.ds a tracking
error). We then compute the derivatives according to (lyX)dckpropagating from
t + k tot (BPTT(k)) and perform the incremental updates based on §h@® (1.10).

Compared to this description of BPTT application, the DA@mach requires the
utilization of only two adjacent time stepsandt + 1, according to (1.12). We run
(1.2)—(1.4) forward for one time step, obtdif{¢), and invoke (1.12) to prepare for
critic training. The right-hand side of (1.12) serves ashltbe set of instantaneous
targets for critic training and the input to the parameteataips (1.9) and (1.10) (in
place ofE_z;(t)). If gradient descent is employed, critic training is alsoremental,

and it may be based on the expressiaf(t) — A;(¢)) 8{};(;) , whereW¢ is a vector
of critic weights.

For either the BPTT or the DAC approach, we continue the itmgiprocess for
the next point + 1 along the trajectory. We can train for a segment of the ttajgc
then reinitialize the state variables (1.2)—(1.4) and maveo training on another
segment of the trajectory. Meanwhile, our weigl's W' (andW ¢ for DAC) serve
as the long-term memory, incorporating the effects of aatagpt averaged over many
instances. For an adequately chosen training strategyamwesasonably expect that
application of BPTT or DAC will result in the tripl€fW, W', W)* such that/ is
approximately minimized oveX . As with any numerical and (generally) nonconvex
optimization, all we can guarantee is that the proper tngiprocess should result in
attaining a local minimum off (most of the time such a minimum is satisfactory).
What is proper remains problem dependent, but determitiagraining strategy
includes choosing training parameters (e.g., learniregjdor updates based on (1.9)
and (1.10), the length and the assignment of trajectory eatgrand the initialization
of state variables. For DAC we need to add the choice of drigining parameters
and the coordination scheme between critic and netwonkitrgiprocesses [15], [4].

The training process based on BPTT also resembles a form délnpoedictive
control (MPC) with receding horizon (see, e.g., [20]). Astlire MPC, we run
the system forward for several time steps collecting valofe$’. Our horizon
(t + k) recedes once the weight updates are carried out excepiuhapdates are
incremental, not “greedy" as in the receding-horizon MPC.

We summarize the differences between derivatives obtdigeBPTT and those
of DAC [7]:
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1) BPTT derivatives are computed directly, while critic ilatives are computed
from a representation, e.g., a neural network, with its patars to be learned.
2) BPTT(h) derivatives generally involve a finite time hamz(equal to the chosen
truncation depthh), while critic derivatives are estimates for an infinite iaon; it
is not uncommon, however, to employ a discount factor in1(}.Which may be
interpreted as a gentle truncation € 1). Largeh are permissible because BPTT
computations scale linearly with, but frequently smalk (h < 10) suffice.
3) BPTT derivatives necessarily compute the effect of cirapg variable in the
past while a derivative critic may be used to estimate the efééa change at the
present time. If critics are used only to adjust network peeters, this distinction
is irrelevant. On the other hand, recognizing it poses interesting piitisie for
alternative or supplementary methods of control, as dgeig Section 6 of [7].
4) A BPTT derivative is essentially exact for the specifigeicéory for which it is
computed, while a critic derivative necessarily represamt average of some kind,
e.g., an average over trajectories that begin with a givestesy state. Such an
estimate may be quite accurate (if the critic has been welptedl or trained and
if exogenous inputs to the system are either small or sttt well behaved) or
may be essentially worthless (if future operation is corghjeunpredictable due to
arbitrary inputs or targets).

Item 4 is discussed in more details in the next section.

1.3 CRITIC REPRESENTATION

Critic predicts the effect of a change in a variable of thaeysor network (1.2)—
(1.4) on its future operation. Critic is thus a function oé thystem state, and it is
important to include in critic representation as much infation as available about
the system. What is encompassed by the system depends oarttextc In the
context of indirect model reference adaptive control [8F system is interpreted
quite generally as consisting of: 1) controller networkreference model, 3) object
to be controlled (plant), and 4) model of the plant. Statéakdes or their estimates
of all of these components should be provided as inputs to the g plant model
often serves as the plant state estimator). However, theagijlistable quantities are
the weights of controller and (sometimes) parameters ofitbeel.

It is convenient to consider all main components of the adrgystem as parts
of a single heterogeneous recurrent network, perhaps similar to{@{12)). This
viewpoint equates control problems with modeling probléemsploying RNN) since
both types of problems feature feedback.

Inthe modeling context, we suggest connecting all rectimedes or time-delayed
elements to the critic because they reflect steteof the system. In the example
below we illustrate that adding a state variable is indeedtbeial [4].

Consider a system

z(k+1) = 22Uk +1)+wz(k) (1.16)
2 k+1) = 2k +1)+wiz(k) (1.17)
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where0 < |w| < 1,0 < |wf| < 1, andz**!(k), Vk are i.i.d. random variables with
the same meap®*t. The system (1.16)-(1.17) is a simple illustration of theamek
(1.2)—(1.4), with the controller part expressed as (1.I8)e equation (1.17) is an
example of the reference model, and it describes the ddséteavior of (1.16).

The minimization criterion is

Ytk +t) — x(k +1t)? (1.18)

N | =
WE

JH) = 5 S A Uk + 1) =

t=0 t

Il
=]

Differentiating.J (k) with respect tac(k) yields

Fa(k) = Z(’yw)t(ac(k +1t) — a2k +1)) (1.19)

t=0

Substituting (1.16) and (1.17) into the equation Fog (k) above, averaging for alll
x¢**(.) and recognizing appropriate power series results in

z(k) (k)
Fa(k = —
< Fa(k) > 1—yw? 1—~ywwd
%ty 1 1
— 1.20
+1—fyw <1—’yw2 l—ywwd> ( )

where< F_z(k) > is an (ensemble) average ordered derivativé(@f) with respect
toz(k).

We wish to show that a linea critic is sufficient to recovex F_z(k) >. The
critic representation is

Mt) = Az(t)+ Bx(t)+C (1.21)

whereA, B, andC are the critic weights. Similar to (1.12), we can write

At) = E'+R (1.22)

where
E' = x(t) - z(t) (1.23)
R = 7A(15+1)M (1.24)

(t)

Here (1.23) corresponds to (1.13), and (1.24) correspamd&.15) (there is no
feedforward part like (1.14)). Substituting the repreagan (1.21) into the equation
for A(t) above yields

Az(t) + Bz(t) + C = z(t) — 2(¢)
+yw(Az(t +1) + Ba(t +1) + C) (1.25)
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When the weights converge they become

1

R (1.26)
1
B = ——— 1.27
1 — yww? ( )
%ty 1 1
= — 1.28
¢ 1—yw <1—’yw2 l—wwwd> ( )

which, incidentally, indicates that F_x(k) > is restored exactly.

A reasonable question to ask is what happens if we do not leness to state(s)
of the data generator/reference mogél Such situation may happen when training
a recurrent network from a file of input-output pairs. We sgjgapproximating
the states of the missing reference model by its time-delaygputs and provide
these estimates as inputs to the critic. (The order of theesys/hich produced the
training data might be known and used to determine how mamg-tielayed inputs
to employ.)

One can certainly argue that even a simpler critic represient lacking some
difficult-to-find inputs might suffice for a problem at handowever, we should keep
in mind that excluding a state or its estimate from the chitjiut set effectively turns
such a state into a disturbance which tends to decreasekéiiddiod of getting an
accurate critic and handicaps the critic as compared to BPTT

Many representations for critics are possible. For exangaleh output can be a
separate function or neural netwokk(x(t), W¢). In the example above we used
the linear critic. Extremely simple (bias weight only) repentations are also viable
for some problems [9], as illustrated below.

Consider the following system

o (t) = ba®(t) (1.29)
z3(t+1) = 0.5z3(t) +21(t+1) + 2" (t+ 1) — 222(¢)  (1.31)

or, in a compact form,
z3(t+1) = 0.523(t) + (1+b)a(t+1) — 202" (t — 1) (1.32)

The reference input®*! has a piecewise constant pattern with a long enough dwell
time (e.g., 50 time steps). The goal is to adjust the paramhete as to minimize
(z§(t) —z3(t))?, wherezd(t) = 0, Vt, in the mean square sense in which dasel.
BPTT(2) must be used to accomplish this (the training prodéserges if BPTT(h)
with h < 2 is used).

We show how the use of two DAC\] critics eliminates the need for more than
the (computational) equivalent of BPTT(1). The BPTT equiadifor this system are



CRITIC REPRESENTATION [¢

similar to (1.5):

Fas(t) = —e(t)+0.5F23(t+1) (1.33)
Fa,(t) = —-2Fa3(t+1) (1.34)
F_.”L'l (t) = F_.”L'g (t) + F_l‘z (t + ].) (135)
wheree(t) = 0 — z3(t) = —z3(t). In the first equation-e(t) is equivalent to

(1.6), and0.5F_z5(t + 1) is equivalent to (1.8) (it is obtained from the equation for
z3(t + 1)). The equation fors(¢ + 1) is also used to obtaifi_z,(t) andF_z3(t) in
the expression faF_z, (¢). The last equation (fdf_z; (¢)) is obtained by combining
Fa, (t) =Fux (t + 1) with Foaq (t + 1) =Fux3 (t + ].) at timet.

The BPTT equations above are to be repeated two times (BR)It(produce
F_z; suitable for updating correctly:

Eb(t) = Eai(t)zeet(t) (1.36)

According to (1.12), we replacB.a3(t + 1) andE_xz5(t + 1) with A3(¢ + 1) and
A2(t + 1), respectively, and obtain

Ns(t) = —e(t) +0.503(t+1) (1.37)
Ay(t) = —2X3(t+1) (1.38)
Fazi(t) = MN(t)+M(t+1) (1.39)

whereF_z; (t) is used in (1.36) to update It turns out that the bias-weight-only
critics suffice for this problem, and they may be updated Hoviis

Az + = n(A3(t)

5 As3) (1.40)
Ay + = U()\{z(t)

- A2) (1.41)
where learning ratg > 0 is reasonably chosen, and the C-language notation™
indicates that the quantity on the right hand side is to beeddd the previously
computed value of the left hand side. It can be shown thabpaifg updates of the
critics and the weighti results in convergence éfto its desired value of unity if the
system is sufficiently excited by*t.

The system (1.32) could easily be changed to repreBedélays which would
either require BPTT(D) oD critics trained in a fashion similar to this example.

As illustrated with the example (1.29)—(1.41), even a &lieritic can be effective
and competitive with BPTT when dealing with a predictablsteyn. (A good
example of a predictable system is a system with a constanfix@d-statistics
random) disturbance.) The system above is predictableusecia is driven by a
slowly-varying excitation. However, any critic-baseditiag approach will have
difficulties if the system is subject tef** changing significantly at every time step.
For this and other systems with recurrence and block deféssted by fast-changing
disturbances or excitations it is better to use a hybrid wiperal backpropagation
[10], BPTT and, possibly, DAC proposed in [11].
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1.4 HYBRID OF BPTT AND DAC

Here we provide the reader with C-language-style pseudodedcribing a hybrid
of BPTT and DAC which is less efficient in handling block deddlan that in [11]
but easier to implement.

The forward equations for an ordered network withn inputs anch_out outputs
may be expressed very compactly in a pseudocode format [1€].the network
consist ofa_nodes nodes, of which_in serve as receptors for the external inputs.
The bias input, which we denote formally as node 0, is notuidetl in the node
count. The bias input is set to the constant 1.0. The drregntains a list of the
input nodes; e.gl; is the number of the node that corresponds tojthenput, in.
Similarly, a list of the nodes that correspond to networkpotg ouj is contained in
the arrayO. We allow network outputs and targets to be advanced or ddlayth
respect to node outputs by assigning a phas®e each output. For example, if we
wish to associate the network outputvith the output of some system five steps in
the future, we would have, = 5. Nodei receives input froma_con (i) other nodes
and has activation functiof(-); n_con(i) is zero if nodei is among the nodes
listed in the input array. The arrayc specifies connections between nodgs; is
the node number for thgth input of nodei. Inputs to a given node may originate
at the current or past time steps, as specified by delaysinedten the arrayd, and
through weights for time stepcontained in the arra (¢).

Prior to beginning network operation, all appropriate menis initialized. Nor-
mally, such memory will be set to zero. (In some cases menmatydorresponds to
the network initial state may be set to specified values.)

At the beginning of each time step, we execute the followinfidy operations on
weights and node outputs (in practical implementationreutar buffer and pointer
arithmetic may be employed). Hedeax is the largest value of delay represented in
the arrayd, andh is the truncation depth of the BPTT gradient calculatiorcdbsd
in a pseudocode form later.

for i = 1 to nmodes {
for iy = t-h-dmax to t-1 {

—~

.
o~

~

Wi +1) (1.42)
yilie) = wilie +1) (1.43)

} /* end iy loop */
} /% end i loop */

Then, the actual network execution is expressed as

for i = 1 to n_in {

y,(t) = in;(¢) (1.44)
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}

for i = 1 to n.nodes {
if ncon(i) > 0 {

n_con(i) o g
ai(t) _ Z]’:l Wz,] (t)yclgj (t dz,]) (1'45)

1O (Wi () + ye, , (= dig)

yi(t) = fz (ai (t)) (146)

}
}

for p = 1 to nout {
outy(t +7,) = yo,(t) (1.47)

}

Most commonly, we take the (differentiable) activation étian f;(-) to be either
linear or a bipolar sigmoid, though we also can make use adrdtmctions, e.g.,
sinusoids, for special purposes. In the pseudocode ablogdpp portion of the
right-hand side of (1.45) is invoked whenever the nogerforms a summation of
its inputs weighted by the appropriate elementd3¥f The bottom portion of the
right-hand side of (1.45) is invoked if the nofles a product (multiplicative) node.

The pseudocode above is very general, and it can be usedddabdes great deal
of neural and non-neural computational structures includi.2)—(1.4).

In the pseudocode for a hybrid afygregateBPTT [12] and DAC below,F_py
denotes an ordered derivative %)EZ o7 (Up(t — h+ iy ))* (cf. (1.1)), where
U, is a component of the utility vectdd usually expressed as a deviation between
appropriate target and output of the network. This pseudeoan be invoked at
each time step only after the completion of forward propagait time step.

for p = 1 to nout {
for i = 1 to nnodes {
for k = 1 to n_con(i) {

Wi = 0 (1.48)

} /* end k loop */
for iy = t to t-h-dmax {

Eyiliy) = 0 (1.49)
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if it =t {
p . .
Fyi(i) = rj(ie) (1.50)
}
} /% end iy loop */
} /* end i loop */
for iy = 0 to h {
i1 = max(t —ip,0) (1.51)
Up(in) = tgt,(in +7p) — outy(iy +7p) (1.52)
Flyo,(i1) += —Up(ir) (1.53)

for i = nmnodes to 1 {
if ncon(i) > 0 {
for k = n_con(i) to 1 {

Jo= ik (1.54)
ig = max(il - dz’,k; 0) (155)
P P .
Fyj(iz) += y"*Fyi(i1)f{(ai(i1))
Wi k(1)
X n_con(i .7 . (156)
l T (Wi (1) + e (i1 = digm)
p P
EWir += FEuy(i1)fi(a;i(i1))
y;(i2)
X n_con(i . . 1.57
l T (Wan (i) + v i = din)) 57

} /* end k loop */
}
} /* end i loop */
} /% end i loop */
} /% end p loop */

The loops for (1.48) and (1.49) serve as initializations. Wsex! to denote the
outputi of derivative critic for component of the utility vectorU. This is done to
avoid confusion with\; discussed above.

By virtue of “4+ =" notation, the appropriate derivatives are distributeairfra
given node to all nodes and weights that feed it in the forverection, with due
allowance for any delays that might be present in each caiomecThe simplicity
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of the formulation reduces the need for visualizations saaghinfolding in time or
signal-flow graphs.

If the nodei is one of the summation nodes (as in the top portion of the-tigind
side of (1.45)), then the derivatives with respegjt@andV; ;, are computed accord-
ing to the top portions of the left-bracketed terms in (1.&8) (1.57), respectively.
For a multiplicative node (as in the bottom portion of thentifpand side of (1.45)),
these derivatives are computed according to the bottonopsrof the left-bracketed
termsin (1.56) and (1.57).

DAC errors and targets are computed after completion of seeigocode above:

for p = 1 to n_out {
for i = nmnodes to 1 {
if ncon(i) > 0 {
for k = ncon(i) to 1 {

o= cik (1.58)
ia = t—h—di (1.59)
RPGin) = (i) (1.60)
fliz) = &}"(ia) — K] (in) (1.61)

} /* end k loop */

/* end i loo */
p
/* end loo */
P p

A special case witth = 0 anddmax = 1 is what may be called the pure DAC
algorithm (cf. equation (1.12)). However, there is one @udifference. In the
usual formulation (1.12), derivative critics designatgd)bare trained to estimate
derivatives ofJ’, including the contribution from the current steép, The pseu-
docode above separates the estimate of the future fromfttied present, and itis a
generalization of the algorithm proposed in [14] (€f.critics in [14]).

The difference between the values of the two critic formgéisely the quantity
that results when the derivative of error at each output %ﬁm is backpropagated
toy(k). (In the simple case of a single-node network, the new cxitig is related
to the usual critic as follows\(k) = fy—{,;) + x(k).) Thek critic is thus not required
to estimate quantities which can be computed exactly. leichiéxperimentation
suggests that the use efritics may lead to faster training than that)o€ritics.

Critic can be trained using the error (1.61). For exampleadignt descent update
of critic weights may look like this:

OkP(t — 1)

P _ P
We += npej(t—l) WP,

(1.62)
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whereW?, is a vector of weights of the critip, andn? > 0 (h = 0 anddmax =
1). (We assume in (1.62) that an individual critic is used tpragimate ordered
derivatives of the discounted sum Uﬁ with respect to node outpyt. One can
also combine all such critics into one network.) The crititputs may correspond to
different time steps whedg, ;, is different for different RNN nodes, as follows from
(1.61).

No critic training happens if all critic outputé and their learning rates are fixed at
zero. Insuch a case, our pseudocode amounts to carryingeaggregate BPTT(h).
If the gradient descent training of weighi¥ is desired, then we uﬁpW“c of (1.57)
to adjustiv; (t). For extended Kalman filter (EKF) training [13], the errgjeiction
(1.53) should be modified for consistency with mechanictefEKF recursion (see
[12]).

If h > 0 and critic training is enabled, then (1.62) may be invokettram the
critic (alternatively, the EKF algorithm can be used). VéHiinited experiments with
utilizing derivatives (1.57) in conjunction with EKF up@athave been carried out
successfully, further experimentation is needed sincé slecivatives are different
from those usually employed by the EKF, especially when pesgbagation to the
RNN weights, as in (1.57), is performed only figr= ¢ — h [14].

Concluding this section, it should be mentioned that ourrigyban be used
even when components &f are not defined for all time steps. Furthermore, a
differentiable approximation df may be used if the tru& is not well defined. Such
an approximation capturing an essential relationship eetvthe network variables
and the desired instantaneous utility or the final outcomg (@ a game setting)
could be learned in a separate training task prior to invgkire hybrid equations of
this section [7].

1.5 COMPUTATIONAL COMPLEXITY AND OTHER ISSUES

We wish to compare the overhead associated with compusatidn IV; ; andx; for
DAC with the cost of computing_W¥; ; for BPTT(h).

We assume that the cost of forward and back propagationsghra network is
dominated by a linear term proportional to the number of iggglits. For a critic
with Nw . weights, the cost of carrying out static BP (BPTT(0)Pi&Vw . ). If we
use totalV data points to train a critic, the critic training cost is pootional to both
Nw . andNw because backpropagation through a RNN w\§y weights to obtain
critic targets (1.61) ha®(Nw) complexity for each ofV data points. Training
a network with DAC onV 4 data points incurs a cost proportional to bafky, and
Nw . because the critic is to be executed WitliVvy . ) complexity for each ofV 4
data points. Thus, the total computational cost of DAC athor is proportional to
(N¢ + Na)Nw, and(N¢ + Na)Nw.

The cost of BPTT(h) i©)(Nwh). If we useNpg data points to train the network,
then the total cost is proportional f6g Nw h.

Our simple analysis does not take into account the cost aitipgW in both the
network and the critic which can be significant, especialtysecond order methods.
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Let us assume that the network weight updating incurs the sast for both methods.
If

a(N¢ + Na)Nw, + B(N¢ + Na)Nw + W update cost < wNpNwh
(1.63)

wherex, 5, w are some problem-dependentconstants, then the DAC appyisaaore
efficient computationally than the BPTT(h) approambvided that the updates of
W result in the same network performance upon completiorsdfaining.

It appears possible to simplify the DAC approach for somélamms, e.g., when
the system is affine in controls

x(t+1) = F(x(t) + G(x(t))a(t) (1.64)

whereF is a vector functionG is a control matrix. IfU(¢) is quadratic ina,
i.e., includes the term’ (t)Ra(t), R > 0, then implementable parameterization of
the optimal controller may be expressed using the cAt{wector) as the following
product

at) = —R'GT(x(1)Ax(t), We) (1.65)

Thus unlike the usual DAC approach featuring training of ®wiities (critic and
controller), no controller training is necessary here.uarsa case the expression for
computational cost comparison above is changed to

(NcNw,. + W¢ update cost < wNgNwh (1.66)

where( is another constant.

Derivatives from DAC (values of; or ;) represent averages of derivatides;,
as showninthe example (1.16)—(1.28). That example alstesupon the following
important issue. To obtain the accurate average «(k) >, we have to wait until
convergence of critic weightd,B andC. Even more importantly, the parameters
w andw? must be kept fixed. If training of is in progress (ow? is changing),
critic accuracy will also depend on how these parameterseing changed, because
every change inv or w results in a change to the system or network to which the
critic is being adapted. In a general case of many weightagihg in a network,
if their updates are to be closely interleaved with critidaes, a relatively simple
critic representational structure might be warrantedhsd the critic can be quickly
adapted to changes in the system.

The proper coordination of critic training with network (dooller) training has
been aresearch topic. We have found that, in some casego#sthle to update both
network weights and critic weights at every training stdfhaigh such a strategy
may not work well in the presence of network weight updatetagfer size, as
frequently result from second order training proceduredterAating the training
processes in blocks is a reasonable option, since holdmagdtwork fixed while
adapting the critic generally leads to greater critic aacyr The drawback is that
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once the critic is held fixed and the network is changed, thie cnay become very
inaccurate and compromise training with poor derivatiiésnce a better approach
might be to carry out the training processes concurrentliydamonitor the critic error
(the error used to update the critic) and to suspend netwairkng for some number
of steps if a specified critic error is exceeded. Of specig@rast are case studies in
[15], [16] where various alternatives for coordinated updaof critic and network
have been analyzed. One alternative includes training oénhan one critic (termed
“shadow critic/controller" method), with periodic altetions between the critics to
improve convergence. Yet, no comparison from the standpbaomputational cost
akin to the analysis of this section have been made.

Efficiency of critic adaptation is paramount because théds discarded as soon
as the controller training is finished. Interestingly, véew attempts have been
made to analyze critic training accuracy or critic usapéifter obtaining the required
controller. As for the latter, we discuss the use of a criticahalyze Lyapunov
stability of the closed-loop system in [21].

1.6 TWO CLASSES OF CHALLENGING PROBLEMS

BPTT(h) equipped with EKF algorithm [13] has shown its powedealing with
difficult training problems requiring the use of RNN. Redgrmirogress has been
made in nonlinear Kalman filters in a joint estimation framekwwith promise to
eliminate not only BPTT but also the necessity to calculatédtives in the system.
Currently the new method’s only drawback is extra compjeag compared to that
of the standard EKF method [22].

More challenging of RNN training problems solved with Kalmfdter methods
can be categorized in two broad classes [23]. Class | encesepareural approxi-
mation of multiple input-output mappings of the followingrin

y4(t) = £o(zo(t — 1),%4(t)) (1.67)

wherefy is a discrete or continuous set of mappings with the outpetiove ¢ (¢) at
timet, x4 is a vector of inputs, ang, is the mapping’s state vector (evolutionzf
may be represented by a separate equation which is avoidmd motation as it is
assumed to be a part fif). The RNN approximating for all ¢ in the mean square
sense has the form

$(t) = f(a(t — 1), x9(t)) (1.68)

wherez is its state vector. Sometimes none of the mappings hawesstatas in [24]
and [25]. Furthermore, the input (¢) may include the previous value of the target
outputy?(¢ — 1) to provide the network with appropriate context.

Class Il includes problems in which accurate control of iplétdistinct systems
gs (or plants) is required:

y(t) = go(zo(t — 1), £(y(t — 1),2(t — 1),%4(1))) (1.69)
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Here the system’s outpgt(¢) should closely track the target output() produced
by a reference model (e.gyl(t) can be zero at all times, as in [26]). The input
y(t — 1) of the controller RNNF may or may not includey (¢ — 1) (or part thereof).
Another inputx,(t) includesy?(t) and, possibly, other external signals.

We briefly describe examples of class-1 problems. In [27]ingle RMLP with
three fully recurrent hidden layers (21 states) is traimmechéke good one-time-step
predictions of 13 differenttime series (periodic and cigof he fixed-weight RMLP
is demonstrated to be capable of good generalization tos&mes with somewhat
different sets of generating parameters as well as to thosepmted by noise. In
[28], achieving good one-time-step predictions of five etiént time series from a
two-hidden layer RMLP (14 states) via training is combindthwwo conditioning
tasks. The trained network must remember which of the twikstddealt with in
the past (Henon maps, type 1 or 2) in order to activate oneeofw appropriate
output responses for the random input. This problem is irsibtes(or, at least, very
inefficient) to solve with feedforward network equippedwi tapped-delay line
because of the need to correctly maintain a potentiallytraily long response to
the random input.

Two problems below are examples of class-IlI problems. Iq,[@6wo-hidden-
layer RMLP (14 states) is trained to act as a stabilizingrdiet for three distinct and
unrelated systems, without explicit knowledge of systeemtdy. This problem, too,
has a feature which makes it very difficult (if not imposs)iie apply successfully
a controller based on a feedforward network equipped witapped-delay line.
Specifically, the steady state values of controls for alt¢tplants are quite different,
yet the stabilization is required around the same equilinpoint (the origin).

In[29], training an RMLP with 10 states is accomplished thiage robust control
of more than 10,000 systems derived from a single nominaésy$®y parametric
perturbations. The robustness results of RMLP-based altertare shown to be
much better than those of a controller based on a feedfometwdork.

These results obtained with BPTT(h) and EKF for clearly folated and easily
accessible control problems may serve as benchmarks fomefabmparison studies
with DAC. Indeed, in spite of several successful demonisimatof DAC, they have
mostly been limited to training controllers based on feedfrd/time-delay neural
networks using the gradient descent algorithm (see, 8@j.,[31], [16], [32]), with
the notable exception of [33].

Both class | and class Il represent problems that are impioaad frequently
observed in practice. For example, a physical system to laehad or controlled
is usually known only to within parametric or structural gsthly time-varying)
uncertainties. (Such uncertainties amount to differeisgrdte or continuous sets
of mappingsf, andgy.) One approach is to employ an adaptive system whose
parameters would adapt in response to differences betlweenddel and the reality.
Another approach discussed in this section is to employ a RIMN fixedweights
whose recurrent nodes would act as counterparts of paresyadtthe conventional
adaptive system. This approach has an advantage of bygdksitthorny issue of
adapting weights on-line.
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In general, setup of class-Il problems is more complex thatdf class-I problems,
therefore we suggest to try comparative studies initiatiypmblems of class I. They
share the same feature (feedback) with class-Il problenastduhe presence of
recurrent connections in the network. We discuss one o$dlpsoblems below.

1.6.1 Learning all quadratic functions

The problem of learningll quadratic functions of two variables is proposed in [24].
The quadratic functions ang'(t) = a(k)x12(t) + b(k)z22(t) + c(k)zy (t)z2(t) +
d(k)z1(t) + e(k)x2(t) + f(k) where ranges fod, b, c,d, e, f, z1, z, are the same:
[—1.0,1.0]. Theindext (function index) changes discretely and much less fredyent
than the index (example index). A special form of RNN callddng short-term
memory(LSTM) is explored in [24]. The LSTM has three inputs, (t), x2(t)
andy?(t — 1)), one output §(¢)), and it consists of 5,373 weights. Its training
set is a time series of 128,000 points (128 different quadfanctions of 1000
examples each). The root mean square (RMS) error redchbs by the end of
training. The final LSTM demonstrates the test RMS erro0.026. It is claimed
that other recurrent networks can not match performancé&aiL on this and other
metalearningproblems.

We can interpret the quadratic function problem as a modeglinblem of a non-
stationary time series. Indeed, only,z, andy¢ are observed, an@, b, c,d, e, f)
forms a hidden state changing every so often. We want to &#&MLP in the same
setting as that of the LSTM training experiment [25]. Our RiMhas the same three
inputs,z; (t), z2(¢) andy(t — 1), and architecture 3-30R-10R-1L with outg)t).
(The notation 3-30R-10R-1L stands for RMLP with three igp®80 nodes in the
first hidden fully recurrent layer, 10 nodes in the secondéidfully recurrent layer,
and one linear output node.) It has 1441 weights. Valueg‘aindj are scaled
to be approximately within the rangel.0. One epoch of training consists of the
following steps. First, we randomly choose 20 segments 40 dnsecutive points
each within the time series of 128,000 points. The initiapéfhts of each segment
are used to let the network develop its stapemfingoperation) from their initial zero
values, rather than for training weights. Next, we applyZBiestream global EKF to
update weights, with derivatives being computed by BPTY.(48e use20 x 1000
points for training in each epoch. Our training sessiorslést 1620 epochs, during
which each data point was presented to the network approsiyn250 times. The
first 600 epochs are carried out with the param&gr= 100 (measurement noise
or inverse learning rate) and the paraméper= 0.01/Ry. The process noisg is
decreased t0.003/ Ry and0.001/ R, at epoch numbers 601 and 1401, respectively.
The RMS error attained after 600 epochs of training is equ@b273, and itis equal
t0 0.020 by the end of training [23]. The final network is tested on maaw time
series 128,000 points long (examples of totally new quaxdfanctions) resulting in
RMS errors of less thdt.025. Figure 1.1 illustrates typical behavior of the trained
network on a test time series. Just after the function chaagers, the network
makes relatively large errors. It requires presenting S0rgdes of the new function
to the network to reduce the error to an acceptable level.
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Fig. 1.1 Typical behavior of the trained network during testing. Agment of the test time
series with two different quadratic functions is shown. Tamget is solid, and the network
output is dashed. The function change is clearly visiblee Transient subsides within 50
example presentations.
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Fig. 1.2 The absolute pointwise error averaged over 128 functionghi® 1000-example
segment for a typical test time series. For each point in ¥@0nple segment the absolute
instantaneous error was computed and averaged over aluh28dns.

We observe that, for this particular problem, node-decediflKF training seems
to result in much worse performance than that of the globdtidined RMLP (the
gradient descent seems utterly hopeless). Likewise, #isintly shorter truncation
depthh of BPTT(h) or a substantially smaller RNN also appears tobefficient to
deliver acceptable performance.

In Figure 1.2 we show the absolute instantaneous errorgedi@aer 128 functions
for the 1000-example segment. The average error is &bbaftter presentation afd
examples. It decreases significantly to alib01 after presentation of 100 examples.
Itis clear that the network spends a fairly significant nundfeexamples to figure
out what function it deals with, but eventually results incd steady state solution.

It is interesting to contemplate application of DAC to thi®lplem. First, we
note that it may be necessary to have a critic with as many asigfuts (one per
each recurrent node of the RMLP). Second, we may need to use posverful
procedures for both the critic and the network training beeahe gradient descent
does not suffice. And we also need to decide how to treat tHéaestsa, b, ¢, d, ¢, f:
whether 1) to use them as inputs to the critic, or 2) interfirein as disturbances
and ignore them, or 3) use a separate critic for each type adimgtic functions.
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The second option might result in an insufficiently accucaitic, whereas the third
option could be impractical. The first option offers a traffibetween critic accuracy
and complexity of training.

1.7 CONCLUSION

We demonstrate that BPTT and DAC are closely related. Thibles us to establish
a common framework for comparison of the two methods feaguti) analysis of
critic representation, 2) a hybrid for smooth integratidlB®TT and DAC, and 3)
computational cost comparison. In our framework, both meéshare considered in
application to a heterogeneous recurrent network subgpesisential modules of the
control system, i.e., plant, its model, reference modelfaedback controller. This
viewpoint is immediately applicable to modeling problemswhich the use of RNN
is advantageous. We also propose avenues for future cotiveastudies.
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