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1.1 INTRODUCTION

Heterogeneous ordered networks or, more specifically, recurrent neural networks
(RNN) are convenient and flexible computational structuresapplicable to a broad
spectrum of problems in system modeling and control. They require efficient algo-
rithms to achieve successful learning for the given task. Backpropagation through
time (BPTT), henceforth assumed to be its truncated versionwith a sufficient depth
of truncation, and derivative adaptive critics (DAC) are two seemingly quite different
approaches to solve temporal differentiable optimizationproblems with continuous
variables. In fact, both BPTT and DAC are means to obtain derivatives for training
parameters of RNN.

We show that both approaches are related. BPTT is used in DAC to obtain targets
for derivative critic adaptation in RNN training. DAC can beinterpreted as a method
to reduce the need for introducing a potentially large truncation depth in BPTT by
providing estimates of derivatives from the future time steps. This realization allows
us to establish a common framework for comparison of derivatives of BPTT and
those of DAC and summarize their differences. The main difference stems from
the fact that derivatives provided by DAC are learned via a representation (critic
network), and such derivatives can be averages of derivatives provided by BPTT. It
should be kept in mind that some derivative averaging naturally occurs in the training
process during which RNN parameters are being adjusted (usually incrementally).

�
Portions of this chapter were previously published in [7], [9], [12], [13], [14] and [23].
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Depending on the problem setup and critic training mechanics, DAC derivatives may
or may not be sufficiently accurate for successful RNN training.

Both BPTT and DAC must also be equipped with a parameter adjustment rule
or algorithm. BPTT equipped with various forms of the Kalmanfilter algorithm
has shown its power in tackling difficult RNN training problems. Training a single
RNN to model or control multiple systems with its weights fixed upon completion
of the training is particularly remarkable because it defiessuccessful applications of
feedforward or time-delay NN. In spite of several successful demonstrations of DAC
and in contrast to BPTT, DAC has mostly been restricted to training feedforward NN
(neurocontrollers) using a gradient descent rule. It is crucial for DAC to reinforce
itself with more powerful architectures and training algorithms to be capable of
solving truly difficult optimization problems.

Sufficiently detailed comparisons between BPTT and DAC as training approaches
to RNN are essentially lacking. Careful comparisons shouldbe based not only
on the results of comprehensive testing of the solutions butalso on assessments of
the computational requirements of the approaches. It is noteworthy that the critic
network is discarded as soon as RNN parameter training is finished, which is wasteful.
Furthermore, comparisons for a clearly formulated and easily accessible modeling
problem may be preferable over comparisons for control problems because modeling
problems usually have a relatively simple setup. We suggesta nonstationary system
modeling problem as a possible benchmark for comparing BPTTand DAC.

This chapter is structured as follows. In Section 1.2 we showa relationship
between BPTT and DAC that gives rise to a common framework forcomparison of
the two methods. In Section 1.3 we discuss critic representation. In Section 1.4
we propose a hybrid between BPTT and DAC which can be useful for comparative
studies. In Section 1.5 we emphasize the need to base comparisons of the two
methods not only on the final result but also on computationalrequirements for each
method. We discuss two classes of challenging problems which could form a core of
future comparative studies of BPTT and DAC in Section 1.6.

1.2 RELATIONSHIP BETWEEN BPTT AND DAC

We would like to show how BPTT is used within the DAC approach.We consider
differentiable optimization with criterion
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where� � 
 � � is a discount, depth (horizon)� is as large as required,
�� ��� is

an instantaneous cost (or utility) function. Without loss of generality, each
�� is

assumed to be a function of state variables of the followingorderedheterogeneous
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network
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where�� ��� � �
,
����� � �	

, � is a number of external inputs����� to the network,
and� � � �

��	���� �
�

is a set of indexes for which
�� are defined. The

execution order is assumed to be from node 1 to node
�

. We want to determine
parameters


��� �
 	��� delivering a minimum to (1.1) in the mean square sense in the
domain of interest� � �� � �.

Ordered derivatives [1] of the criterion
�

with respect to�� are determined by
taking into account (1.2)–(1.4):

� �� ��� � � �� ��
(1.5)

where

� � �������� ���
��� ��� (1.6)
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� �� �� � �� (1.8)

Equation (1.5) is run backwards inbothspace (
� ���� ��� ���� �) and time (

� � ��
�������� �����) initializing

� �� ������� � �and

	��� ������� �
	��� �����.

The expression for
� �� ��� consists of three components. The term

�
of (1.6) is

an explicit derivative of������ ��� with respect to�� ��� (if exists). If the node��
feeds other nodes through feedforward connections, then

�
of (1.7) should reflect all

such connections. Likewise,
�

of (1.8) reflects all time-delayed connections through
which the node�� feeds others.

Ordered derivatives with respect to parameters� and�	
are determined using� �� ��� and (1.2)–(1.4):

� 
��� ��� � � �� ����������� ����
�������� �� ��� (1.9)

� 
	��� ��� � � �� ����������� ����
�������� �� �� � �� (1.10)

Equations (1.5)–(1.10) are called BPTT [1]. Here they express a truncated form of
BPTT, henceforth denoted as BPTT(h) [2].
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Updates of parameters� and�	
can be made by using������� � 
��� ��� and

������� � 
	��� ���, respectively, where
�� ���

are suitably chosen time steps of the
trajectory (e.g.,

�� � �
,
�� � � � �, another possibility is

�� � �� � �
).

We now consider another optimization criterion (cf. (1.1)):

����� � �� ��

����
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���� � �� (1.11)

The criterion
�

of (1.1) is an approximation of
��

which becomes increasingly more
accurate for sufficiently large� and
 � �. On the other hand, the criterion (1.11) is
approximated by

�
critic in approximate (heuristic) dynamic programming [3].

Let us examine derivatives of
�� ���

with respect to�� ��� taking into account
(1.2)–(1.4):

��� ��� � �� �� � ���
(1.12)

where

�� � �������� ���
��� ��� (1.13)
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��� �� � �� (1.15)

where
��� � �������. Note that equation (1.12) isnearly identical to (1.5) express-

ing backpropagation between two consecutive moments in time (BPTT(1)) [4].
(Replacing

��� ��� and
��� �� � �� in (1.12),(1.14),(1.15) with

� �� ��� and
� �� �� � ��,

respectively, makes them identical.) Equations (1.9)–(1.10) may also be used for
minimization of (1.11) except that

� �� ��� should be replaced by
��� ���.

In a popular DAC approach calleddual heuristic programming(DHP), each
��� is

to be approximated by output
�� of

�
critic [3]. One can demonstrate that traditional

DHP equations (see, e.g., equations (7) and (8) in [5]) are a special case of (1.12). The�
critic is expressed as a suitable representation��	�����
 �with outputs

�� ��� and
adjustable weights�
. The critic is supposed to be trained with the error between��� ��� from (1.12) and its corresponding output

�� ���. (Each
��� �� � �� in (1.15) is

replaced by the appropriate output
�� �� � �� of the critic.)

We just revealed the similarity between a particular form ofBPTT and a popular
DAC formulation for the network (1.2)–(1.4), but this is also valid for much more
general networks (see [4] and Section 1.4 of this chapter) and systems including those
with distributed parameters [6]. Recognizing this similarity enables us to create a
hybrid of BPTT and DAC in which DAC may act as a means to reduce depth� in
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BPTT(h) by providing estimates of derivatives from the future time steps (see Section
1.4).

Many researchers have pointed out similarities between BPTT and the Euler-
Lagrange/Hamiltonian formulation (see, e.g., [19], [17]). The expression (1.12)
or (1.5) may be recognized as the Lagrange multipliers (partial derivatives of a
Hamiltonian with respect to state variables) for the network (1.2)–(1.4) with the
criterion (1.11) [18], [17]. The derivatives (1.9), (1.10), or partial derivatives of a
Hamiltonian with respect to controls� and�	

, can be used to update incrementally
the network parameters in order to minimize the criterion (1.11).

We describe a typical application of BPTT to functional minimization. First, we
initialize the state variables of (1.2)–(1.4). We run (1.2)–(1.4) forward for one or more
time steps and compute the appropriate values of

���� � ��������� ��� ����������
,

where
�

is a known function of state variables and their targets (e.g.,
�

is a tracking
error). We then compute the derivatives according to (1.5) by backpropagating from� � �

to
�

(BPTT(k)) and perform the incremental updates based on (1.9) and (1.10).
Compared to this description of BPTT application, the DAC approach requires the

utilization of only two adjacent time steps,
�

and
� � �, according to (1.12). We run

(1.2)–(1.4) forward for one time step, obtain
����

, and invoke (1.12) to prepare for
critic training. The right-hand side of (1.12) serves as both the set of instantaneous
targets for critic training and the input to the parameter updates (1.9) and (1.10) (in
place of

� �� ���). If gradient descent is employed, critic training is also incremental,
and it may be based on the expression

���� ��� � �� ������������ , where�
 is a vector
of critic weights.

For either the BPTT or the DAC approach, we continue the training process for
the next point

�� �along the trajectory. We can train for a segment of the trajectory,
then reinitialize the state variables (1.2)–(1.4) and moveon to training on another
segment of the trajectory. Meanwhile, our weights�,�	

(and�
 for DAC) serve
as the long-term memory, incorporating the effects of adaptation averaged over many
instances. For an adequately chosen training strategy, we can reasonably expect that
application of BPTT or DAC will result in the triplet

����	��
�� such that
�

is
approximately minimized over�. As with any numerical and (generally) nonconvex
optimization, all we can guarantee is that the proper training process should result in
attaining a local minimum of

�
(most of the time such a minimum is satisfactory).

What is proper remains problem dependent, but determining the training strategy
includes choosing training parameters (e.g., learning rates) for updates based on (1.9)
and (1.10), the length and the assignment of trajectory segments and the initialization
of state variables. For DAC we need to add the choice of critictraining parameters
and the coordination scheme between critic and network training processes [15], [4].

The training process based on BPTT also resembles a form of model predictive
control (MPC) with receding horizon (see, e.g., [20]). As inthe MPC, we run
the system forward for several time steps collecting valuesof

�
. Our horizon

(
� � �

) recedes once the weight updates are carried out except thatour updates are
incremental, not “greedy" as in the receding-horizon MPC.

We summarize the differences between derivatives obtainedby BPTT and those
of DAC [7]:
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1) BPTT derivatives are computed directly, while critic derivatives are computed
from a representation, e.g., a neural network, with its parameters to be learned.
2) BPTT(h) derivatives generally involve a finite time horizon (equal to the chosen
truncation depth�), while critic derivatives are estimates for an infinite horizon; it
is not uncommon, however, to employ a discount factor in (1.11), which may be
interpreted as a gentle truncation (
 � �). Large� are permissible because BPTT
computations scale linearly with�, but frequently small� (� � ��) suffice.
3) BPTT derivatives necessarily compute the effect of changing a variable in the
past, while a derivative critic may be used to estimate the effectof a change at the
present time. If critics are used only to adjust network parameters, this distinction
is irrelevant . On the other hand, recognizing it poses interesting possibilities for
alternative or supplementary methods of control, as discussed in Section 6 of [7].
4) A BPTT derivative is essentially exact for the specific trajectory for which it is
computed, while a critic derivative necessarily represents an average of some kind,
e.g., an average over trajectories that begin with a given system state. Such an
estimate may be quite accurate (if the critic has been well adapted or trained and
if exogenous inputs to the system are either small or statistically well behaved) or
may be essentially worthless (if future operation is completely unpredictable due to
arbitrary inputs or targets).

Item 4 is discussed in more details in the next section.

1.3 CRITIC REPRESENTATION

Critic predicts the effect of a change in a variable of the system or network (1.2)–
(1.4) on its future operation. Critic is thus a function of the system state, and it is
important to include in critic representation as much information as available about
the system. What is encompassed by the system depends on the context. In the
context of indirect model reference adaptive control [8], the system is interpreted
quite generally as consisting of: 1) controller network, 2)reference model, 3) object
to be controlled (plant), and 4) model of the plant. State variables or their estimates
of all of these components should be provided as inputs to the critic (the plant model
often serves as the plant state estimator). However, the only adjustable quantities are
the weights of controller and (sometimes) parameters of themodel.

It is convenient to consider all main components of the control system as parts
of a single heterogeneous recurrent network, perhaps similar to (1.2)–(1.4). This
viewpoint equates control problems with modeling problems(employing RNN) since
both types of problems feature feedback.

In the modeling context,we suggest connecting all recurrent nodes or time-delayed
elements to the critic because they reflect thestateof the system. In the example
below we illustrate that adding a state variable is indeed beneficial [4].

Consider a system

��� � �� � ���� �� � �������� (1.16)
���� � �� � ���� �� � ��������� (1.17)
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where� � �� � � �, � � ��� � � �, and���� ������ are i.i.d. random variables with
the same mean����. The system (1.16)-(1.17) is a simple illustration of the network
(1.2)–(1.4), with the controller part expressed as (1.16).The equation (1.17) is an
example of the reference model, and it describes the desiredbehavior of (1.16).

The minimization criterion is

���� � ��
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������ � �� ���� � ����
(1.18)

Differentiating
����

with respect to���� yields

� ���� � �

���

�


��� ���� � �� ����� � ���

(1.19)

Substituting (1.16) and (1.17) into the equation for
� ���� above, averaging for all���� ��� and recognizing appropriate power series results in
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���� (1.20)

where� � ���� � is an (ensemble) average ordered derivative of
����

with respect
to ����.

We wish to show that a linear
�

critic is sufficient to recover� � ���� �. The
critic representation is

���� � ����� ������� ��
(1.21)

where
�

,
�

, and
�

are the critic weights. Similar to (1.12), we can write

���� � �� ���
(1.22)

where

�� � ���� ������ (1.23)
�� �



��� � ����

�� � ������ (1.24)

Here (1.23) corresponds to (1.13), and (1.24) corresponds to (1.15) (there is no
feedforward part like (1.14)). Substituting the representation (1.21) into the equation
for

����
above yields����� ������� �� � ���� ������

�


������ � �� ������ � �����

(1.25)
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When the weights converge they become� � �
��


�� (1.26)� � � �
��


��� (1.27)

� � ����
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� �
��


�� � �
��


���� (1.28)

which, incidentally, indicates that� � ���� � is restored exactly.
A reasonable question to ask is what happens if we do not have access to state(s)

of the data generator/reference model��. Such situation may happen when training
a recurrent network from a file of input-output pairs. We suggest approximating
the states of the missing reference model by its time-delayed outputs and provide
these estimates as inputs to the critic. (The order of the system which produced the
training data might be known and used to determine how many time-delayed inputs
to employ.)

One can certainly argue that even a simpler critic representation lacking some
difficult-to-find inputs might suffice for a problem at hand. However, we should keep
in mind that excluding a state or its estimate from the criticinput set effectively turns
such a state into a disturbance which tends to decrease the likelihood of getting an
accurate critic and handicaps the critic as compared to BPTT.

Many representations for critics are possible. For example, each output can be a
separate function or neural network

�� �	�����
 �. In the example above we used
the linear critic. Extremely simple (bias weight only) representations are also viable
for some problems [9], as illustrated below.

Consider the following system

�	��� � ����� ��� (1.29)
�� �� � �� � �	��� (1.30)
�� �� � �� � �������� ��	�� � �� ����� �� � �� � ��� ��� (1.31)

or, in a compact form,

���� � �� � �������� � ��� ������ �� � �� � ������ �� � �� (1.32)

The reference input���� has a piecewise constant pattern with a long enough dwell
time (e.g., 50 time steps). The goal is to adjust the parameter

�
so as to minimize���� �����������, where��� ��� � ����, in the mean square sense in which case

� � �.
BPTT(2) must be used to accomplish this (the training process diverges if BPTT(h)
with � � �

is used).
We show how the use of two DAC (

�
) critics eliminates the need for more than

the (computational) equivalent of BPTT(1). The BPTT equations for this system are
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similar to (1.5):

� �� ��� � ������ ���� �� �� � �� (1.33)� �� ��� � ��� �� �� � �� (1.34)� �	��� � � �� ��� �� ���� � �� (1.35)

where���� � � � �� ��� � ������. In the first equation
����� is equivalent to

(1.6), and���� �� �� � �� is equivalent to (1.8) (it is obtained from the equation for�� �� � ��). The equation for�� �� � �� is also used to obtain
� �� ��� and

� �� ��� in
the expression for

� �	���. The last equation (for
� �	���) is obtained by combining� �	��� � � �� �� � ��with

� �	�� � �� � � �� �� � �� at time
�
.

The BPTT equations above are to be repeated two times (BPTT(2)) to produce� �	 suitable for updating
�

correctly:

� ���� � � �	������� ��� (1.36)

According to (1.12), we replace
� ���� � �� and

� ���� � �� with
�� �� � �� and�� �� � ��, respectively, and obtain

������ � ����� � ������� � �� (1.37)������ � ������ � �� (1.38)� �	��� � ��� ��� � �� �� � �� (1.39)

where
� �	��� is used in (1.36) to update

�
. It turns out that the bias-weight-only

critics suffice for this problem, and they may be updated as follows

�� � � ����� ��� � ��� (1.40)�� � � ����� ��� � ��� (1.41)

where learning rate
� � � is reasonably chosen, and the C-language notation “

��
”

indicates that the quantity on the right hand side is to be added to the previously
computed value of the left hand side. It can be shown that performing updates of the
critics and the weight

�
results in convergence of

�
to its desired value of unity if the

system is sufficiently excited by����.
The system (1.32) could easily be changed to represent� delays which would

either require BPTT(D) or� critics trained in a fashion similar to this example.
As illustrated with the example (1.29)–(1.41), even a trivial critic can be effective

and competitive with BPTT when dealing with a predictable system. (A good
example of a predictable system is a system with a constant (or fixed-statistics
random) disturbance.) The system above is predictable because it is driven by a
slowly-varying excitation. However, any critic-based training approach will have
difficulties if the system is subject to���� changing significantly at every time step.
For this and other systems with recurrence and block delays affected by fast-changing
disturbances or excitations it is better to use a hybrid of temporal backpropagation
[10], BPTT and, possibly, DAC proposed in [11].
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1.4 HYBRID OF BPTT AND DAC

Here we provide the reader with C-language-style pseudocode describing a hybrid
of BPTT and DAC which is less efficient in handling block delays than that in [11]
but easier to implement.

The forward equations for an ordered network with� �� inputs and� ���outputs
may be expressed very compactly in a pseudocode format [13].Let the network
consist of� ����� nodes, of which� �� serve as receptors for the external inputs.
The bias input, which we denote formally as node 0, is not included in the node
count. The bias input is set to the constant 1.0. The arrayI contains a list of the
input nodes; e.g.,�� is the number of the node that corresponds to the	th input, in� .
Similarly, a list of the nodes that correspond to network outputs out
 is contained in
the arrayO. We allow network outputs and targets to be advanced or delayed with
respect to node outputs by assigning a phase�
 to each output. For example, if we
wish to associate the network output� with the output of some system five steps in
the future, we would have�
 � �

. Node
�
receives input from� 
�����other nodes

and has activation function
�� ���; � 
����� is zero if node

�
is among the nodes

listed in the input arrayI . The arrayc specifies connections between nodes;���� is
the node number for the	th input of node

�
. Inputs to a given node may originate

at the current or past time steps, as specified by delays contained in the array�, and
through weights for time step

�
contained in the arrayW

���
.

Prior to beginning network operation, all appropriate memory is initialized. Nor-
mally, such memory will be set to zero. (In some cases memory that corresponds to
the network initial state may be set to specified values.)

At the beginning of each time step, we execute the following buffer operations on
weights and node outputs (in practical implementation, a circular buffer and pointer
arithmetic may be employed). Here

���� is the largest value of delay represented in
the arrayd, and� is the truncation depth of the BPTT gradient calculation described
in a pseudocode form later.

��� � � � �� � ����� �
��� �� � �������� �� ��� �

����� � ���� � �� (1.42)
�� ���� � ����� � �� (1.43)

� � ��� �� !��"  �
� � ��� � !��"  �

Then, the actual network execution is expressed as

��� � � � �� � �� �

�#$ ��� � %&���� (1.44)
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�
��� � � � �� � ����� �
�� � 
����� � � �

�� ��� � �
�� ��������	 
��� ������	
 �� � ���� ��� ��������	 �
��� ��� � ���	
 �� � ���� �� (1.45)

����� � �� 
������ (1.46)

�
�
��� " � � �� � ��� � ���
 �� � �
� � ��� ��� (1.47)

�

Most commonly, we take the (differentiable) activation function
����� to be either

linear or a bipolar sigmoid, though we also can make use of other functions, e.g.,
sinusoids, for special purposes. In the pseudocode above, the top portion of the
right-hand side of (1.45) is invoked whenever the node

�
performs a summation of

its inputs weighted by the appropriate elements of�. The bottom portion of the
right-hand side of (1.45) is invoked if the node

�
is a product (multiplicative) node.

The pseudocode above is very general, and it can be used to describe a great deal
of neural and non-neural computational structures including (1.2)–(1.4).

In the pseudocode for a hybrid ofaggregateBPTT [12] and DAC below,
�p�

denotes an ordered derivative of
	� �	�� �� 
 �� ��
 �� � � � �� ��� (cf. (1.1)), where�
 is a component of the utility vector� usually expressed as a deviation between

appropriate target and output of the network. This pseudocode can be invoked at
each time step only after the completion of forward propagation at time step

�
.

��� " � � �� � ��� �
��� � � � �� � ����� �
��� � � � �� � 
����� �

�p
��� � � (1.48)

� � ��� � !��"  �
��� �� � � �� �������� �

�p�� ���� � � (1.49)
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�� �� � � �

�p�� ���� � �
� ���� (1.50)

�
� � ��� �� !��"  �
� � ��� � !��"  �
��� �� � � �� � �

�	 � ����� ��	 ��� (1.51)�
 ��	� � ���
 ��	 � �
� �
���
 ��	 � �
� (1.52)

�p��� ��	� � � ��
 ��	� (1.53)

��� � � � ����� �� � �
�� � 
����� � � �
��� � � � 
����� �� � �

� � ���� (1.54)�� � �����	 � ���� ��� (1.55)
�p�� ���� � �


�
�	��p�� ��	�� �� ��� ��	��

�
� 
�����	��� ������
�	�
 	���
��
 ��	�� ���	
 ��	 � ���
�� (1.56)

�p
��� � � �p����	�� �� ��� ��	��
�

� �� ������ ������
�	�
 	���
��
 ��	� � ���	
 ��	 � ���
�� (1.57)

� � ��� � !��"  �
�

� � ��� � !��"  �
� � ��� �� !��"  �
� � ��� " !��"  �

The loops for (1.48) and (1.49) serve as initializations. Weuse
�
� to denote the

output
�

of derivative critic for component� of the utility vector�. This is done to
avoid confusion with

�� discussed above.
By virtue of “

� �
” notation, the appropriate derivatives are distributed from a

given node to all nodes and weights that feed it in the forwarddirection, with due
allowance for any delays that might be present in each connection. The simplicity
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of the formulation reduces the need for visualizations suchas unfolding in time or
signal-flow graphs.

If the node
�
is one of the summation nodes (as in the top portion of the right-hand

side of (1.45)), then the derivatives with respect to�� and

��� are computed accord-

ing to the top portions of the left-bracketed terms in (1.56)and (1.57), respectively.
For a multiplicative node (as in the bottom portion of the right-hand side of (1.45)),
these derivatives are computed according to the bottom portions of the left-bracketed
terms in (1.56) and (1.57).

DAC errors and targets are computed after completion of the pseudocode above:

��� " � � �� � ��� �
��� � � � ����� �� � �
�� � 
����� � � �
��� � � � 
����� �� � �

� � ���� (1.58)�� � � � � � ���� (1.59)
��
� ���� � �p�� ���� (1.60)
�
� ���� � ��
� ���� � �
� ���� (1.61)

� � ��� � !��"  �
�
� � ��� � !��"  �

� � ��� " !��"  �

A special case with� � � and
���� � � is what may be called the pure DAC

algorithm (cf. equation (1.12)). However, there is one crucial difference. In the
usual formulation (1.12), derivative critics designated by

�
are trained to estimate

derivatives of
��

, including the contribution from the current step,
�
. The pseu-

docode above separates the estimate of the future from that of the present, and it is a
generalization of the algorithm proposed in [14] (cf.

�
critics in [14]).

The difference between the values of the two critic forms is precisely the quantity
that results when the derivative of error at each output node

���
����� ��� is backpropagated

to ����. (In the simple case of a single-node network, the new critic
����

is related
to the usual critic as follows:

���� � ���
����� �����

.) The
�

critic is thus not required
to estimate quantities which can be computed exactly. Limited experimentation
suggests that the use of

�
critics may lead to faster training than that of

�
critics.

Critic can be trained using the error (1.61). For example, a gradient descent update
of critic weights may look like this:

�

 � � �
�
� �� � ���
�
� �� � ��
��

 (1.62)
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where�

 is a vector of weights of the critic�, and
�
 � � (� � � and

���� �
�). (We assume in (1.62) that an individual critic is used to approximate ordered
derivatives of the discounted sum of

��
 with respect to node output�� . One can
also combine all such critics into one network.) The critic outputs may correspond to
different time steps when

���� is different for different RNN nodes, as follows from
(1.61).

No critic training happens if all critic outputs
�
� and their learning rates are fixed at

zero. In such a case, our pseudocode amounts to carrying out the aggregate BPTT(h).
If the gradient descent training of weights� is desired, then we use

�p
��� of (1.57)
to adjust


��� ���. For extended Kalman filter (EKF) training [13], the error injection
(1.53) should be modified for consistency with mechanics of the EKF recursion (see
[12]).

If � � � and critic training is enabled, then (1.62) may be invoked totrain the
critic (alternatively, the EKF algorithm can be used). While limited experiments with
utilizing derivatives (1.57) in conjunction with EKF updates have been carried out
successfully, further experimentation is needed since such derivatives are different
from those usually employed by the EKF, especially when backpropagation to the
RNN weights, as in (1.57), is performed only for

�	 � � � � [14].
Concluding this section, it should be mentioned that our hybrid can be used

even when components of� are not defined for all time steps. Furthermore, a
differentiable approximation of�may be used if the true� is not well defined. Such
an approximation capturing an essential relationship between the network variables
and the desired instantaneous utility or the final outcome (e.g., in a game setting)
could be learned in a separate training task prior to invoking the hybrid equations of
this section [7].

1.5 COMPUTATIONAL COMPLEXITY AND OTHER ISSUES

We wish to compare the overhead associated with computations of
� 
��� and

�� for
DAC with the cost of computing

� 
��� for BPTT(h).
We assume that the cost of forward and back propagations through a network is

dominated by a linear term proportional to the number of its weights. For a critic
with

��� weights, the cost of carrying out static BP (BPTT(0)) is
����� �. If we

use total
�
 data points to train a critic, the critic training cost is proportional to both��� and
�� because backpropagation through a RNN with

�� weights to obtain
critic targets (1.61) has

�����
complexity for each of

�
 data points. Training
a network with DAC on

��
data points incurs a cost proportional to both

�� and��� because the critic is to be executed with
����� � complexity for each of

��
data points. Thus, the total computational cost of DAC algorithm is proportional to��
 ������� and

��
 ������.
The cost of BPTT(h) is

������. If we use
��

data points to train the network,
then the total cost is proportional to

�����.
Our simple analysis does not take into account the cost of updating� in both the

network and the critic which can be significant, especially for second order methods.
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Let us assume that the network weight updating incurs the same cost for both methods.
If

���
 ������� � � ��
 ������ ��
 update cost � �
�����

(1.63)

where�
�� �

� are some problem-dependentconstants, then the DAC approach is more
efficient computationally than the BPTT(h) approachprovided that the updates of
� result in the same network performance upon completion of its training.

It appears possible to simplify the DAC approach for some problems, e.g., when
the system is affine in controls�:

	�� � �� � ��	���� ���	�������� (1.64)

where
�

is a vector function,
�

is a control matrix. If
����

is quadratic in�,
i.e., includes the term��

��������, � � �, then implementable parameterization of
the optimal controller may be expressed using the critic� (vector) as the following
product

�
��� � ���	�� �	������	�����
 � (1.65)

Thus unlike the usual DAC approach featuring training of twoentities (critic and
controller), no controller training is necessary here. In such a case the expression for
computational cost comparison above is changed to

��
��� ��
 update cost � �
����� (1.66)

where
�

is another constant.
Derivatives from DAC (values of

�� or
��) represent averages of derivatives

� ��,
as shown in the example (1.16)–(1.28). That example also touches upon the following
important issue. To obtain the accurate average� � ���� �, we have to wait until
convergence of critic weights

�
,
�

and
�

. Even more importantly, the parameters�
and

�� must be kept fixed. If training of
�

is in progress (or
�� is changing),

critic accuracy will also depend on how these parameters arebeing changed, because
every change in

�
or

�� results in a change to the system or network to which the
critic is being adapted. In a general case of many weights changing in a network,
if their updates are to be closely interleaved with critic updates, a relatively simple
critic representational structure might be warranted, so that the critic can be quickly
adapted to changes in the system.

The proper coordination of critic training with network (controller) training has
been a research topic. We have found that, in some cases, it ispossible to update both
network weights and critic weights at every training step, although such a strategy
may not work well in the presence of network weight updates oflarger size, as
frequently result from second order training procedures. Alternating the training
processes in blocks is a reasonable option, since holding the network fixed while
adapting the critic generally leads to greater critic accuracy. The drawback is that
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once the critic is held fixed and the network is changed, the critic may become very
inaccurate and compromise training with poor derivatives.Hence a better approach
might be to carry out the training processes concurrently but to monitor the critic error
(the error used to update the critic) and to suspend network training for some number
of steps if a specified critic error is exceeded. Of special interest are case studies in
[15], [16] where various alternatives for coordinated updates of critic and network
have been analyzed. One alternative includes training of more than one critic (termed
“shadow critic/controller" method), with periodic alternations between the critics to
improve convergence. Yet, no comparison from the standpoint of computational cost
akin to the analysis of this section have been made.

Efficiency of critic adaptation is paramount because the critic is discarded as soon
as the controller training is finished. Interestingly, veryfew attempts have been
made to analyze critic training accuracy or critic usability after obtaining the required
controller. As for the latter, we discuss the use of a critic to analyze Lyapunov
stability of the closed-loop system in [21].

1.6 TWO CLASSES OF CHALLENGING PROBLEMS

BPTT(h) equipped with EKF algorithm [13] has shown its powerin dealing with
difficult training problems requiring the use of RNN. Recently progress has been
made in nonlinear Kalman filters in a joint estimation framework with promise to
eliminate not only BPTT but also the necessity to calculate derivatives in the system.
Currently the new method’s only drawback is extra complexity as compared to that
of the standard EKF method [22].

More challenging of RNN training problems solved with Kalman filter methods
can be categorized in two broad classes [23]. Class I encompasses neural approxi-
mation of multiple input-output mappings of the following form

����� � �� ��� �� � ���	� ���� (1.67)

where
��

is a discrete or continuous set of mappings with the output vector��
���

at
time

�
, 	� is a vector of inputs, and�

�
is the mapping’s state vector (evolution of��

may be represented by a separate equation which is avoided inour notation as it is
assumed to be a part of

��
). The RNN approximating�� for all

�
in the mean square

sense has the form �
���� � � ���� � ���	����� (1.68)

where� is its state vector. Sometimes none of the mappings have states�
�
, as in [24]

and [25]. Furthermore, the input	� ��� may include the previous value of the target
output��

�� � �� to provide the network with appropriate context.
Class II includes problems in which accurate control of multiple distinct systems

�� (or plants) is required:
�
���� � ����� �� � ��� � ����� � ������ � ���	������ (1.69)
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Here the system’s output
�
���� should closely track the target output����� produced

by a reference model (e.g.,��
���

can be zero at all times, as in [26]). The input�
��� � �� of the controller RNN

�
may or may not include�

� �� � �� (or part thereof).
Another input	� ��� includes��

���
and, possibly, other external signals.

We briefly describe examples of class-I problems. In [27], a single RMLP with
three fully recurrent hidden layers (21 states) is trained to make good one-time-step
predictions of 13 different time series (periodic and chaotic). The fixed-weightRMLP
is demonstrated to be capable of good generalization to timeseries with somewhat
different sets of generating parameters as well as to those corrupted by noise. In
[28], achieving good one-time-step predictions of five different time series from a
two-hidden layer RMLP (14 states) via training is combined with two conditioning
tasks. The trained network must remember which of the two tasks it dealt with in
the past (Henon maps, type 1 or 2) in order to activate one of the two appropriate
output responses for the random input. This problem is impossible (or, at least, very
inefficient) to solve with feedforward network equipped with a tapped-delay line
because of the need to correctly maintain a potentially arbitrarily long response to
the random input.

Two problems below are examples of class-II problems. In [26], a two-hidden-
layer RMLP (14 states) is trained to act as a stabilizing controller for three distinct and
unrelated systems, without explicit knowledge of system identity. This problem, too,
has a feature which makes it very difficult (if not impossible) to apply successfully
a controller based on a feedforward network equipped with a tapped-delay line.
Specifically, the steady state values of controls for all three plants are quite different,
yet the stabilization is required around the same equilibrium point (the origin).

In [29], training an RMLP with 10 states is accomplished to achieve robust control
of more than 10,000 systems derived from a single nominal system by parametric
perturbations. The robustness results of RMLP-based controller are shown to be
much better than those of a controller based on a feedforwardnetwork.

These results obtained with BPTT(h) and EKF for clearly formulated and easily
accessible control problems may serve as benchmarks for future comparison studies
with DAC. Indeed, in spite of several successful demonstrations of DAC, they have
mostly been limited to training controllers based on feedforward/time-delay neural
networks using the gradient descent algorithm (see, e.g., [30], [31], [16], [32]), with
the notable exception of [33].

Both class I and class II represent problems that are important and frequently
observed in practice. For example, a physical system to be modeled or controlled
is usually known only to within parametric or structural (possibly time-varying)
uncertainties. (Such uncertainties amount to different, discrete or continuous sets
of mappings

��
and ��.) One approach is to employ an adaptive system whose

parameters would adapt in response to differences between the model and the reality.
Another approach discussed in this section is to employ a RNNwith fixedweights
whose recurrent nodes would act as counterparts of parameters of the conventional
adaptive system. This approach has an advantage of bypassing the thorny issue of
adapting weights on-line.
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In general, setup of class-II problems is more complex than that of class-I problems,
therefore we suggest to try comparative studies initially on problems of class I. They
share the same feature (feedback) with class-II problems due to the presence of
recurrent connections in the network. We discuss one of class-I problems below.

1.6.1 Learning all quadratic functions

The problem of learningall quadratic functions of two variables is proposed in [24].
The quadratic functions are����� � �����	���� � ������� ��� � �����	����� ��� ������	��� � ������ ��� � � ���

where ranges for�� ������ �� ���	��� are the same:������ ����. The index
�

(function index) changes discretely and much less frequently
than the index

�
(example index). A special form of RNN calledlong short-term

memory(LSTM) is explored in [24]. The LSTM has three inputs (�	���, �� ���
and ���� � ��), one output (

�����), and it consists of 5,373 weights. Its training
set is a time series of 128,000 points (128 different quadratic functions of 1000
examples each). The root mean square (RMS) error reaches����� by the end of
training. The final LSTM demonstrates the test RMS error of�����. It is claimed
that other recurrent networks can not match performance of LSTM on this and other
metalearningproblems.

We can interpret the quadratic function problem as a modeling problem of a non-
stationary time series. Indeed, only�	,�� and�� are observed, and

��� ������ �� ���
forms a hidden state changing every so often. We want to traina RMLP in the same
setting as that of the LSTM training experiment [25]. Our RMLP has the same three
inputs,�	���, ����� and���� � ��, and architecture 3-30R-10R-1L with output

�����.
(The notation 3-30R-10R-1L stands for RMLP with three inputs, 30 nodes in the
first hidden fully recurrent layer, 10 nodes in the second hidden fully recurrent layer,
and one linear output node.) It has 1441 weights. Values of�� and

�� are scaled
to be approximately within the range����. One epoch of training consists of the
following steps. First, we randomly choose 20 segments of 1040 consecutive points
each within the time series of 128,000 points. The initial 40points of each segment
are used to let the network develop its states (primingoperation) from their initial zero
values, rather than for training weights. Next, we apply the20-stream global EKF to
update weights, with derivatives being computed by BPTT(40). We use

�� � ����
points for training in each epoch. Our training session lasts for 1620 epochs, during
which each data point was presented to the network approximately 250 times. The
first 600 epochs are carried out with the parameter

�� � ��� (measurement noise
or inverse learning rate) and the parameter� � �������. The process noise� is
decreased to�������� and�������� at epoch numbers 601 and 1401, respectively.
The RMS error attained after 600 epochs of training is equal to ������, and it is equal
to ����� by the end of training [23]. The final network is tested on manynew time
series 128,000 points long (examples of totally new quadratic functions) resulting in
RMS errors of less that�����. Figure 1.1 illustrates typical behavior of the trained
network on a test time series. Just after the function changeoccurs, the network
makes relatively large errors. It requires presenting 50 examples of the new function
to the network to reduce the error to an acceptable level.
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Fig. 1.1 Typical behavior of the trained network during testing. A fragment of the test time
series with two different quadratic functions is shown. Thetarget is solid, and the network
output is dashed. The function change is clearly visible. The transient subsides within 50
example presentations.



xx SAMPLE SHORT VERSION OF TITLE FOR RUNNING HEAD

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

example index

av
er

ag
e 

ab
so

lu
te

 p
oi

nt
w

is
e 

er
ro

r

Fig. 1.2 The absolute pointwise error averaged over 128 functions for the 1000-example
segment for a typical test time series. For each point in 1000-example segment the absolute
instantaneous error was computed and averaged over all 128 functions.

We observe that, for this particular problem, node-decoupled EKF training seems
to result in much worse performance than that of the global EKF-trained RMLP (the
gradient descent seems utterly hopeless). Likewise, a significantly shorter truncation
depth� of BPTT(h) or a substantially smaller RNN also appears to be insufficient to
deliver acceptable performance.

In Figure 1.2 we show the absolute instantaneous error averaged over 128 functions
for the 1000-example segment. The average error is about���after presentation of��
examples. It decreases significantly to about����after presentation of 100 examples.
It is clear that the network spends a fairly significant number of examples to figure
out what function it deals with, but eventually results in a good steady state solution.

It is interesting to contemplate application of DAC to this problem. First, we
note that it may be necessary to have a critic with as many as 40outputs (one per
each recurrent node of the RMLP). Second, we may need to use more powerful
procedures for both the critic and the network training because the gradient descent
does not suffice. And we also need to decide how to treat the coefficients�� ������ �� �:
whether 1) to use them as inputs to the critic, or 2) interpretthem as disturbances
and ignore them, or 3) use a separate critic for each type of quadratic functions.
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The second option might result in an insufficiently accuratecritic, whereas the third
option could be impractical. The first option offers a tradeoff between critic accuracy
and complexity of training.

1.7 CONCLUSION

We demonstrate that BPTT and DAC are closely related. This enables us to establish
a common framework for comparison of the two methods featuring 1) analysis of
critic representation, 2) a hybrid for smooth integration of BPTT and DAC, and 3)
computational cost comparison. In our framework, both methods are considered in
application to a heterogeneous recurrent network subsuming essential modules of the
control system, i.e., plant, its model, reference model andfeedback controller. This
viewpoint is immediately applicable to modeling problems for which the use of RNN
is advantageous. We also propose avenues for future comparative studies.
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