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Abstract 

 

Objective: We explored the ability of specifically designed and trained recurrent neural 

networks (RNNs), combined with wavelet preprocessing, to discriminate between the EEGs 

of  patients with mild Alzheimer’s disease (AD) and  their age-matched control subjects.  

Methods: 2-min. recordings of resting eyes-closed continuous EEGs (as well as their 

wavelet-filtered subbands) obtained from parieto-occipital channels of ten early AD patients 

and ten healthy controls were input into RNNs for training and testing purposes. The RNNs 

were chosen because they can implement extremely nonlinear decision boundaries and 

possess memory of the state which is crucial for the considered task.  

Results: The best training/testing results were achieved using a three-layer RNN on left 

parietal channel level 4 high-pass wavelet subbands. When trained on three AD and three 

control recordings, the resulting RNN tested well on all remaining controls and five out of 

seven AD patients. This represented a significantly better than chance performance of about 

80% sensitivity at 100% specificity. 

Conclusion: The suggested combined wavelet/RNN approach may be useful in 

analyzing long term continuous EEGs for early recognition of AD. This approach should be 

extended on larger patient populations before its clinical diagnostic value can be established. 

Further lines of investigation might also require that EEGs be recorded from patients 

engaged in certain mental (cognitive) activities. 
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Introduction 

An important goal for clinical research in Alzheimer’s disease is the improvement of 

diagnostic accuracy, and moving the point of diagnosis earlier within the disease course. 

With more effective treatment options becoming available, the earlier the detection of AD is 

made, the sooner intervention can be started. We presently are 86-89% accurate for 

diagnosis within national center of excellence for patients followed longitudinally to death 

and autopsy [18,31]. We are less certain about our diagnostic accuracy at time points earlier 

in the disease course. In an effort to improve these accuracy outcomes many investigators 

have attempted to extract specific quantitative features from EEG, which would be 

characteristic for early stages of the disease. Various frequency and complexity techniques, 

including nonlinear dynamics (chaos) measures, were employed and some progress has 

been reported [2,5,11,22,29,34,36]. Note, that chaos has been proven only in neural 

networks in vitro [9] and not yet in scalp recordings. Nevertheless, Pritchard et al. 

investigated changes of the correlation dimension D2 of the EEG in Alzheimer’s disease 

[30]. They found in particular that in the eyes-closed state there was no significant 

difference between AD patients and controls. Other investigators [37] reported significantly 

lower D2 in late stage AD patients, reflecting less complex signal dynamics in such patients. 

Relative to frequency analysis, the nature of related EEG changes in AD appears to be well 

established now: increase in theta and delta; decrease in beta; slowing of the dominant 

alpha frequency and less reactivity to photic stimulation [2,3,5,15,34,35,41].   

The correlation between cognitive decline and decreasing beta activity in dementia of 

Alzheimer type was studied by Ihl et al [15]. Their findings were supported by Wada et al 

[41], who reported significantly lower beta frequency power in AD patients accompanied by 
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increased theta activity mainly over parieto-occipital regions. Unfortunately this shift in 

power from high to low frequencies in the early stages of AD, when clinical diagnosis is 

most difficult, tends to be mild or even absent. In fact, EEG sensitivity in early mild AD is 

reported to be between 29% [39] and 42% [35]. Combining linear and nonlinear measures 

resulted in sensitivity numbers not exceeding 60% [36]. One might expect that the use of 

latest developed quantitative techniques would improve these sensitivity parameters. Yet, 

several investigators have found that frequency analysis is not clearly superior to visual 

analysis in differentiating early AD patients from healthy controls [1,12].  

An attempt to make use of alternative signal waveform “descriptive” measures, Hjorth 

parameters of activity, mobility, and complexity [10,11], was made by Martin-Loeches et al 

[22]. They reported a remarkable AD/control group separation based upon a single measure 

- signal mobility. Notably, the greatest differences between AD/control groups were found 

to be in left parietal regions. However those findings were not replicated in later studies by 

other investigators. These and other current methodologies while pointing to the existence 

of certain intrinsic EEG features characteristic for AD, do not provide any means to extract 

a specific AD signature from EEG. As a result they are not sufficiently reliable to be of use 

for diagnosing individual patients and there is still a need for new techniques of EEG 

analysis that can, either alone or in combination with frequency analysis, improve the 

diagnostic value of the EEG in AD. Therefore in this study we employ sophisticated 

recurrent neural networks (RNNs) trained on raw EEG data and their wavelet-filtered 

subbands. These RNNs are capable of detecting subtle linear and nonlinear alterations in the 

signal. They have demonstrated exceptional signal recognition abilities in our previous 

studies on epileptic seizure prediction [26,27]. In this study we apply a similar approach on 
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a database of digitized EEGs obtained from 10 patients with relatively mild AD and 10 age-

matched healthy controls. Both patients and controls underwent mini-mental state 

examination (MMSE) and clinical dementia rating scale (CDR) [24] to objectively separate 

the groups and to exclude patients in advanced stages of the disease. The ultimate goal is to 

develop a reliable classification method that can discriminate between those groups using 

EEG recordings and commercially available computer hardware. 

 

Methods 

EEG data acquisition and wavelet decomposition 

Two groups of early AD patients and controls initially included eleven and twelve 

subjects accordingly. The Alzheimer’s patients’ (3 females, 8 males) mean ages (±SD) were 

72.8 ± 5.4. Their MMSE scores ranged from 18 to 27 with average score of 22.5. The 

controls’ (5 females, 7 males) mean ages were 69.9 ± 6.0 and MMSE scores were from 27 

to 30 with average score of 28.8. All subjects in the Alzheimer’s group met NINCDS-

ADRDA criteria [23] for probable AD. Only one AD patient met criteria for the diagnosis of 

familial Alzheimer’s disease; the remainder were diagnosed as idiopathic. Other medical 

conditions known to produce dementia were excluded following neurological and 

neuroimaging studies. Psychological diagnoses including depression and attention deficit 

were also ruled out. None of the patients suffered from renal, hepatic or any other condition 

that could be associated with EEG changes. All patients were asked to sign a consent form 

that allows the use of electroneural signals obtained for research. The EEGs were recorded 

using a 9-channel TECA 1121 (Vickers Medical) with scalp electrode placement according 

to the international 10-20 system - LIO-Fp1 (to monitor eye movements), F3, F4, P3, P4, 
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O1, O2, T3, and T4 (all with Cz as a reference). The low/high-pass filters were set at .5 and 

60Hz respectively. The A-to-D precision rate was set at 9 bits. An EEG technician was with 

each subject during the recordings to monitor the subject’s vigilance state and to make sure 

that the subject did not become drowsy. The digitized at 512Hz EEGs were stored in a host 

computer system and were transferred to the computational system using an external re-

writable optical drive. Records of eyes-closed (awake) continuous EEGs were about 4 min. 

in length of which approximately 2 min. continuous artifact-free segments were selected and 

transferred to the computer for network training/testing. Two extracted from left parietal 

data 4-sec. segments of original EEGs along with their fourth level wavelet detail 

coefficients are presented in Fig. 1. All paper EEG recordings were visually examined by an 

expert EEGer to exclude those that contained excess of muscle artifact related irregularities 

and other artifacts. As a result, two subjects from the control group and one subject from the 

Alzheimer group were excluded altogether from further consideration. Thus the study was 

restricted to EEGs of 20 subjects (10 Alzheimer plus 10 controls). Reviewing the paper 

recordings of these 20 subjects, the EEGer was asked to blindly classify the patients/controls 

based on visual analysis without prior knowledge of whether a particular recording was of a 

control or an Alzheimer subject. Only 6 out of 10 Alzheimer and 4 out of 10 controls were 

correctly identified, thus providing 60% sensitivity at 40% specificity of EEG-only based 

diagnosis. Note that this visual EEG based classification was done based on reviewing 

multichannel recordings (unlike the case of RNN training/testing on single channel 

recordings). 

The digitized EEGs were first subjected to Fourier power spectra comparative analysis. 

The single factor ANOVA tests revealed no significant group differences in average Fourier 
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power of EEGs of Alzheimer’s patients vs. controls. Next we designed a bandpass FIR filter 

using the Hamming window [11,14] and applied it to filter each EEG segment into its four 

significant subbands – delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), and beta (13-22Hz). 

We then performed t-tests (with a confidence level of α=.05) to compare average power in 

each of those filtered subbands between patients/controls. We found significant differences 

in beta (p=.02) and theta (p=.03) bands of parietal channels, and in beta (p=.02) and alpha 

(p=.05) bands of occipital channels (see Fig. 2). It should be noted, however, that we did not 

conduct tests on “homogeneity” of group variances as we did not aim to present here 

comprehensive statistical data.  Instead, we trained RNNs on each of these subbands 

separately, which did not yield satisfactory patient/control classification results. We 

achieved stable network behavior only when extracted from the signal wavelet coefficients 

were used as inputs into RNNs. More specifically, we achieved the best classification results 

during training/testing RNNs on 4-th level wavelet detail coefficients of original EEGs.  

The ability of wavelets to extract and localize specific transient patterns from the signal 

makes them a natural complement to the application of RNN. We applied the most widely 

used Daubechies filter "daub4" [4,19] to decompose the original EEG data into its coherent 

component and “noisy residue”, i.e. the low- and high-pass subbands up to the level 6. This 

procedure of analyzing a signal by passing it through a filter bank is similar to the well-

known subband coding method [40]. The Daubechies mother wavelet function possesses 

with a “fractal structure” and has good localizing properties both in time and frequency 

domains. The pair of low-pass and high-pass filters generated by this function split the 

original signal spectrum in two equal parts – the low-pass part containing the signal gross 

structure and the high-pass part containing the detailed components. The low-pass part is 
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then further split into it’s own subbands and this process produces multiresolution wavelet 

components on subsequent resolution levels. This process of splitting the spectrum is 

graphically displayed in Fig. 3. Thus, each studied segment of the EEG was wavelet 

decomposed into multi-level low-pass and high-pass subbands, which were then input into 

the neural network for training and testing purposes. We demonstrate that this step was 

necessary for obtaining reliable network behavior. 

 

 

Recurrent Neural Network Training 

The Recurrent Neural Networks (RNNs) suggested in this study belong to the well-

known type of discrete-time recurrent multilayer perceptrons [see e.g. 13]. Temporal 

representation capabilities of these networks can be significantly better than those of purely 

feedforward multilayer perceptrons or feedforward networks with tapped-delay lines. Unlike 

other networks, RNNs are capable of representing and encoding strongly hidden states, i.e. 

states in which a network's output depends on an arbitrary number of previous inputs. 

However, despite their advantageous architecture (Fig. 4) the RNNs have not been widely 

used in practical applications due to the lack of an efficient and universal training method. 

Recent developments in the use of parameter-based extended Kalman filter (EKF) 

algorithms in RNN training procedures have proven these architectures to be of great 

practical value [6,20,32,33]. The EKF method adapts weights of the network in a pattern-

by-pattern fashion accumulating important training information in approximate error 

covariance matrices and providing individually adjusted updates for each of the network's 

weights. We have recently successfully applied this training method [26,27] for predicting 
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onsets of epileptic seizures in intra- and extra-cranial EEGs. The details of the EKF 

algorithm are presented below in the Appendix. 

The training of the RNNs was implemented on parieto-occipital channels (P3, P4, O1, 

O2) using raw EEG signals, as well as each of the derived delta, theta, alpha, beta subbands, 

and wavelet-decomposed subbands at levels 1-6. We trained one- and two-hidden-layer 

RNNs with architecture for one-hidden-layer presented in Fig. 4. Each analyzed original 

EEG segment of about two minutes in length (at 512 Hz sampling rate) contained over 

60000 samples in total, which was sufficient data for effective network training (including 

on all wavelet decomposition levels considered). For each given training/testing signal the 

input to the network was normalized by subtracting the mean value of the signal and 

dividing by its standard deviation. The training program then uniformly split the obtained 

signal into a number of nonoverlapping regions corresponding to the number S of allocated 

training streams. This number as well as the length L of each stream, or training length, was 

varied from 10 to 50. Each training stream started from an entry point chosen randomly 

within a corresponding region of the training set. Before starting actual training of the RNN 

on L training pairs, we performed priming of the network, i.e. the RNN was fed with a 

sequence of consecutive samples of length P (priming length) in order to build up its 

internal states. This priming length was the same for each stream. It was normally 

proportional to the number of recurrent neurons in the RNN, and we varied P from 5 to 200.  

After SxP total samples were processed, the first weights’ update was initiated. It was 

based on the first S training pairs spread over different regions of the whole training set.  

After the first S pairs had been processed, we proceeded on to the next S pairs.  We repeated 

this updating of weights until the last S pairs in the streams were used.  Thus the total 
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number of pairs processed was Sx(P+L), with SxL pairs used for training of weights.  Then 

we chose a new set of S entry points and continued this procedure (including priming) until 

an acceptable performance was attained. 

We specified targets for the network’s training by assigning constant values of -1 and +1 

to the segments that contained control and Alzheimer data accordingly. In other words, we 

encoded the control EEG segment and Alzheimer EEG segment with target values of 

negative and positive constant values respectively. Note, that neurons in the hidden layer 

(Fig. 4) perform a bipolar sigmoid (y=tanh(0.5x)) transformation on their inputs, which is 

one of the most common nonlinear transformations for neurons of multilayer perceptrons.  

We used the same nonlinear transformation for the output neuron too since we dealt in this 

study with essentially a classification task.  

Training usually lasted several thousand passes, where one pass corresponded to a 

complete processing of all S streams. The programs were run on a 450 MHz PentiumII 

workstation with the largest net and training procedure of 2000 passes in a single 

experiment lasting for up to 30 hours. The mean-square differences (errors) between the 

targets and network’s actual output were minimized on the whole training/testing data. 

These errors usually remained close to their original values (for untrained RNN) during 

training on most passes, plunging to much smaller values for certain consecutive passes. 

The network weights obtained on such passes were saved and evaluated based upon 

percentages of false positives (positive outputs during control data) and false negatives 

(negative outputs during AD data). Visual analysis by plotting the outputs was also needed 

for evaluating and comparative analysis of the best networks performance. The best RNNs 

obtained during training were then tested on other patient/control recordings not used in 
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training. As noted above, these training and testing experiments were repeated across the 

channels on original, as well as on delta, theta, alpha, beta, and level 1-6 wavelet 

decomposed subbands. Additional experiments were also carried out on combined low- and 

high-pass subbands of level 4 and on combined levels 4 and 6 subbands. 

 

Results 

On the acquired set of 20 recordings we proceeded with experiments in a following 

manner. We first trained network on one pair and tested on another pair of 

control/Alzheimer EEG recordings. The results on parietal channel P3 original signals and 

on their level 1 and level 4 subbands are presented in Fig. 5, 6.  

We noticed that while training/testing failed on original EEGs as well as on each of the 

delta, theta, alpha, and beta subbands, the network performed quite reliably on wavelet-

decomposed level 4 high-pass subbands. This turned out to be a significant observation, 

which concentrated our attention on this specific subband in all further experiments. The 

obtained set of weights during training on a single pair of Alzheimer/control data (Fig. 6, 

upper) however, did not test satisfactorily on the rest of the dataset recordings, which was to 

be expected. We therefore proceeded on to experiments with training RNN on three pairs of 

Alzheimer/control recordings by adding two more pairs to the above selected training pair. 

As it turned out, increasing the training set further to include four and five training pairs did 

not result in significant improvement of the net performance. Therefore, we present here 

only the results of experiments carried out with three selected training pairs (3 Alzheimer 

plus 3 control recordings) and subsequent testing on the remaining seven pairs (7 Alzheimer 

plus 7 controls). Throughout these experiments we changed the set of training parameters as 
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follows: a) the training length and the number of training streams were varied between 10 

and 50; b) the actual net dimensions were changed from one-hidden-layer 1x10rx1 with ten 

recurrent hidden neurons to two-hidden-layer 1x20rx10rx1 with the total number of 

recurrent neurons being equal 30; c) the priming length was varied from 5 up to 200; d) the 

learning rate η(k) and noise factor q(k) (see Appendix) were also interactively controlled 

through the training procedure. Note, however, that for the latter we followed a specific 

fixed procedure of adjusting their values from 0.01 to 1.0 for the learning rate and from 0.01 

to 10-4 for the noise factor. After each completed training the corresponding best network 

parameters and weights were saved for testing. The best training/testing results were 

obtained with a three-layer network on the left parietal channel level 4 high-pass subbands 

with training and priming lengths equal 50, and the number of training streams equal 10. 

These results are presented in Fig. 7. 

As seen in the upper plot of this Figure, the network trained well on all six Alzheimer 

and control data with the exception of a brief initial positive outburst on the first control data 

segment. The weights obtained with this training experiment were saved and tested on 14 

other Alzheimer and control patients. Given that testing failed only on two rightmost 

Alzheimer data segments (Fig.7), the network achieved about 80% sensitivity at 100% 

specificity during the overall training/testing procedure. This represented a significantly 

better than chance performance [χ2(df=1)=4.98, p<0.05]. 

Although training with the same network parameters and same combination of 

patients/controls on occipital channel O2 also produced steadily favorable output (Fig. 8), 

testing was not as favorable as on channel P3 data. Interestingly however, on channel O2 

data, the network performed well on the very same two Alzheimer data segments that did 
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not pass testing on channel P3 (Fig. 7,8). We then decided to carry out experiments with 

combined training on both channels P3 and O2 – the data from both channels were input 

into the network training procedure simultaneously. Despite making extensive alterations in 

training strategy we did not succeed in improving the network performance over the one 

obtained on the parietal channel only. Likewise, no performance improvement was achieved 

when training/testing was carried out on deeper subband levels 5 and 6 as well as on 

combined levels 4 and 6 high-pass subbands.  

 

Discussion 

The diagnosis of early Alzheimer’s disease (AD) is becoming an increasingly important 

problem for clinical medicine as new therapies emerge. At present, physicians must rely 

upon relatively crude clinical markers for these judgments. It is important to improve the 

sensitivity and specificity for the diagnosis of AD, which are presently both less than 90%, 

even at university centers. In addition, it is becoming increasingly important to move the 

diagnosis point earlier in the disease process, so as to confer optimal chances for therapies to 

be effective. This study represents an attempt to develop a reliable computerized algorithm, 

which can detect early onset of Alzheimer’s disease using the electroencephalogram (EEG). 

We applied for that purpose a novel recurrent neural network (RNN) approach, combined 

with signal wavelet decomposition technique, on continuous EEG recordings during eyes-

closed resting condition. While training on EEGs from subjects engaged in mental activity 

can be seen as a natural continuation of our experiments, it was out of the scope of this 

study.  
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The suggested combined approach proved to be well suited for analyzing long term 

EEGs with the specific classification problem. Representing a means for extraction of subtle 

intrinsic characteristics of the signal, it can be applied to a variety of other similar pattern 

recognition tasks. We have demonstrated that in this particular Alzheimer/control group 

separation task, performing suitable signal wavelet decomposition in conjunction with the 

RNNs is necessary and warranted. On wavelet decomposed level 4 high-pass subbands of 

original EEGs we were able to obtain a network with a high degree of accuracy in 

separating the two groups of ten patients each. More precisely, trained on three Alzheimer 

and three control EEGs the network was able to recognize EEGs of seven other controls and 

five of seven other Alzheimer patients. Note here that these results, while promising on the 

considered small sample size, are not yet sufficiently reliable to be of use for diagnosing 

individual patients.  

Note also, that a potential difficulty in this study was related to the accuracy of the 

clinical diagnosis of AD. As mentioned above this accuracy in the best clinics remains 

under 90% for the routine diagnosis of probable AD. It is therefore possible that not all of 

the 10 subjects in the Alzheimer’s group actually had AD and that some of the subjects 

included in the control group might actually have undiagnosed AD. Thus, we realized that 

this study could not provide perfect answers in terms of sensitivity and specificity of the 

suggested approach. However, we considered both the patient population size and group 

classifying procedures as statistically sufficient. 

Another potentially confounding factor in the subject recruitment process was the use of 

medications. None of the patients in the study were being treated with benzodiazepines, 

barbiturates, lithium, hypnotics, antiepileptic drugs, tricyclic antidepressants, phenothiazines 
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or any other agent that is known to produce EEG changes. At the same time, 6 AD patients 

were being treated with the acetylcohlinesterase inhibitor donepezil. We are unaware of any 

specific changes on EEG that may be produced by the use of donepezil in humans, although 

T.M. Itil and colleagues [16] reported a relative increase in alpha activity and a decrease in 

delta and theta activity with the use of similar cognitive-enhancing agents. Since we 

observed an opposite shift from signal higher to lower frequencies in AD patients (Fig. 2), a 

conclusion should be made that the medication use could not have contributed to the results 

of this study.  

We would like to emphasize again that the best results were obtained using level 4 high-

pass wavelet detail components (which overlapped with the signal beta frequency range) of 

the left parietal channel EEGs. These results support findings of different studies 

[2,11,15,34,38,41], which centered on alteration in EEG frequency bands and its correlation 

with cognitive decline in dementia of the Alzheimer type. Particularly, as Claus et al [2] and 

Wada et al [41] found, the maximal statistical differences were seen mainly in parieto-

occipital channels’ beta power bands. On the other hand, Martin-Loeches et al. [21] and 

others [8] observed a steady increase only in theta activity over the left parietal region in 

moderate AD patients. Contrary to our expectations however, the addition of level 6 high-

pass subbands (which contained the theta band) into RNN training procedures did not 

improve the overall network performance. One possible reason for this could have been our 

use of data obtained only from patients with mild AD.  

We would like to point out also, that unlike previous studies we input raw EEG and its 

frequency subbands into a network training procedure without regard for any extracted from 

signal quantitative features. To the best of our knowledge such an approach has not been 
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attempted before in recognition of AD and we attribute that to extensive computational 

requirements of the applied algorithm. On the other hand, the suggested approach is flexible 

enough to be extended on multiple class recognition problems, i.e. separation of three or 

more groups of patients with different types of dementia of Alzheimer type. Such studies 

were performed by Iznak et al [17], Signorino et al [34], and Yener et al [43], to classify the 

groups with AD, senile dementia of Alzheimer type, vascular, and fronto-temporal 

dementia (FTD). Our approach can be easily extended on such multiple group recognition 

problems by simply assigning different network output values to each particular group of 

patients. It is our intention to carry out such a study, which would include along with the 

FTD and vascular dementia patients, a group of subjects with mild cognitive impairment 

(MCI) as defined by Petersen et al. [25]. Naturally, we would not restrict ourselves in such 

studies with parieto-occipital channels only, and the best wavelet decomposition subbands 

might certainly differ from the ones discovered in this study. The patient populations should 

also be significantly increased for the validity of the applied algorithm in a multi-class 

separation problem. 

In the end, it is important to note that this study represents only a first step in 

demonstrating feasibility of the suggested RNN training procedure for early recognition of 

AD. This approach should be extended on a much larger specifically tailored patient 

population before any conclusion can be made of its clinical diagnostic value. In addition, 

more data are needed to explore the sensitivity of the proposed method in detecting different 

stages of the disease, monitoring treatment efficacy, and providing some prognostic 

measures. These further lines of investigation might require that EEGs be collected from 

patients engaged in some mental (cognitive) activities. The obtained results, if upheld on a 
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larger patient population data, may lead to a simple, non-invasive, and inexpensive 

procedure to move the diagnosis point earlier in the disease. This test will be based on 

simple EEG recording procedures and a computerized RNN based algorithm to detect early 

onset of AD.  

 

Appendix.  

Summary of the EKF training algorithm. 

The Extended Kalman Filter-based (EKF-based) training is an effective and powerful 

tool for training recurrent neural networks [6,32]. In essence, the EKF-based training can be 

viewed as a parameter identification problem for a nonlinear dynamical system (RNN).  It 

adapts the weights of the network in a pattern-by-pattern fashion accumulating important 

training information in approximate error covariance matrices and providing individually 

adjusted updates for each of the network’s weights. Below we describe a popular version of 

the EKF algorithm known as a parameter-based node-decoupled EKF. 

Let us assume that all weights of the RNN are assembled in a vector W of length M, and 

that this vector is split in several disjoint groups. We denote Wi as a weight vector of the i-th 

group of weights.  The index i runs from 1 to G, where G is the total number of groups. 

Thus, we assume that W1∪ W2 ∪ ... ∪ WG = W and dim(W1)+dim(W2)+...+dim(WG) = M. 

It is required by the EKF method that we compute derivatives of the RNN’s N outputs 

(rather than more commonly used derivatives of output errors) with respect to the weights 

[32]. These derivatives are obtained through backpropagation through time or its truncated 

version [6,42].  We accumulate and store the derivatives in a set of matrices Hi (one matrix 

per group of weights), where each Hi is of dimension dim(Wi)×N.  
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The EKF-based network training procedure can be described by the following equations: 

  A k k I H k P k H ki
T

i
i

G

i( ) ( ) ( ) ( ) ( )( )= +−

=
∑ −η 1

1

1 ,      

K k P k H k A ki i i( ) ( ) ( ) ( )= ,         

  W k W k K k e ki i i( ) ( ) ( ) ( )+ = +1 ,        

  P k P k K k H k P k Q ki i i i
T

i i( ) ( ) ( ) ( ) ( ) ( )+ = − +1 , 

where η(k) is a scalar learning rate, Ki(k) is the Kalman gain matrix for the i-th group of 

weights, e(k) = d(k) - y(k) is the N×1 error vector [d(k) and y(k) are the desired and actual 

outputs respectively, and eT(k)e(k)/2 forms the mean-square error to be minimized over 

time]. Further, Pi(k) is the approximate error covariance matrix, dim(Pi(k)) = dim(Wi) × 

dim(Wi), which models correlations between each pair of weights within the i-th group of 

weights, and Qi(k) is a positive diagonal matrix that helps to avoid numerical divergence of 

the procedure and prevents getting stuck in a poor local minimum [32]. 

Grouping of the weights can be done in a variety of ways. We employed the grouping-

by-node method, i.e. weights belonging to the same neuron were grouped together.  Thus G 

was equal to the number of neurons. This resulted in a significant reduction of 

computational complexity and storage requirements as the dimensionality of error 

covariance matrices Pi was made significantly smaller than M2 (the dimensionality in case 

of G = 1). 

The matrices Pi(0) were initialized as diagonal matrices with large enough diagonal 

elements with values of around 1000. Over the course of training the user-specified values 

of η(k) and q(k) (diagonal components of Qi(k); same for all neurons) were changed 

typically from 0.01 to 1.0 and from 0.01 to 10-4, respectively. 
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With large EEG data files, a batch update of weights is advantageous over a pattern-by-

pattern update since the network learns to simultaneously minimize error on an entire batch 

of patterns taken from different regions of the data segment. To combine efficiency of the 

EKF-based training with a batch-like update, without violating a consistency between the 

weights and the approximate error covariance matrices, we made use of a multi-stream 

training approach. It was first proposed and tested in [7] and can be described briefly as 

follows.  

We assume that there are S data streams. It is then useful to consider S copies of the 

same RNN (i.e. weights are the same for all the copies). Each copy is assigned to a separate 

stream.  We then apply each copy of the RNN to a training vector drawn from the 

corresponding stream. We obtain S  (N×1)-stream-error-vectors and S sets of matrices Hi. 

We then concatenate all corresponding Hi to form one Hi of dimension dim(Wi)×(N×S), 

where N×S is a total number of columns. Concatenating all the stream error vectors results 

in a single error vector e of dimension (N×S)×1, where N×S is a total number of rows. The 

number of columns in each of the Kalman gain matrices Ki is increased S times. The global 

scaling matrix A also grows S times in size in both dimensions. The increase in 

dimensionality of the A matrix should be of concern, as it must be inverted. However, it has 

not become a major problem in applying this multi-stream EKF-based procedure to a variety 

of tasks [20,33]. We have found the singular value decomposition [28] to be the best 

method for inverting the matrices A(k) of dimensions as high as 100×100. 

Note that the allocation of data streams can also be done in various ways. It is often 

impractical to use too short a stream since the total number of streams S can make the A 

matrix inversion too burdensome. On the other hand, having too few streams may not bring 
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a significant improvement over the one-stream (basic) EKF-based training. The experiments 

show, that faster training of at least an order of magnitude (in terms of number of passes) 

and much better generalization can be expected with a multi-stream EKF training as 

opposed to a one-stream training. This difference grows further with larger training sets, 

reaching the point when one-stream training is completely inadequate for data sets 

comprised of tens of thousands of training vectors [20].  
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Figure Legends. 
 
 
 
Fig 1. Two 4-second segments of left parietal EEGs obtained from an Alzheimer 
(above) and control (below) patients and their forth-level wavelet detail coefficients 
(on the right).  
 
 
 
 
Fig. 2. Averages and standard deviations of power in delta, theta, alpha, and beta 
frequency bands in parieto-occipital channels P3, P4, O1, and O2. All significant 
differences (with p-values of .02 for beta, .03 for theta, and .05 for alpha bands) 
between Alzheimer patients and controls are marked with an asterisk. 
 
 
 
 
Fig. 3. Signal wavelet decomposition. 
 
 
 
 
Fig. 4. A sample of RNN architecture, also known as the Recurrent Multilayer 
Perceptron. This network typically consists of a linear input layer, one or several 
hidden layers, and an output layer.  Neurons of each hidden layer are fully recurrent.  
It means that each neuron is fed by outputs of all neurons of the same layer taken 
from the previous time step. The neuron is also fed by feedforward (nondelayed) 
outputs of the preceding hidden (or input) layer. All the connections have a unique 
adjustable weight, and an adjustment of all weights constitutes the network’s training 
process. Neurons in the hidden layer and the output neuron perform a nonlinear 
bipolar sigmoid transformation on their inputs. 
 
 
 
 
Fig. 5. Training (upper) and testing (lower) on original EEGs. The solid line is the 
actual network output. The desired network output (dashed line) is negative up to the 
middle of the segment (about 2 min. of control data) and positive thereafter (about 2 
min. of Alzheimer data).  
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Fig. 6. Training (upper) and testing (lower) on level 4 high-pass subbands. The 
network quite strictly followed the desired output (negative on two control segments, 
positive on two Alzheimer’s) both during training and more importantly during 
testing.  
 
 
 
 
Fig. 7. Training on three controls and three Alzheimer patients (upper) and testing on 
the remaining seven controls and seven Alzheimer patients (lower, all data from left 
parietal channel P3). The network tested well on all controls and all but two rightmost 
segments of Alzheimer data. 
 
 
 
 
Fig. 8. Training (upper) and testing (lower) on data from right occipital channel O2 of 
same controls and Alzheimer patients as in Fig. 7. The network trained well but failed 
on four controls and two Alzheimer recordings during testing. Yet it tested well on 
the same two rightmost Alzheimer segments that did not pass testing in experiments 
with left parietal channel data (Fig. 7). 
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