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Abstract

In this report | introduce ReSuMe - a new supervised learnieghod
for Spiking Neural Networks. The research on ReSuMe has peen
marily motivated by the need of inventing an efficient leagnimethod
for control of movement for the physically disabled. Howetkorough
analysis of the ReSuMe method reveals its suitability nbt tmthe task
of movement control, but also to other real-life applicaiancluding
modeling, identification and control of diverse non-stadiry, nonlinear
objects.

ReSuMe integrates the idea of learning windows, known froerspike-
based Hebbian rules, with a novel concept of remote supenvi&en-
eral overview of the method, the basic definitions, the ndtvaochitec-
ture and the details of the learning algorithm are preserited proper-
ties of ReSuMe such as locality, computational simplicitgd she online
processing suitability are discussed. ReSuMe learnirigiabiare illus-
trated in a verification experiment.

1 Motivation

Control of posture and movement in the biological neuratesys is a complex, nonlinear
task. The neural mechanisms underlying control are stiletgeunderstood. The key
role in that task is attributed to the plasticity and leagn@bilities of the Central Nervous
System (CNS) [1].

The question on how the motor control system performs itsstascomes pertinent, when
facing the problem of CNS disorders causing the subjectgitdiity in grasping, stand-
ing or walking. In many cases the diminished functions caalmgmented by the modern
rehabilitation techniques, such as Functional Electr&ti#hulation (FES) or Functional
Neuromuscular Stimulation (FNS) [2, 3, 4, 5]. However, thisrstill a great challenge for
engineers to design appropriate controllers meeting theinements arising in FES and



FNS systems [2]. Such controllers are supposed to be robdslexible. A special empha-
sis should be put on their good learning abilities and theadidlity to non-stationarities
and nonlinearities of the human neuro-musculo-skeletiksy. Thus, new, effective learn-
ing methods suitable for reconstructing of the neural dgytamporal sequences of spikes)
are required.

Spiking Neural Networks (SNN) [6, 7] seem to be a very pronggiool for such neuro-
controllers synthesis.

SNN represent a special class of the Artificial Neural Nekspin which the neuron models
communicate via spike trains. In SNN the timing of indivitlspikes plays crucial role
[8]. Thus the relevant information is coded there in a simile@nner as in the biological
neural and neuro-muscular structures. It has been prowdhbk spiking neurons are
computationally more powerful than perceptrons and sigadajates [9, 10].

However, recent supervised learning methods in SNN areuitathde for the considered
control tasks.

Most of the works in this area have focused on the gradidiaviing approach [11, 12, 13,
14, 15]. However, since explicit calculation of the gradienSNN is unfeasible, usually
special simplifications are postulated: in [14] it has bessuaed that time scale is discrete,
methods presented in [11, 12] or [13] require that the legymilgorithms work in a range
where all postsynaptic potentials are linear functionsrogt In [15] it was proposed to
evaluate the stochastic gradient. However, in this methedé&uron firing was modeled by
the Poisson process, which in the biological neurons haitisfor the specific conditions.

All above simplifications constrain severely the use of tihadgnt-following learning
methods.

In this report a definitely different approach is presenfedew learning technique, called
ReSuMe (Rmote _Spervised Méhod), for the Spiking Neural Networks (SNN) is intro-
duced.

Instead of computing gradient, ReSuMe takes advantagesdé#ining windows idea [6]
integrated with a novel concept of remote supervision. Bhewn experimentally that
this approach has interesting learning properties ddsiffabm the point of view of the
considered control tasks.

The learning window has been introduced first for the Hebblaming in the context of
spike-based learning rules such as Spike-Timing Deperitlasticity (STDP) [16, 17].

The original Hebbian rule and STDP are unsupervised legieichniques. For this reason
they are not suitable for the applications that require apli@kgoal definition. However,
STDP rule has some important properties that would be désiadso for the supervised
learning methods.

First of all STDP is a local rule. The local character of therteng mechanism enables the
scalability of STDP. Since the synaptic weights are updatéke incremental manner, the
method is suitable for the on-line processing. Another eqnence of the STDP locality

is the computational simplicity of STDP implementations.

For these reasons it is interesting to define a new learningaddor SNN which inherits
the advantages of the STDP approach while enabling supmrvis

In the next chapter Remote Supervised Learning Method iiednted. It is argued that
ReSuMe possesses the expected properties and for this ieamdtable for the real-life,
real-time applications. The presentation of ReSuMe begitls the general overview of
the method. Next, the basic definitions and the learningraifgo are introduced. Finally,
the properties of ReSuMe are illustrated in a verificatiopesinent.



2 ReSuMe Introduction

The goal of ReSuMe learning is to impose on a neural netwaldsired input-output
properties, i.e. to produce the desired spike trains inoespto the given input sequences.

The ReSuMe learning algorithm can be understood as foll@®ensider a subsev! of

all neurons in a spiking neural networRl! consists of neurons, which update their input
synaptic connections according to ReSuMe method. EactonénrV! is excited simul-
taneously with a number of spike trains through multipleagpses. Assume that for each
of these neurons an individually assigned single signai ie predetermined timing of
spikes is defined - this is the reference (teacher) signatedkat the learning neuron’s
output.

The ReSuMe learning proceeds by balancing two opposite ié¢éermined over every

synapse terminating at the considered learning neurogsl{FiThe rules have the forms

similar to STDP and anti-STDP mechanisms, respectively TBE rules are expressed as
functions, called learning windows, of the difference betw. presynaptic and reference
spikes times (the first rule) or pre- and postsynaptic spikess (the second rule).

According to the first rule, an excitatory (inhibitory) sy is facilitated (depressed) if
it transmits a presynatpic spike directly before the refeeespike time (Fig.1.B.1). Ac-

cording to the second rule an excitatory (inhibitory) sys@s depressed (facilitated) if a
presynaptic spike arrives directly before a postsynapiies(Fig.1.B.2). The combination

of these rules allows to obtain the desired timing of spiketha learning neurons with a
very high precision.

The learning rules are local. Thus ReSuMe is scalable anteapplied in the same form
to the simple structures of neurons as well as to the largaptax networks.

In the presented learning method, neurons that deliverébgatl signals (teacher neurons)
are not directly connected to the learning neurons. Howekiey supervise the learning
synapses, i.e. their activity determines the synaptic tsigodification (Fig.1.A). For this
reason the proposed learning approach is called a Remot\&sgrl Method (ReSuMe).

2.1 Basic Definitions

There are three types of neurons that take part in the lgaimiocess: input, learning
and teacher neurons. A set of input neurd@s = (ni*, ni", .. )represents the neurons
activating the learning synapses. A set of learning neuMh& (n},nL,...) consists of
the neurons that receive signals from the learning synagusgésare expected to produce
the desired signal§?(¢). The signalsS?(t) are delivered to the network via set of teacher
neurons:N¢ = (n¢,ng, ...).

Learning triple. For every learning neuron. we define a subseV*(i) € N" of input
neurons activating the neura. We also speC|fy a single teacher neurxjrdellverlng the

desired signals for the neur@uﬁ (we denote it byz (7)). Hence we can definelaarning

triple L; = (N*"(i), n}, n4(i)) for each learning neuroh

Spike train.We formally specify signals transmitted in Spiking Netwerk ett be the
firing times of a neuromn (where f=1,2,... is a label of each individual spike emitted by
the neuron). According to [6] a spike train of a neurarnis defined as a sequence of the

firing times:
26 (t—td), @

whered(z) is the impulse function§(z) = 1 for z = 0 anddé(z) = 0 elsewhere).



we(s’) a.0_ gint) w'(s)

1.0)_ gin()

s'=t s'=t

ey 0

n() n()

n/d (i | n,’
W :

W, [
t % t

Figure 1: Two concepts underlying ReSuMe learning) Remote supervisionin Re-
SuMe the synaptic efficacyy;, between any given presynaptic neurdji(i) and a cor-
responding postsynaptic neureh, depends not only on the correlation between the pre-
and postsynaptic firing times, but also on the correlatioaativities betweem!™ (i) and

a 'remote’ teacher neurorzgl(i). (B) Learning windowsChanges of the synaptic efficacy
wy,; are triggered by teacher or postsynaptic action poterdtdisnest® () andt"(/), re-
spectively. The amplitude of change is determined by thetfans W (t4/)—*/)) and
WK —¢n(h)), called learning windows.

Learning windows.In ReSuMe, for any synaptic connectian,; from a neurom{" to
n}, the synaptic weight is updated at the firing timesnbfor n¢(i). The amplitude of
modification is determined by two functiofi&?(s?) andW'(s') wheres? = tf) (/)
ands! = t4/)—¢(F), The functionsW?(s?) and W' (s') arelearning windowg6]. In

ReSuMe these functions are exponential (Fig.1.B). Suchesbéthe learning window is
based on the experimental physiological observations [18]

Performance measureln order to quantitatively estimate the performance of e,
we define three measures of the quality of the desired sigmadoaimation. The first
measure, called performance index, expresses the glatiahde between the trained and
the desired signals. The second measure defines the preoisi#f(t) approximation
during the ReSuMe training. The third measure gives an amafuthe time-shift error
between individual spikes ii¢(¢) and the correspondingj (¢) signal.

The process of learning during a single presentation of aqfgpatterns (input/desired
output) is called a learning session. For theh learning session we defilagperformance
indexP(m) as:

P(m) = / |L(S%(t)) — L(S'(t))] at )
where for any spike trai§(¢) defined by (1),L(S(t)) denotes a lowpass filtering:
_ (f)
L(S(1)) = Zexp<%> H(t 1) 3)
f

H(z)=0forz <0, H(x) =1 elsewherer is a filter time constant.

The performance index can be viewed as a measure of a didtetween the considered
spike sequences. It takes high values for the poor qualifit while it decreases to zero
for S'(t) = S4(t).



Denote byS'(¢) an output signal obtained after the ReSuMe training. We lsay (t)
approximatess?(t) with the precisionr if the following conditions are satisfied:

1. the number of spikes if(¢) and inS%t) is equal.

2. for eacht®(/) ¢ §4(t) there exists one and only on&() e Si(t) such that
|td’(f)7tlv(f)| S r,

The precision parameteris a real positive value. It is reasonable to expect the vafue
r less than a half of a minimal inter-spike interval$fi(¢) in order to avoid an incorrect

assignment of the same spikedf(¢) to more than one spike ifi%(t).

Finally, for the signalS’(¢) we introducea spike-shift errore(t) which gives the measure
of a distance between the corresponding spikes'iin) and S?(t). The spike-shift error
e(t) is defined as a vector of paifg’(/), At())) wheret®(/) is a time of thef-th spike in
the desired spike traifi*(t) and At(/) is a time difference betweert(/) and the time of
the nearest spike if'(¢) (an example of(t) is illustrated in Fig.3.F).

2.2 Learning algorithm

Learning in ReSuMe is performed by modifying the synaptiica€iesw,; of every synap-
tic connection between an inpuaf (i) € N*(i) and a learning neuron.. The modifica-
tion algorithm is applied according to the following equoati

Eu% — 544 |ad Ocdsd in(p _ ¢y gsd
Sty = 90 [a [Tty 57— o0 0

+S'(t) {al + /0 Wi St - o) dsl} 7 )

The (real-valued) constants’ anda' determine amplitudes of, so called, non-Hebbian
processes of weight modifications. For the excitatory syasy > 0 anda' < 0, whereas
for the inhibitory synapses® < 0 anda' > 0.

The integral functions in (4) represent the Hebbian couatiiims to the weight change:
the first one depending on the correlation between the paggignand teacher activities
(S™™(t), S(t)) and the second one depending on the correlation betweg@nehand post-
synaptic signals§™(t), S'(t)). To express these two correlation factors, respectivedy,
use learning window®/¢(s?) andW'(s') introduced in the previous section (where again
st= t?’(f)— t;"’(f) and s = t-(/)— t;”’(f)). Here we propose a simple choice for the learn-
ing windows, inspired by [18] and optimized to ensure fastvesgence of the ReSuMe

algorithm:
d
Ad e = if s¢>0
Wd(sd) _ )t E’CCp< d ) r s*>0, )
0 if s?<o0,
l
—Al. =) if >0
Wi(s') = exp( 7l ) vesn (6)
0 if s <0,

whereA?, A' andr¢, 7! are some constants. For the excitatory synapiseand A! take
the positive real values, whereas for the inhibitory syeapt’, A! are negative. In both
cases the learning time constanfs ! are real and positive. The learning windows defined
by (5) and (6) are illustrated in Fig.1.B.



If we now set:a! = —a?, A' = A% andr! = 7¢, then Eq.(4) takes the following form:

Ew. — d Q! ad < de in —Sd Sd
Suni(t) = [0 S(t)}[ [ sne-shat) @

Equation (7) reveals that the synaptic modifications arerg&gly driven by the difference
[S?(t) — S'(t)] between the desired and generated signals.

Assign byD the whole time domain in which the synaptic plasticityugf; (¢) is observed.
At any timet € D the term[a® + [[W9(s?) S™(t — s?) ds?] # 0. On the other hand
[S4(t)—S!(t)]=0 ifand only if #/{/)= t%/)= ¢, Thus, the synaptic efficacy in (7) remains
unmodified for the whole time domaib, that isV.cp dwy,(t)/dt = 0, if and only if
Viep SH(t) = Sdgt). This conclusion states that eq.(7) reaches the fixed paigtfor the
learning signalS(t) equal to the desired sign&l(¢). It can be shown that under certain
conditions this fixed point is a global, positive attractothe weight space.

2.3 Network Architecture

For any learning tripld.; = (N (i), n, n?(i)) there are two aspects of learning that must
be taken into account in order to reconstruct the desirddedpain Sjl(t) at the learning
neuronn:

1. ensuring optimal synaptic weights at the input (prestinpponnections ta:!,

2. ensuring that the set of signals drivingand the trained output signgg(t) are

in such a relation that every desired spikéf) € §f(t) is directly preceded by at
least one excitatory presynaptic splilenteringn!.

The first condition is expected to be satisfied by the learpirggedure itself while the
latter one must be satisfied by designing an appropriateanktarchitecture.

Assign the set of signals driving the neural network$3¥(¢) and the signals that input
a given learning neuron! by S}"(t) (cf.Fig.2). We require a subnetwork performing a
specific, unique mapping fromii”(¢) onto 5 (t) such that for any arbitrary chosen pairs
of 5" (t) andS(¢) and for alln! € N' condition 2 is satisfied with respect $" ().

Such mapping can be performed in different network archites. Recently ReSuMe has
been applied and used (successfully) for training in spamnsian fully connected recurrent
networks.

As an example, we present here an implementation of ReSuMe iriquid State Machine
(LSM) architecture proposed by Maass et al. (see e.g. [IH}e Liquid State Machine
consists of a large, fixed "reservoir” network - the neuratmocicuit (NMC) from which
the desired output is obtained by training the suitable wutpnnection weights. The
properties of LSM and NMC are described in details in [19].

In the implementation of ReSuMe method the original LSM apph has been modified.
The modified architecture consists of a set of input neufgtis the NM C structure, a
set of learning neuron&’’ and a corresponding set of teacher neurdig(Fig.2). NM C
receives signab(t) from N‘* and transforms it into a vector of signaf%”(t) which
is presented to the adequate learning neurgns N'. The teacher neuron§? are not

1This condition is necessary, since the special cases such as bursimogsier huge currents
injection are not considered here.
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Figure 2: ReSuMe implemented in the modified Liquid State itae Architecture. The
network consists of a set of input neuron¥™, the NMC structure, a set of learning
neuronsN'! and a corresponding set of teacher neurdis N M C receives signab™ (t)
from N" and transforms it into a vector of signé\?(t) which is presented to the learning
neuronsV'!. The learning neurons are supervised by the corresponetttyer neurond @
that deliver individually assigned reference patternsaiche' € N'.

directly connected with any other structure, however theetation of activity of the par-
ticular n¢ € N? with Si"(¢) determines the modification of the synaptic efficacy of the
connections betweeN M C andn! (as it was described in the previous section ).

3 Experimental verification

In this section | present the results of an experiment thaficos an ability of ReSuMe to
efficiently train the network to produce the desired outpattgrnS<(t) in response to the
given, specified input spike sequengé (t).

The experiment was performed in CSIM: A neural Circuit Siktor [20]. BothS(t)
and S%(t) signals were generated randomly over a time interval of 480 ifhe input
sequence™” (t) (Fig.3.A) was presented to NMC through the input unit thajgeted on
all neurons of NMC. NMC consisted of 800 Leaky-Integrate-&ire (LIF) neurons [6]
with the connections generated randomly according to thegature described in [19].
NMC responded to the input sequence with the unique state $¢& (Fig.3.B). This trace
was a driving input to a single readout neuron.

The readout was trained over 100 learning sessions to pedtiedesired spike traist’ (t)
(Fig.3.D). At every learning session the same pairs af""(t), S%(t) signals were pre-
sented to the network, the learning neuron sigsfat) was recorded and a performance
index P(m) was calculated. An output signél(¢) at the initial state of learning and the

trained outputS’ (¢) are depicted in Fig.3.C and 3.E respectively.
During the training the quality o$(¢) approximation improved significantly frof(1) =
114.25 to P(100) = 3.87 (Fig.3.G). Starting from the 75-th learning session alkspiof

S4(t) were correctly recalled at the learning neuron and the djaikes of the produced
output were only slightly shifted in relation to the desit@tes. After the training an



average spike-shift-errar(¢t) was 0.65 ms and the maximal error did not exceed 2 ms
(compare to 8 ms of the minimal interval between the neighigospikes in the desired
signal) (Fig.3.F).

4 Conclusions

In this report a new supervised learning method for SNN has Ipeesented. The method
called ReSuMe introduced a novel approach to the superigseaing techniques by inte-
grating the idea of learning-windows with the novel conaapemote supervision.

The experiment presented here confirmed that ReSuMe careseffjclearn the desired
temporal sequences of spikes and that the learning prooassrges quickly.

Further studies on ReSuMe indicate that the method enablestn multiple patterns of
spikes. This can be performed sequentially or in paraliebdsigning different patterns to
the particular outputs of the trained network. Since thehmgis based on the correlation
of spike times, it is expected that ReSuMe should work pigpeot only for the LIF
models, but also for other, more complex, models (e.g. Hodbkixley models) of spiking
neurons. This was also experimentally verified [21].

The performance of the learning process in ReSuMe depenadisgaathers on the learning
window parameters and the appropriate matching of the mktgiae to the complexity
of the learning task (determined by the number of spikes]ahgth and number of the
learning patterns, etc.). The learning performance isroeted also by an ability of the
reservoir-network (in the LSM architecture - of the neuratnocircuit) to transform any
given input signal into the network state such that the giedgection onto a learning unit
covers uniformly, with the desired density of spikes, thegtidomain required for the given
learning tasks.

At the moment it cannot be uniquely determined whether tbpgsed mechanism of "re-
mote supervision” is biologically plausible. However, there many physiological evi-
dences for, so calledeterosynaptic plasticitjl8], [22], [23], in which the induction of

synaptic modiffcations at one set of synapses can be accoetpay changes at some
neighboring synapses that did not experience the indueiitimity. This phenomenon is
similar to the concept of "remote supervision” and can dbate to determining the bio-
logical processes potentially underlying this concept.

General features of Spiking Neural Networks and the pdaiquoperties of ReSuMe sug-
gest the suitability of ReSuMe for the eventual applicagiom the real-world, real-time
tasks.
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