
Feedback Neurocontrol of a Disease

Danil V. Prokhorov

Abstract— We consider a simple mathematical model of a dis-
ease. It includes four coupled nonlinear equations and four state
variables for pathogens, plasma cells, antibodies and patient
health indicator. Depending on initial values of state variables
(concentrations) and without control, the model exhibits at
least four possible classes of behavior. We treat the system of
equations from the standpoint of feedback neurocontrol. We
show that various feedback control strategies (due to injection
of therapeutic agents) are possible and effective. We also discuss
ways of making the “patient controller” more robust with
respect to realistic uncertainties.

I. INTRODUCTION

In an organism, a disease is often represented as a dynamic
process. Such a process usually begins with the growth of
pathogenic agents in strength and quantity. Depending on the
power of its opposition (natural antibodies and/or medical
treatment), the disease may result in the following four
outcomes. In subclinical and clinical cases, the pathogen is
destroyed, and the affected organ recovers fully, although
it takes longer for the recovery in the clinical case. In the
chronic case, the organ receives some permanent damage.
If the pathogen is too strong, or alternatively the natural
or artificial defenses are insufficiently powerful, then the
pathogen causes death of the organ.

Though there exists a body of literature about control of
drug delivery and healthcare process, etc. (e.g., [1], [2], [3],
[4]), it is interesting to consider unconventional methods of
controlling diseases. Here we study application of neural
networks as “patient controller”, i.e., the system which uses
quantities that can conceivably be measured in real time and
processes them to deliver the appropriate level of therapy.
Our model contains realistic but not specific features of
disease dynamics including an organ, an immune system and
a pathogen. We assume that therapeutic agents are idealized
in its influence on the disease. We also consider parametric
uncertainty of the disease model, as well as measurement
noise, which together add realism to our study.

We first describe the disease model (Section II), then
discuss the cost function to be minimized and our approach
(Section III). In Section IV we illustrate application of our
approach with several examples. All examples are representa-
tive of various feedback control strategies to treat the disease.

Danil V. Prokhorov is with Toyota Technical Center, Ann Arbor, MI
48105, USA (email: dvprokhorov@gmail.com).

II. DISEASE DYNAMIC MODEL

A simple disease dynamic model is introduced in [5]:

ẋ1 = (a11 − a12x3)x1 + b1u1

ẋ2 = a21(x4)a22x1x3 − a23(x2 − x∗2) + b2u2

ẋ3 = a31x2 − (a32 + a33x1)x3 + b3u3

ẋ4 = a41x1 − a42x4 + b4u4 (1)

where x1 is concentration of a pathogen, x2 is concentration
of plasma cells, x3 is concentration of antibodies (they
destroy the pathogen), and x4 is organ damage indicator.
While the original model in [5] is uncontrolled, we add
four control variables which correspond to application of
therapeutic agents. Thus, u1 is a pathogen killer, u2 is a
plasma cell enhancer, u3 is an antibody enhancer, and u4 is
a health enhancer which helps the organ to heal.

The “nominal” values of aij and bij are a11 = 1.0, a12 =
1.0, a22 = 3.0, a23 = 1.0, a31 = 1.0, a32 = 1.5, a33 = 0.5,
a41 = 0.5, a42 = 1.0, b1 = b4 = −1.0 and b2 = b3 = 1.0
(see [6]). The parameter a21 is the nonlinear function

a21(x4) =

{
0, if x4 ≥ 0.5;
cos(πx4), if 0 ≤ x4 < 0.5.

(2)

The state variables xi and controls uj can be assembled into
the state x and control u vectors, respectively. It should
be noted that both the state and the control vectors are
nonnegative. We denote x4 = 0 as the healthy organ state,
and x4 ≥ 1.0 as the organ death.

The equations (1) are coupled, with the most involved
equation being that of plasma cell dynamics (x2). Given
the initial concentration of the pathogen x1, the uncontrolled
disease model (uj = 0, ∀j) can exhibit up to four cases
of disease progression mentioned in Introduction. The ini-
tial populations of the plasma cells and the antibodies are
assumed to be constant. When x1(0) ≈ 1.5 we have the
subclinical case, requiring no therapeutic agent intervention.
The clinical case occurs when x1(0) ≈ 2.0. The organ can
still fully recover on its own. When the pathogen concentra-
tion increases to ≈ 2.6 the organ sustains some permanent
damage, while the production of antibodies is suppressed,
and the pathogen remains present in the body. Finally, if
x1(0) ≈ 3.0 the organ will die unless therapeutic agents are
applied effectively. These four cases are illustrated in Figure
1 for u = 0 over a reasonable period of time.

III. OUR APPROACH

In order to apply our previously developed gradient-based
methodology of neuroconrollers [7], [8] we first discretize
(1). For simple yet sufficiently accurate implementation, we

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

4652

0 500 1000
0

2

4

6

Time, × 0.01

P
at

ho
ge

n
x 1

0 500 1000
0

1

2

3

4

5

Time, × 0.01

P
la

sm
a

ce
lls

 x
2

0 500 1000
0

1

2

3

A
nt

ib
od

ie
s

x 3

0 500 1000
0

0.2

0.4

0.6

0.8

1

O
rg

an
 d

am
ag

e
x 4

Fig. 1. Disease progress when therapy is absent. The organ recovery
depends on the initial concentration of the pathogen x1. The subclinical
and clinical cases (solid and dashed lines, respectively) require no medical
intervention. The chronic case (dash-dotted line) may result in a permanent
damage of the organ, whereas the lethal case (dotted line) ends up in its
death.

use the first-order Euler method with the fixed step size of
0.01. We can then write the system in the general discrete-
time form

uk = g(b,xk,w)
xk+1 = f(a,xk,uk) (3)

where w is the vector of neural network weights.
Our performance measure to be minimized is

J =
〈 N∑

k=1

U(xk,uk)
〉

(4)

U(xk,uk) =
(
q1x

2
k,1 + q4x

2
k,4 + (5)

r1u
2
k,1 + r2u

2
k,2 + r3u

2
k,3 + r4u

2
k,4

)
∆t

where < · > denotes expectation with respect to x and,
possibly, a and b if they change with time; qi and rj are
positive weighting factors. The value of N is not defined
a priori. We want to have N as small as possible, while
achieving xN,1 ≈ xN,4 ≈ 0.0 and maintaining them near
zero for all times greater than N .

Backpropagation through time (BPTT) is an efficient
method of computing derivatives in general ordered compu-
tational structures including neural networks [9]. Derivatives
are to be used for parameter optimization. To distinguish
such derivatives from ordinary partial derivatives, we use the
Werbos notation in which F

q
z denotes an ordered derivative

of some quantity q with respect to z. To derive the back-
propagation equations, the forward propagation equations
of the closed-loop system (i.e., the discrete-time disease
model together with the neural network) are considered in
reverse order. From each equation we derive one or more
backpropagation expressions, according to the principle that
if a = z(b, c), then F

q
b += ∂z

∂b F
q
a and F

q
c += ∂z

∂c F
q
a. The

C-language notation “+=” indicates that the quantity on the

right hand side is to be added to the previously computed
value of the left hand side.

After running the forward propagation equations from k =
1 to k = N , we employ BPTT(N)1 to compute derivatives
F

J
w with the following algorithm:

1) Initialize F
J
w = 0;

2) Initialize k = N and F
J
xN+1,j = 0 for all j = 1, 2, 3, 4.

Initialize F
J
xk,j = 0 and F

J
uk,j = 0 for all j = 1, 2, 3, 4 and

k = 1, 2, ..., N ;
3) Compute for all j

F
J
xk,j + =

∂Uk,j

xk,j
(6)

F
J
uk,j + =

∂Uk,j

uk,j
(7)

4) Compute for all combinations of m = 1, 2, 3, 4 and j =
1, 2, 3, 4

F
J
xk,j + =

∂fm(a,xk, uk,m)
xk,j

F
J
xk+1,m (8)

5) Compute for all j

F
J
uk,j + =

∂fj(a,xk, uk,j)
uk,j

F
J
xk+1,j (9)

6) Compute for all combinations of m and j

F
J
xk,j + =

∂gm(b,xk,w)
xk,j

F
J
uk,m (10)

7) Compute for all j

F
J
w + =

∂gj(b,xk,w)
w

F
J
uk,j (11)

8) Decrement k : k = k − 1; continue from step 3 until
reaching k = 1.

The algorithm 1–8 described above is the main element of
our training procedure to obtain optimal w∗. We begin the
procedure by initializing weights w to problem-dependent
values which result in stable initial controls for some number
of time steps for a range of initial x(0) (in this problem it
is sufficient to initialize w to small random values in the
range ±0.1). Ordered derivatives F

J
w accumulated during N

loops through the steps 3–8 can be used to update weights
w. In this work we collect F

J
w from several trajectories

of length N beginning with random initial x(0), before we
update the network weights by a gradient-based method2.
After one update we begin the algorithm anew from step 1
until approximate convergence of weights.

When the model parameters a and b in (1) are known
with some uncertainty, we can apply what is called multi-
stream method [10]. In essence, it is training the same
NN simultaneously on several data streams generated by
models with different values of a and b. While conceptually
similar to training feedforward networks on small batches

1This is a form of BPTT truncated after N time steps.
2Though various algorithms can be used, we experimented successfully

with the steepest descent and the extended Kalman filter (EKF) algorithms.

4653

of data, the multi-stream training is especially effective for
networks with internal feedback. In some of our experiments
discussed below, we employ such networks and use separate
vectors F

J
w for data streams from different models of disease

dynamics to update the same vector of weights w.

IV. EXAMPLE THERAPIES

We discuss three examples below. The initial pathogen
concentration x1(0) in all examples is chosen such that the
untreated (uncontrolled) case would be lethal.

A. Scalar Controls

We first consider the simplest control strategy for (1) when
individual controls ui, i = 1, 2, 3, 4, are applied separately.
Our weighting coefficients qi and rj in (4) are set to the
unity (rj is one for the active control, and zero for the rest).

For all scalar control cases, applying the pathogen killer
u1 alone turns out to be the most effective way to fight the
disease. Figure 2 shows the disease progress in this case.
Using the algorithm of Section III with N = 300, we train
a feedforward NN with four bipolar sigmoidal nodes in its
only hidden layer and a linear positive output (its output is
zero if the total nodal input is negative). We can control the
process efficiency (how quickly the pathogen concentration
decreases and the organ heals) by increasing q1.

0 200 400 600 800 1000
0

1

2

3

4

5

Time, × 0.01

S
ta

te
s

0 200 400 600 800 1000
0

1

2

3

C
on

tr
ol

s

x
1

x
2

x
3

x
4

Fig. 2. Disease progress when the pathogen killer u1 is the only active
control. The initial pathogen concentration x1(0) in all Figures is chosen
such that the untreated (uncontrolled) case would be lethal.

When other controls u2, u3 and u4 are applied to (1)
separately, they are not as quick at healing the organ as
u1. This is understandable as they are indirect controls. For
example, the health enhancer u4 helps the organ to stay
healthy, so its immune system operates optimally.

B. Multiple Controls

From the standpoint of modern medical treatment, it is
important to consider the effect of complex therapeutic
agents, i.e., the agents which attack the disease through as
many channels as possible. In Figure 3 we show our results of

disease control with all control variables applied at the same
time ui, i = 1, 2, 3, 4. Our controller NN is recurrent. It has
one fully recurrent hidden layer consisting of four nodes and
four linear positive outputs. In our training algorithm we use
N = 800.

0 200 400 600 800 1000
0

2

4

6

Time, × 0.01

S
ta

te
s

10 20 30 40 50 60 70 80 90 100
0

5

10

15

C
on

tr
ol

s

x
1

x
2

x
3

x
4

Fig. 3. Our results with all the controls active and the full state feedback.
The bottom panel shows controls for the first 100 time steps. It is interesting
that the largest control is the health enhancer u4.

Rather than utilizing the full state feedback for our
scalar-output neurocontroller, it is interesting to consider
a more realistic partial state feedback. We can compute
the observability Grammian [11] for various combinations
of measurements. If all or any three components of the
state are measured, the Grammian is nonsingular, and the
system is fully observable. No single scalar measurement
suffices. However, four out of the six pairs of measurements
are sufficient for complete observability: (x1, x4), (x1, x3),
(x3, x4), (x1, x2).

Figure 4 shows the results of disease control with multiple
controls and the (x1, x4) pair as the measured inputs. The
NN architecture and training algorithm used are the same as
in Figure 3.

It should be noted that the training process in all our exper-
iments is quite quick, resulting in a suitable controller within
first 50 epochs of training. We observed that controllers
obtained earlier in training usually have smaller maxima of
controls compared with controllers obtained later in training
(cf. Figures 2 – 4). (A similar effect can also be obtained if
the penalty weights qi À rj in (4).) Due to the integral nature
of (4), their performance is not necessarily very different
though.

C. Robust Control

In Section II we specified model parameter a and b.
All previous experiments assumed that these parameters are
known precisely. Of course, this is not the case in reality.
We can impose uncertainty on all parameters of the model
(1) and see whether we can create a neurocontroller robust
to such uncertainties.

4654

0 200 400 600 800 1000
0

1

2

3

4

5

Time, × 0.01

S
ta

te
s

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

C
on

tr
ol

s
x

1

x
2

x
3

x
4

Fig. 4. Our results with all the controls active and the partial state feedback.
The solution found by our training algorithm has u4 = 0.

We specify ±5% uncertainty on the values of a and b,
i.e., a uniform distribution on each aij and bj centered
around their nominal values given in Section II. To train our
recurrent neurocontroller, we initialize five models (1) with
different values of parameters and employ the algorithm of
Section III with vectors F

J
w for data streams from different

models to update the same vector of NN weights w (multi-
stream approach).

Figure 5 shows our results for robust neurocontroller.
We use the same NN architecture and training algorithm
as those employed to produce Figure 3. As an additional
complication, we impose on all state variables a small level
of uniform measurement noise (±5% of signal level). We
can see that the controller handles both parametric and
measurement uncertainties quite well.

0 200 400 600 800 1000
0

2

4

6

8

Time, × 0.01

S
ta

te
s

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

s

x
1

x
2

x
3

x
4

Fig. 5. Our results with robust neurocontroller. The bottom panel shows
controls for the first 100 time steps. Noise influence can be seen as jagged
lines of the controls. It is interesting that, given the choice of controls, the
NN may prefer to ignore one of them (u2 = 0); cf. Figure 4.

V. CONCLUSIONS

We study a simple nonlinear model which illustrates the
characteristic behavior of various diseases and the immune
system reaction. Our simulations in Section IV demon-
strate that, while the patient is in the life-threatening state
initially, she recovers fully when we apply our feedback
neurocontrollers. Our results are also consistent with those
in [6]. While current medical treatments usually take into
account the feedback component, none of them assumes as
frequent feedback as present in our design. As a result, our
treatment times are expected to be much shorter than those
of conventional treatments.

We show that various feedback control strategies are
possible and effective. We also discuss how to make the
“patient controller” more robust with respect to parametric
and measurement uncertainties.

Future work will consider subsampled control, as well as
hard control constraints to limit the dosage.

REFERENCES

[1] R. E. Bellman, Mathematical Methods in Medicine, Singapore: World
Scientific, 1983.

[2] G. W. Swan, “Optimal control applications in biomedical engineering
- A survey,” Optimal Control Applications and Methods, vol. 2, no. 4,
pp. 311–334, 1981.

[3] A. Novak and G. Feichtinger, “Optimal treatment of cancer diseases,”
International Journal of Systems Science, vol. 24, no. 7, pp. 1253–1263,
July 1993.

[4] J. M. Bailey, W. M. Haddad, and T. Hayakawa, “Closed-loop control
in clinical pharmacology: paradigms, benefits and challenges,” Proc.
American Control Conference, Boston, MA, June 30 - July 2, 2004,
pp. 2268–2277.

[5] A. Asachenkov, G. Marchuk, R. Mohler, and S. Zuev, Disease Dynam-
ics, Boston: Birkhauser, 1994.

[6] R.F. Stengel, R. Ghigliazza, N. Kulkarni, and O. Laplace, “Optimal con-
trol of a viral disease,” Proc. American Control Conference, Arlington,
VA, June 25 - 27, 2001, pp. 3795–3800.

[7] D. V. Prokhorov, G. V. Puskorius, and L. A. Feldkamp, “Dynamical
Neural Networks for Control,” A Field Guide to Dynamical Recurrent
Networks (Chapter 16), Edited by J. Kolen and S. Kremer, IEEE Press,
2001, pp. 257–289.

[8] D. V. Prokhorov, “Optimal Neurocontrollers for discretized distributed
parameter systems,” Proc. American Control Conference, Denver, CO,
2003, pp. 549–554.

[9] P. J. Werbos. “Backpropagation through time: What it does and how to
do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[10] L. A. Feldkamp and G. V. Puskorius, “Training controllers for ro-
bustness: Multi-stream DEKF,” Proc. IEEE International Conference
on Neural Networks, Orlando, 1994, pp. 2377–2382.

[11] W. L. Brogan, Modern Control Theory, 3rd ed., Englewood Cliffs, NJ:
Prentice-Hall, 1991.

4655

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

