
NIPS 2017

LONG BEACH CA | DEC 4 - 9 | NIPS.CC

CONFERENCE AT A GLANCE

MONDAY DECEMBER 4TH

7:00 - 8:00 AM	Coffee
8:00 - 10:15 AM	Tutorial 1
10:15 - 10:45 AM	Coffee break
10:45 - 1:00 PM	Tutorial 2
1:00 - 2:30 PM	Lunch on your own
2:30 - 4:45 PM	Tutorial 3
4:45 - 5:00 PM	Quick break
5:00 - 5:30 PM	Opening Remarks
5:30 - 6:20 PM	Invited talk, John Platt:
	Energy Strategies to Decrease CO2 Emissions
6:30 - 10:30 PM	Opening Reception and Posters

TUESDAY DECEMBER 5TH

7:30 - 9:00 AM	Coffee	
9:00 - 9:50 AM	Invited talk, Brendan Frey:	
	Why AI Will Make it Possible to Reprogram	
	the Human Genome	
9:50 - 10:10 AM	Test Of Time Award	
10:10 - 10:40 AM	Coffee break	
10:40 - 12:00 PM	Parallel Tracks on Algorithms and Optimization	
12:00 - 1:50 PM	Lunch on your own	
1:50 - 2:40 PM	Invited talk, Kate Crawford:	
	The Trouble with Bias	
2:40 - 2:50 PM	Quick break	
2:50 - 3:50 PM	Parallel Tracks on Algorithms, Optimization	
	& Theory	
3:50 - 4:20 PM	Coffee break	
4:20 - 6:00 PM	Parallel Tracks on Deep Learning,	

Applications and Algorithms

Poster session and Demos

WEDNESDAY DECEMBER 6TH

6:00 - 7:00 PM 7:00 - 10:30 PM Light snack

7:30 - 9:00 AM	Coffee
9:00 - 9:50 AM	Invited talk, Lise Getoor:
	The Unreasonable Effectiveness of Structure
9:50 - 10:20 AM	Coffee break
10:20 - 12:00 PM	Parallel Tracks on Theory, Probabilistic
	Methods and Deep Learning
12:00 - 1:50 PM	Lunch on your own
1:50 - 2:40 PM	Invited talk, Pieter Abbeel:
	Deep Learning for Robotics
2:40 - 2:50 PM	Quick break
2:50 - 3:50 PM	Parallel Tracks on Reinforcement Learning,
	Deep Learning and Optimization
3:50 - 4:20 PM	Coffee break
4:20 - 6:00 PM	Parallel Tracks on Reinforcement Learning,
	Algorithms, Applications and
	Probabilistic Methods, Applications
6:00 - 7:00 PM	Light snack
7:00 - 10:30 PM	Poster session and Demos

Table Of Contents

2017 Sponsors	2
Exhibitors	8
Conference Maps	9
Sponsor Map	10
General Information	11
Teams & Committees	12
Monday Tutorial Sessions	13
Monday Poster Sessions	16
Tuesday Sessions & Talks	24
Tuesday Poster Sessions	32
Tuesday Demos	39
Wednesday Sessions & Talks	41
Wednesday Poster Sessions	49
Wednesday Demos	57
Thursday Sessions & Talks	59
Symposia	63
Workshops (Fri & Sat)	64
Reviewers	66
Author Index	69

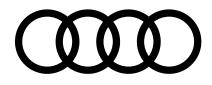
THURSDAY DECEMBER 7TH

7:30 - 9:00 AM	Coffee
9:00 - 9:50 AM	Invited talk, Yael Niv:
	Learning State Representations
9:50 - 10:40 AM	Invited talk, Yee Whye Teh:
	On Bayesian Deep Learning and
	Deep Bayesian Learning
10:40 - 11:10 AM	Coffee break
11:10 - 12:30 PM	Parallel Tracks on Neuroscience and
	Deep Learning, Algorithms
12:30 - 2:00 PM	Lunch on your own
2:00 - 4:00 PM	SYMPOSIA
4:00 - 4:30 PM	Coffee break
4:30 - 6:30 PM	Symposia
6:30 - 7:30 PM	Light Dinner
7:30 - 9:30 PM	Symposia

FRIDAY & SATURDAY DECEMBER 8TH & 9TH

Each workshop has its own schedule, check the website

7:00 - 8:30 AM	Coffee
10:30 - 11:00 AM	Coffee break
12:00 - 2:00 PM	Lunch on your own
3:00 - 3:30 PM	Coffee Break
6:30 - 10:30 PM	Saturday Closing Reception


2017 SPONSORS

NIPS gratefully acknowledges the generosity of those individuals and organizations who have provided financial support for the NIPS 2017 conference. Their financial support enables us to sponsor student travel and participation, general support to host the conference, and the volunteers who assist during NIPS.

DIAMOND SPONSORS

IBM Research

Intel Nervana™ - Leveraging Intel's world leading position in silicon innovation and proven history in creating the compute standards that power our world, is transforming Artificial Intelligence (AI) with the Intel Nervana platform. Harnessing silicon designed specifically for AI, end-to-end solutions that broadly span from the data center to the edge, and tools that enable customers to quickly deploy and scale up, Intel Nervana is inside AI and leading the next evolution of compute. To learn more, visit: www.intelnervana.com

NVIDIA - We are the pioneer of GPU computing — a supercharged form of computing loved by the most demanding computer users in the world. Fueled by the insatiable demand for better 3D graphics and the massive scale of the gaming market, NVIDIA evolved the GPU into a computer brain at the exciting intersection of virtual reality, high performance computing, and artificial intelligence. In 2006, the creation of the CUDA programming model opened up the parallel-processing capabilities of the GPU to generalpurpose computing. And when GPU computing was applied to deep learning in 2012, it ignited the era of modern Al. Today, more than 600,000 developers have embraced the NVIDIA platform to solve some of the most complex problems in computer science. NVIDIA GPU computing has become the essential tool of the da Vincis and Einsteins of our time. For them, we've built the equivalent of a time machine.

AUDI - Audi continues to shape the national conversation about the future of mobility and advancing the state of the art in connected vehicle technology. This year, Audi introduced the first level three automated vehicle with the next A8. By 2020, accelerated by artificial intelligence and deep learning, Audi will deliver highly and fully automated vehicles.

IBM RESEARCH - At IBM Research, we invent things that matter to the world. Today, we are pioneering promising and disruptive technologies that will transform industries and society, including the future of AI, blockchain and quantum computing. We are driven to discover. We are home to 3,000+ researchers including 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards and 13 Inductees in the National Inventors Hall of Fame.

MICROSOFT - At Microsoft, we aim to empower every person and every organization on the planet to achieve more. We care deeply about having a global perspective and making a difference in lives and organizations in all corners of the planet. This involves playing a small part in the most fundamental of human activities: Creating tools that enable each of us along our journey to become something more. Our mission is grounded in both the world in which we live and the future we strive to create. Today, we live in a mobile-first, cloud-first world, and we aim to enable our customers to thrive in this world.

PLATINUM SPONSORS

GRAPHCORE

FACEBOOK - Giving people the power to share and connect requires constant innovation. At Facebook, research permeates everything we do. We believe the most interesting research questions are derived from real world problems. Working on cutting edge research with a practical focus, we push product boundaries every day. At the same time, we publish papers, give talks, and collaborate broadly with the academic community.

BAIDU - Baidu was founded in 2000 by Internet pioneer Robin Li, creator of visionary search technology Hyperlink Analysis, with the mission of providing people with the best way to find information and connect users with services.

CITADEL - Analyzing global markets with discipline and focus, we employ a diverse range of strategies in an effort to bring capital to its fullest potential and deliver consistent investment returns to our clients. We do this by working harder, seeing farther, and by empowering the world's most talented minds with the tools and culture they need to achieve peak performance.

NAVER LINE - NAVER, Korea's No. 1 internet company, and LINE, the Japanbased global messenger platform, have teamed up to use their extensive databases of contents and user information to develop an Al platform called Clova (Cloud-based Virtual Assistant). A Clova-powered mobile app and Al speakers have already launched in Korea and Japan, and the companies continue to explore machine learning tech and Applications.

GOOGLE - Research at Google tackles the most challenging problems in Computer Science and related fields. Being bold and taking risks is essential to what we do, and research teams are embedded throughout Google allowing our discoveries to affect billions of users each day.

ALIBABA - Alibaba is the largest retail commerce company in the world. We are building the future infrastructure of commerce to help merchants, brands, and small businesses all over the world reach and engage consumers and operating a range of online marketplaces that connect buyers and sellers, as well as various synergistic services such as cloud computing, and digital media and entertainment.

DEEPMIND - At DeepMind, our mission is to solve intelligence and then use that to make the world a better place. Our motivation in all we do is to maximize the positive and transformative impact of Al. We believe that Al should ultimately belong to the world, in order to benefit the many and not the few, and we steadfastly research, publish and implement our work to that end.

AMAZON - Amazon strives to be Earth's most customer-centric company where people can find and discover virtually anything they want to buy online. The world's brightest technology minds come to Amazon.com to research and develop technology that improves the lives of shoppers, sellers and developers. For more information about Machine Learning at Amazon, visit: amazon.jobs/NIPS

GRAPHCORE - Graphcore has created a completely new processor that's the first to be specifically designed for machine intelligence workloads – an Intelligence Processing Unit (IPU) that will set a new pace of innovation.

CAPITAL ONE - At Capital One, we dare to dream, disrupt and deliver a better way. Our goal is simple — bring ingenuity, simplicity, and humanity to an industry ripe for change. Founder-led, Capital One is on a mission to help people live their best lives and build one of America's leading information-based technology companies.

DIDI - Didi Chuxing is the world's leading mobile transportation platform. We are committed to working with communities and partners to solve the world's transportation, environmental and employment challenges by using big data-driven deep- learning algorithms that optimize resource allocation. By continuously improving user experience and creating social value, we strive to build an open, efficient, collaborative, and sustainable transportation ecosystem.

KLA-TENCOR - At KLA-Tencor, we research, develop, and manufacture the world's most advanced inspection and measurement equipment for the semiconductor industry. We use machine learning and computational physics to drive data analytics. By enabling the manufacture of ICs at next generation technology nodes and collaborating with institutes all over the world, we're leading the semiconductor industry and we've enabled Moore's Law for more than 40 years.

UBER - Al that moves the world. Uber's mission is to make transportation as reliable as running water—everywhere, for everyone. At Al Labs, we drive this mission by developing cutting-edge machine learning algorithms that extend the state of the art. By blending a wide variety of approaches across the field, we deliver innovation to application.

APPLE INC - Apple revolutionized personal technology with the introduction of the Macintosh in 1984. Today, Apple leads the world in innovation with iPhone, iPad, Mac, Apple Watch and Apple TV. Apple's four software platforms — iOS, macOS, watchOS and tvOS — provide seamless experiences across all Apple devices and empower people with breakthrough services including the App Store, Apple Music, Apple Pay and iCloud. Apple's more than 100,000 employees are dedicated to making the best products on earth, and to leaving the world better than we found it.

DATA COLLECTIVE - Data Collective (DCVC) is a venture capital fund that backs entrepreneurs applying deep tech, including cutting edge ML and Al, to transform giant industries. DCVC and its principals have supported brilliant people changing global-scale businesses for over twenty years, helping create tens of billions of dollars of wealth while also making the world a markedly better place.

TENCENT - Tencent AI Lab is a leading AI research and application lab of Tencent, China's largest internet company. It was founded in 2016 and backed by 70 world-class research scientists and 300 experienced engineers in China and US. Its research focuses on: machine learning, computer vision, speech recognition and natural language processing. To serve the needs of Tencent's core business, its application focuses on: content, game, social and platform AI.

GOLD SPONSORS

Renaissance

ELEMENT

BOREALIS AI - Borealis AI, a RBC Institute for Research, is a curiosity-driven research centre dedicated to achieving state-of-the-art in machine learning. Established in 2016, and with labs in Toronto and Edmonton, we support open academic collaborations and partner with world-class research centres in artificial intelligence. With a focus on ethical AI that will help communities thrive, our machine learning scientists perform fundamental and applied research in areas such as Reinforcement learning, natural language processing, deep learning, and unsupervised learning to solve ground-breaking problems in diverse fields.

JD.COM - JD.com is both the largest ecommerce company in China and the country's largest retailer by revenue. The company strives to offer consumers the best online shopping experience. The company has the largest fulfillment infrastructure of any e-commerce company in China. JD.com is a member of the NASDAQ100 and a Fortune Global 500 company.

OPTIVER - Optiver's story began over 30 years ago, when we started business as a single trader on the floor of Amsterdam's options exchange. Today, we are at the forefront of trading and technology as a leading global electronic market maker, focused on pricing, execution and risk management. With over 1,000 employees globally, our mission to improve the market unites us.

PREFERRED NETWORKS - Preferred Networks Inc. (PFN) is a Tokyobased startup that applies the latest artificial intelligence technologies to emerging industrial problems. PFN develops Chainer, a Python deep learning framework. PFN works with many world-leading companies, such as FANUC for manufacturing robots, Toyota Motors for autonomous driving, and National Cancer Research Center in Japan for healthcare. Our team consists of experts in various fields not only in machine learning but also computer vision, robotics, natural language processing, bioinformatics and many others. The company is expanding globally, and its subsidiary is located in California.

SALESFORCE - Salesforce, the global CRM leader, empowers companies to connect with their customers in a whole new way. The company has been democratizing technology since 1999, making the cloud, mobile, social, IoT, and now Al available to all companies, regardless of size and scale. Salesforce's Customer Success Platform includes cloud-based Applications for sales, service, marketing, commerce and more.

VOLEON - Founded in 2007 by leading machine learning scientists, The Voleon Group designs, develops, and implements advanced technology for investment management. We are committed to solving large-scale financial prediction problems with statistical machine learning.

DE SHAW - The D. E. Shaw group is a global investment and technology development firm with more than \$43 billion in investment capital as of July 1, 2017, and offices in North America, Europe, and Asia. Since our founding in 1988, our firm has earned an international reputation for successful investing based on innovation, careful risk management, and the quality and depth of our staff. We have a significant presence in the world's capital markets, investing in a wide range of companies and financial instruments in both developed and developing economies.

AIRBNB - Founded in 2008, Airbnb's mission is to create a world where people can belong when they travel by being connected to local cultures and having unique travel experiences. Its community marketplace provides access to millions of unique accommodations and experiences in more than 65,000 cities and 191 countries

MERCEDES-BENZ - Mercedes-Benz Research and Development North America, Inc. is a place for exceptional people with outstanding ideas and the absolute willingness to bring them to life. With R&D facilities across the U.S., engineers, software developers, and designers push technology boundaries to shape the future — it's not just about cars at MBRDNA, it's also about the latest and greatest software, cutting-edge technology, and groundbreaking innovation.

WINTON - Winton is an investment management and data science company. The firm was founded in 1997 on the belief that the application of the scientific method offers the best approach to investing. Winton's investment decisions are driven by statistical inference based on the empirical analysis of data, rather than instinct or intuition.

CRITEO RESEARCH - Criteo Research is pioneering innovations in computational advertising. As the center of scientific excellence in the company, Criteo Research delivers both fundamental and applied scientific leadership through published research, product innovations and new technologies powering the company's products. We are looking for outstanding machine learning research scientists whose skills span the entire spectrum of scientific research and are interested in revolutionizing the world of online and computational advertising.

RENAISSANCE - Renaissance Technologies is a quantitative hedge fund management company founded by James Simons in 1982 and located in East Setauket, NY. Renaissance has 300 employees, 90 of whom have PhDs in mathematics, physics, statistics, or computer science. The firm's trading is based on models developed through the application of machine learning to massive quantities of financial data.

NETFLIX - Netflix is the world's leading internet entertainment service with 104 million members in over 190 countries enjoying more than 125 million hours of TV shows and movies per day, including original series, documentaries and feature films. Members can watch as much as they want, anytime, anywhere, on nearly any internet-connected screen.

MALUUBA - Maluuba is a Microsoft company teaching machines to think, reason and communicate. We demonstrate progress by focusing on challenging problems, driving new techniques in Reinforcement learning with a focus on machine comprehension and conversational interfaces. Our vision is to solve 'Artificial General Intelligence' by creating literate machines that can think, reason and communicate like humans.

ELEMENT AI - Element AI is the platform that enables organizations to embrace an AI-First world for today and tomorrow. Composed of a research lab and consultancy uniquely connected to the world's best academic ecosystems, Element AI creates novel AI-First solutions for large corporations.

SILVER SPONSORS

HUAWEI - Huawei is a leading global information and communications technology solutions provider whose business spans telecommunication infrastructure, consumer electronics and business IT solutions. Huawei's Noah's Ark Labs, located in Hong Kong, Shenzhen, Paris, London and other locations, focus on machine learning, data mining, speech and language processing, and computer vision.

TWO SIGMA - At Two Sigma, we imagine breakthroughs in investment management, insurance and related fields by pushing the boundaries of what open source and proprietary technology can do. Our engineers and modelers harness data at tremendous scale, using machine learning, distributed computing and other technologies to build powerful predictive models.

SIGOPT - SigOpt is an optimization platform that seamlessly tunes Al and ML model parameters through a state-of-the-art ensemble of Bayesian and global optimization algorithms behind a simple API. SigOpt can tune any predictive or machine learning model right in place, and the federated API design ensures no proprietary data leaves your premises.

EBAY - eBay is the world's most vibrant marketplace! Our vision for commerce is enabled by people, powered by technology and open to everyone. If you want write a chapter in the next part of our story please check out www. ebaycareers.com for all of our current opportunities.

ORACLE - Tackling Today's Biggest Challenges. The Mission of Oracle Labs is straightforward: Identify, explore, and transfer new technologies that have the potential to substantially improve Oracle's business. Oracle's commitment to R&D is a driving factor in the development of technologies that have kept Oracle at the forefront of the computer industry.

YANDEX - Yandex is one of the largest internet companies in Europe, operating Russia's most popular search engine. We provide user-centric products and services based on the latest innovations in information retrieval, machine learning and machine intelligence to a worldwide customer audience on all digital platforms and devices.

INVENIA LABS - Invenia Labs develops machine learning techniques to solve some of the world's most complex forecasting and decision problems. Located in Cambridge (UK), Invenia's current mission is to improve the efficiency of electrical grids, helping to reduce pollution and fight the global climate crisis.

SAP - As market leader in corporate application software, SAP now integrates machine learning technologies to empower business growth.SAP Leonardo, our digital innovation system offers an entire portfolio of automated Applications&services that allows companies to run better, rapidly innovate & scale.By bringing ML, IoT, blockchain, Big Data together on SAP cloud platform we enable the intelligent enterprise.

RECURSION - Recursion is an emerging biotechnology company that combines experimental biology and bioinformatics with artificial intelligence in a massively parallel system to efficiently identify treatments for genetic diseases utilizing massive, data-rich image sets. Recursion is becoming the first truly Al-enabled biotech company with a vision to ultimately create a map of human cellular biology.

JUMP TRADING - Jump Trading is a leading quantitative trading firm built upon cutting-edge research and machine learning, high-performance technology, and an entrepreneurial culture. We build predictive models from big data and develop algorithms to automatically execute trades in dozens of financial exchanges around the world.

DISNEY RESEARCH - Disney Research's objective is to drive value across The Walt Disney Company by injecting scientific & technological innovation. Our world-class research seeks to invent and transfer the most compelling technologies enabling the company to differentiate its content, services, and products. Disney Research combines the best of academia and industry, by doing basic and application-driven research.

QUORA - We want to connect the people who have knowledge to the people who need it, to bring together people with different perspectives so they can understand each other better, and to empower everyone to share their knowledge for the benefit of the rest of the world.

CIRRASCALE - Cirrascale Cloud Services is a premier provider of public and private dedicated, multi-GPU cloud solutions enabling deep learning. The company offers cloud-based solutions for large-scale deep learning operators, service providers, as well as HPC users. To learn more about Cirrascale Cloud Services and its unique dedicated, multi-GPU cloud solutions, please visit http://www.cirrascale.cloud

TOUTIAO - Founded in March 2012, Beijing Bytedance Technology Co., Ltd. runs Toutiao, a mobile application that makes personalized content recommendation based on data mining. Toutiao's mission is to help its users consume the most valuable information in the most convenient fashion.

BENEVOLENT AI - BenevolentAI is the global leader in the development and application of AI for scientific innovation and one of the world's top five private AI companies. It is transforming the process of scientific discovery by enabling previously unimaginable scientific advances, initially in the accelerated development of new medicines and more recently in energy storage.

SWISS DATA SCIENCE CENTER - The Swiss Data Science Center, a joint venture between EPFL and ETH Zurich, aims to accelerate the adoption of data science and machine learning techniques within academic disciplines, the academic community at large, and the industrial sector. It addresses the gap between those who create data, those who develop data analytics and systems, and those who could extract value from it.

SILVER SPONSORS

PDT PARTNERS

Bloomberg®

PDT PARTNERS - PDT Partners is a NYC-based quantitative hedge fund with a a stellar twenty-three-year track record and a reputation for excellence in the algorithmic trading space; we apply rigorous scientific investigation to model financial markets globally. We have a strong history of hiring, challenging and retaining engineers and scientists from a variety of industries and disciplines.

CROWDFLOWER - CrowdFlower is the essential human-in-the-loop Al platform for data science and machine learning teams. CrowdFlower's technology and expertise trains, tests, and tunes machine learning models for a wide range of use cases from autonomous vehicles, content moderation, and chatbots to medical image labeling, CRM management, and search relevance. For more information, visit www.crowdflower.com.

COGENT LABS - Cogent Labs is an AI company that aspires to shape the future of how people work and live using artificial intelligence. Cogent Labs bridges the gap between newly published academic research and real-world business solutions by leveraging expertise across many domains, including time series forecasting, information extraction, natural language and speech processing, and Reinforcement learning.

TARGET - Minneapolis-based Target Corporation (NYSE: TGT) serves guests at 1,816 stores and at Target.com. Since 1946, Target has given 5 percent of its profit to communities, which today equals millions of dollars a week. For more information, visit Target.com/Pressroom. For a behind-the-scenes look at Target, visit Target.com/abullseyeview or follow @TargetNews on Twitter.

ADOBE - Adobe is the global leader in digital marketing and digital media solutions. Our tools and services allow our customers to create groundbreaking digital content, deploy it across media and devices, measure and optimize it over time and achieve greater business success. We help our customers make, manage, measure and monetize their content across every channel and screen.

LAMBDA - Lambda DevBoxes and GPU servers are optimized for training Deep Neural Networks. Pre-installed with every Deep Learning library: TensorFlow, Torch/PyTorch, Caffe with NCCL, Keras, Theano, and MXNet. Buy it, plug it in, and start training.

XPRIZE - XPRIZE, a 501(c)(3) nonprofit organization, is the global leader in designing & implementing innovative competition models to solve the world's grandest challenges. The IBM Watson AI XPRIZE is a \$5M global competition challenging teams to develop powerful Artificial Intelligence (AI) based Applications and demonstrate how humans can collaborate with AIs to tackle the world's grand challenges.

BLOOMBERG - Bloomberg's core product, the Terminal, is a must-have for the most influential people in finance. We are building machine learning models for predicting the impact of news stories on company prices, recommendation systems, semantic parsing for question answering, topic

clustering and classification, sentiment analysis, anomaly detection in time series and a variety of other problems.

VATIC LABS - The word vatic means to describe or predict what will happen in the future, and that's exactly what we do. Vatic Labs is a quantitative trading firm where traders, AI researchers, and technologists collaborate to develop autonomous trading agents and cutting edge technology. We work together, building systems that boost market efficiency and transparency.

FEATUREX - FeatureX uses AI to discover meaningful patterns in the world's data. We use computer vision, deep learning and statistical machine learning on two projects. We process high-resolution satellite images to extract patterns in economic activity and we analyze financial datasets to build systematic trading models. We offer challenging problems, creative freedom, and a focus on research and learning.

AUTOX - AutoX is a startup creating full-stack A.I. software solution (perception, planning, and control) for level-5 full-autonomy self-driving vehicles. AutoX invented a camera-first self-driving solution that costs only a tiny fraction of traditional LiDar- based approaches. We believe that autonomous driving should not be a luxury, and we are making it universally available to every citizen.

ROSETTA ANALYTICS - Rosetta Analytics is an investment management startup committed to using artifi-cial intelligence and machine learning with traditional and nontraditional data sources to create scalable investment strategies for pension funds, endowments, foundations, and sovereign wealth funds.

OBSIDIAN SECURITY - Led by former founding team members of Cylance and Carbon Black, Obsidian Security is a data driven start-up living at the intersection of cybersecurity, artificial intelligence, and hybrid-cloud environments. Backed by Greylock Partners, Obsidian Security is focused on using applied mathematics and machine learning to bring insights to organizations using modern hybrid architectures.

MAN AHL - We are a quantitative investment manager. A pioneer of systematic trading since 1987, we mix machine learning, computer science and engineering with terabytes of data to invest billions of dollars every day. Our collaboration with academia — the Oxford-Man Institute of Quantitative Finance — celebrated its 10th anniversary in 2017. We are a flat-structured company that seeks the best.

HUDSON RIVER - Hudson River Trading brings a scientific approach to trading financial products. We have built one of the world's most sophisticated computing environments for research and development. Our researchers are at the forefront of innovation in the world of algorithmic trading.

SBERBANK - Sberbank is a powerful modern bank which is rapidly becoming one of the major global financial institutions. Accounting for one third of Russian banking system, Sberbank today is the only Russian bank featuring in the World's Top 50 Biggest Banks (total assets more than 400 bl US\$). Sberbank has 145,6 mln retail clients worldwide and 1,8 mln corporate clients in Russia.

SILVER SPONSORS

JPMORGAN CHASE & CO.

Snap Inc.

JP MORGAN CHASE & CO - At JPMorgan Chase & Co, technology innovation is driven by a shared commitment to stay ahead of our customers' needs globally. In our worldwide tech centers, our team of 40,000 technology professionals collaborate to design, build, & deploy solutions that include strategic technology initiatives, big data, mobile solutions, electronic payments, machine learning, cyber security & cloud development.

SUSQUEHANNA INTERNATIONAL GROUP LLC - SIG is a global quantitative trading firm founded with an entrepreneurial mindset and a rigorous analytical approach to decision making. We commit our own capital to trade financial products around the world. Building virtually all of our own trading technology from scratch, we are leaders and innovators in high performance, low latency trading.

MONTREAL INTERNATIONAL - Montreal International is greater Montréal's economic development agency. Its mission is to contribute to the economic development of Greater Montréal and enhance its international status. Its mandates include attracting foreign direct investments, international organizations and international strategic workers as well as promoting the competitive and international environment of Greater Montréal.

CUBIST SYSTEMATIC STRATEGIES - Cubist Systematic Strategies, the quantitative investing business of Point72, deploys systematic, computer-driven trading strategies across multiple liquid asset classes, including equities, futures, and foreign exchange. The core of our effort is rigorous research into a wide range of market anomalies, fueled by our unparalleled access to a wide range of publicly available data sources.

TUDOR - Tudor is an investment firm with deep experience across market cycles gained over nearly four decades of trading worldwide financial markets. Driven by a commitment to innovation and excellence, we seek to generate consistent returns for our clients and a dynamic environment for our staff through persistent evolution of our technology, research methods and trading and investing techniques .

G-RESEARCH - G-Research is a leading quantitative research and technology company. We apply scientific techniques to find patterns in large, noisy and real-world data sets, using the latest statistical and "big data" analysis methodologies to predict global financial markets. Our technology, research and resources are combined to build a single, powerful platform for developing your ideas. We use rigorous...

WAVE COMPUTING - Wave Computing is the Silicon Valley start-up that is revolutionizing machine learning with its roadmap of WaveFlow compute appliances. The company's solutions leverage its native dataflow technology to outperform machine learning products available today. Wave Computing, one of CIO Application Magazine's Top 25 Artificial Intelligence Providers, is offering its solutions to customers globally.

AIG - American International Group, Inc. is a leading international insurance organization with the vision to become its clients' most valued insurer. AIG believes in harnessing the power of machine learning and deep learning techniques to generate new insights from data and to enhance human judgment in real business contexts. If you are passionate about evidence-based decision making, connect with AIG!

QUANTUMBLACK - QuantumBlack, a McKinsey company, is an advanced analytics firm operating at the intersection of strategy, technology & design to improve performance outcomes for organisations. With roots in Formula One, we now work across sector with some of the world's leading organisations in advanced industries, healthcare, and finance.

SNAP INC - Snap Inc. is a camera company. We believe that reinventing the camera represents our greatest opportunity to improve the way people live and communicate. Our products empower people to express themselves, live in the moment, learn about the world, and have fun together.

QUALCOMM - Qualcomm technologies powered the smartphone revolution, connecting billions of people. We pioneered 3G and 4G. Now we're leading the way to 5G - a new era of intelligent, connected devices. Our products are revolutionizing industries including automotive, computing, IoT, healthcare and data center.

BRONZE SPONSORS

PANASONIC - Panasonic is focusing on bringing new solutions to an everchanging environment, full of cutting edge technologies. We apply Deep Learning as a tool to improve the real-life situations of today and the evolving situations of tomorrow. Deep Learning is just one of the key technologies we employ to understand more about each other and how to navigate through our lives: safely, honestly and happily.

QIHOO 360 - Qihoo 360 is a Chinese internet security company known for its antivirus software (360 Safeguard, 360 Mobile Safe), Web Browser (360 Browsers), and Mobile Application Store (360 Mobile Assistant).

CYLANCE - CylanceOPTICS™ is an artificial intelligence driven endpoint detection and response (EDR) solution designed to extend the prevention delivered by Cylance's award-winning product, CylancePROTECT®, through Al driven root cause analysis, scalable threat hunting, and immediate response with consistent visibility into threats against endpoints. Visit www.cylance.com.

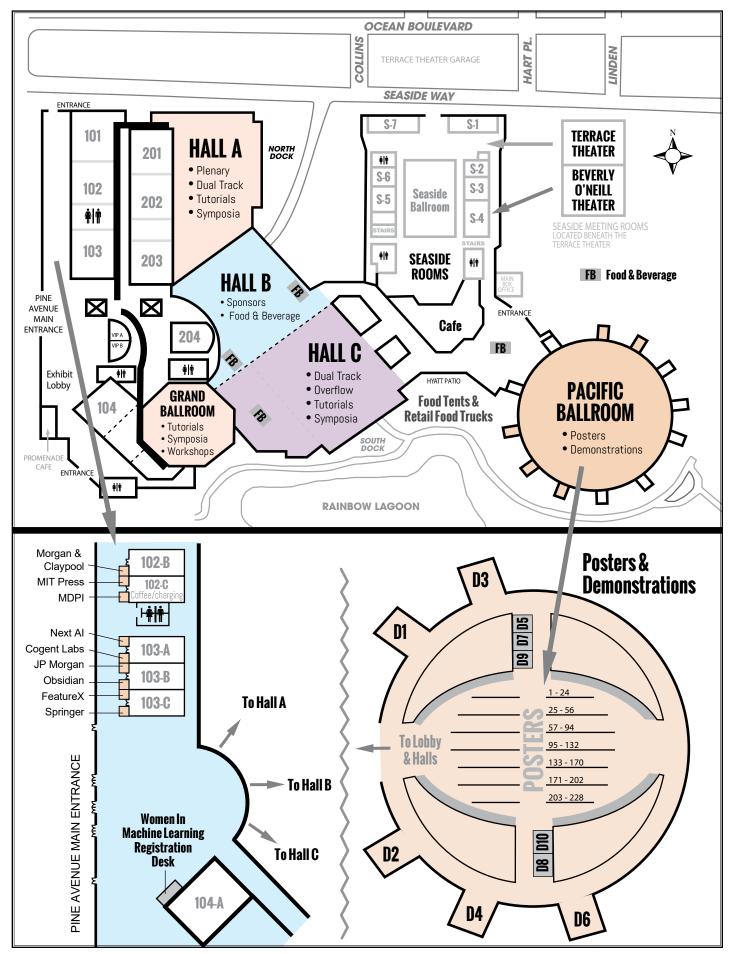
PETUUM - Petuum, Inc. is a Machine Learning and Artificial Intelligence company built upon years of research in Machine Learning and Distributed Systems by leading Carnegie Mellon University faculty and students. Petuum aims to virtualize hardware and ubiquitize AI, by creating a

powerful, programmable and distributed AI operating system with a familiar user experience - becoming an everyday tool for managers, professionals, programmers and data scientists in the enterprise. The Petuum operating system is omni-lingual (programmable in all languages), omni-mount (deployable on all hardware), and omni-source (compatible with all data formats). Built for the enterprise, Petuum is putting practical AI into the hands of everyone who needs it.

SENTIENT TECHNOLOGIES - Sentient Technologies builds disruptive products differentiated by scaled Al. Sentient's powerful distributed artificial intelligence (Al) platform combines multiple Al disciplines (deep learning, evolutionary Al, neuroevolution) with unmatched scale. Sentient uses its platform in finance (sentientim.com), retail (sentient.ai/aware), and digital media (sentient.ai/ascend).

NEXTAl - NextAl is a startup accelerator located in Toronto, Canada for entrepreneurs, researchers and scientists looking to launch Al-enabled ventures. We provide up to \$200K seed funding, dedicated workspace and in-depth business and technical education taught by award-winning global faculty and entrepreneurs. Come build your company in one of the global hotspots for Al research and commercialization. Learn more at www.nextai.com

EXHIBITORS



NIPS would like to especially thank Facebook for streaming services.

NIPS would like to especially thank Microsoft Research for their donation of Conference Management Toolkit (CMT) software and server space.

HALL B - SPONSOR AREA Food & Beverage Area KLA-Tencor AutoX QuantumBlack Vatic Labs SNAP Inc. Target JD.COM SigOpt Adobe Research Toutiao Qualcomm Naver | Line Borealis Al Cirrascale SAP SE Rosetta Analytics XPrize Element Al Cloud Services Recursion Renaissance Wave Computing Yandex Pharmaceuticals Technologies Preferred Networks Apple Inc. Hudson River Oracle Invenia Labs Trading Swiss Data Optiver CrowdFlower eBay Inc. G Research Hauwei Science Center Disney Research Sberbank Two Sigma Lambda Labs Quora Didi Chuxing AirBnB Man AHL PDT Partners Tencent Graphcore Voleon Group Google Inc Montreal Intl. Criteo Uber **Amazon** DeepMind Mercedes-Benz Salesforce **Jump Trading** D. E. Shaw Capital One Facebook Alibaba Benevolent Al Maluuba Inc. Data Collective Bloomberg Citadel LLC Netflix Beijing Baidu **Cubist System** Winton Group DIAMOND SPONSOR AREA Microsoft **IBM Research NVIDIA** Audi Of America (intel) Nervana

FOOD & BEVERAGE AREA

GENERAL INFORMATION

REGISTRATION DESK

Sunday, December 3: 12:00 pm - 8:00 pm Monday - Friday: 7:00 am - 6:00 pm Saturday, December 9: 7:00 am - 12:00 pm

OPENING RECEPTION AND POSTER SESSION

Monday, December 4 starting at 6:30 pm

Food service will be in many locations; Please see the maps on the next page

CLOSING RECEPTION PACIFIC BALLROOM

Saturday, December 9 at 6:30 pm Performance By The Imposteriors (See Below) *Deep Learning Art Exhibit* (See below)

POSTER SESSIONS PACIFIC BALLROOM

Monday, Dec. 4, 7:00 pm - 10:30 pm Tuesday, Dec. 5, 7:00 pm - 10:30 pm Wednesday, Dec. 6, 7:00 pm - 10:30 pm

Take down your poster at 10:30 pm or they will be discarded.

The Imposteriors (Brad Carlin, Don Hedeker, Mark Glickman, Jennifer Hill, and Michael Jordan) is a band made up of professors whose goal in life is to inspire even the most awkward music-lover to dance. We play a variety of musical genres from Motown to classic rock 'n roll to indie pop to 80's classics to punk/polka to current rock to "I'membarrassed-to-admit-I-like-that-song-from-the-radio" crowd pleasers. If it makes you want to dance, we want to play it.

We hail from five different parts of the country but get together several times a year at academic conferences and find a way to play together. In between gigs we live the lives of unassuming university professors whose students would never suspect we are really part-time rock legends. (In our show at NIPS, we will also also be joined by a handful of mystery guests, who are also unassuming university professors, and who also may be on their way to legendary status. Or not...)

WIFI

SSID: NIPS

Password: conference

MOBILE APP

Step 1: Download and install the Whova app from App Store (for iPhones) or Google Play (for Android phones).

Step 2: Sign up in the app using the email address you registered with.

Step 3: You're all set.

Now you will be able to:

- View the event agenda and plan your schedule.
- If you set up your own profile, you can send in-app messages and exchange contact information
- Receive update notifications from organizers.
- Access agenda, maps, and directions.

After downloading, sign up on Whova with the email address that you used to RSVP for our event, or sign up using your social media accounts. If you are asked to enter an invitation code to join the event, please use the following invitation code: **nips**

CHARGING TABLES

Located throughout the venue

SPONSORS & EXHIBITORS

Promenade lobby & Hall B.

DEEP LEARNING ART EXHIBIT

In the Pacific Ballroom, NIPS is organizing an art exhibit (sponsored by DeepArt, ChaLearn and Nvidia). It will display 50 posters that have been generated with a neural network program fusing the structure of a picture and the artistic style of another (an initial selection was made from submissions shown at the web address below according to popular votes). The posters most acclaimed by visitors of the NIPS exhibit will win a free dinner invitation. Please visit!

https://deepart.io/nips/submissions/votes

ORGANIZING COMMITTEE

General Chairs

Isabelle Guyon, U. Paris-Saclay & ChaLearn
Ulrike von Luxburg, U. of Tübingen

Program Chair

Samy Bengio, Google Brain

Program Co-Chairs

Hanna Wallach, MSR NYC Rob Fergus, Facebook Al Research / NYU S.V.N. Vishwanathan, UCSC and Amazon

Tutorials Chairs

Jenn Wortman Vaughan, Microsoft Research Samuel Kaski, Aalto U. and U. of Helsinki

Workshop Chairs

Ralf Herbrich, Amazon Suchi Saria, Johns Hopkins U.

Demo and Competition Chairs

Markus Weimer, Microsoft Research Sergio Escalera, U. of Barcelona

Press Chairs

Neil Lawrence, U. of Sheffield / Amazon Cambridge Katherine Gorman, Talking Machines /

Collective Next

Publications Chair and Electronic Proceedings Chair

Roman Garnett, Washington U. in St. Louis

Program Managers

Choon Hui Teo, Amazon Daniel Hill, Amazon

NIPS FOUNDATION OFFICERS & BOARD MEMBERS

PRESIDENT

Terrence Sejnowski, The Salk Institute

TREASURER

Marian Stewart Bartlett, Apple

SECRETARY

Michael Mozer, UC Boulder

EXECUTIVE DIRECTOR

Mary Ellen Perry, The Salk Institute

LEGAL ADVISOR

David Kirkpatrick

IT DIRECTOR

Lee Campbell, The Salk Institute

EXECUTIVE BOARD

Zoubin Ghahramani, Univ. of Cambridge Corinna Cortes, Google Research Léon Bottou, Microsoft Research Chris J.C. Burges, Microsoft Research Neil D. Lawrence, Univ. of Sheffield Fernando Pereira, Google Research Max Welling, Univ. of Amsterdam

ADVISORY BOARD

Peter Bartlett, Queensland Univ., UC Berkley Sue Becker, McMaster Univ., Ontario, Canada Yoshua Bengio, Univ. of Montreal, Canada Jack Cowan, Univ. of Chicago Thomas G. Dietterich, Oregon State Univ. Stephen Hanson, Rutgers Univ. Michael I. Jordan, Univ. of California, Berkeley Michael Kearns, Univ. of Pennsylvania Scott Kirkpatrick, Hebrew Univ., Jerusalem Daphne Koller, Stanford Univ. John Lafferty, Univ. of Chicago Todd K. Leen, Oregon Health & Sciences Univ. Richard Lippmann, MIT Bartlett Mel, Univ. of Southern California John Moody, UC Berkeley & Portland John C. Platt, Google Gerald Tesauro, IBM Watson Labs Sebastian Thrun, Stanford Univ. Dave Touretzky, Carnegie Mellon Univ. Lawrence Saul, Univ. of California, San Diego Bernhard Schölkopf, MP, Tübingen/Stuttgart Dale Schuurmans, Univ. of Alberta, Canada John Shawe-Taylor, Univ. College London Sara A. Solla, Northwestern Univ. Med. School Yair Weiss, Hebrew Univ. of Jerusalem Chris Williams, Univ. of Edinburgh Rich Zemel, Univ. of Toronto

SUPPORT TEAM

The organization and management of NIPS would not be possible without the help of many volunteers, students, researchers and administrators who donate their valuable time and energy to assist the conference in various ways. The support staffs' tireless efforts make the conference run smoothly and efficiently every year. NIPS would particularly like to acknowledge the exceptional work of:

Brad Brockmeyer Terrance Gaines Andrea Brown Peggy Briggs Jen Perry Ramona Marchand

PROGRAM COMMITTEE

Senior Area Chairs

Aapo Hyvarinen, Aaron Courville,
Alina Beygelzimer, Antoine Bordes,
Claire Monteleoni, Claudio Gentile,
Corinna Cortes, Dale Schuurmans,
Eric Xing, Francis Bach, Gunnar
Raetsch, Hugo Larochelle, Inderjit
Dhillon, Irina Rish, Jeff Bilmes,
Jennifer Neville, Jerry Zhu, John
Langford, Katherine Heller, Kristen
Grauman, Marc'Aurelio Ranzato,
Maria-Florina Balcan, Marina Meila,
Padhraic Smyth, Peter Stone, Raquel
Urtasun

Area Chairs

Afshin Rostamizadeh, Akshay Krishnamurthy, Alain Rakotomamonjy, Alan Stocker, Alekh Agarwal, Aleksandrs Slivkins, Alexander Ihler, Alexandra Carpentier, Alexandros Dimakis, Ali Cemgil, Alp Kucukelbir, Ambuj Tewari, Amir Globerson, Angela Yu, Anima Anandkumar, Anitha Kaanan, Ariadna Quattoni, Armand Joulin, Arnak Dalalyan, Arthur Szlam, Barbara Engelhardt. Barnabas Poczos, Been Kim, Benjamin Marlin, Benjamin Van Roy, Bert Huang, Bharath Sriperumbudur, Bill Triggs, Brian Kulis, Cedric Archambeau, Cheng Soon Ong, Chris Pal, Cordelia Schmid, Daniel Hsu. Danilo Rezende. Dan Sheldon. David Duvenaud, David Mimno, David Sontag, David Wipf, Dhruv Batra, Dilan Gorur, D. Sculley, Dumitru Erhan, Elad Hazan, Elena Zheleva, Emma Brunskill, Emmanuel Abbe, Eunho Yang, Fei Sha. Fernando Perez-Cruz. Finale Doshi-Velez. Francesco Orabona. François Fleuret, François Laviolette, Frank Wood, Gal Chechik, Gilles Blanchard, Graham Taylor, Greg Mori, Guillaume Bouchard, Guillaume Obozinski, Hang Li, Hartmut Neven, Honglak Lee, Hugo Jair Escalante, Ian Goodfellow, Ichiro Takeuchi, Ivan Titov, Jacob Abernethy, Jakob Macke, Jasper Snoek, Jean-Philippe Vert,

Jennifer Dy, Jennifer Listgarten, Jens Kober, Jianbo Shi, Jingyi Yu, Joan Bruna, John Duchi, John Wright, Jonathan Pillow, Jon Shlens, Julien Mairal, Jure Leskovec, Jyrki Kivinen, Karen Simonyan, Karsten Borgwardt, Karthik Sridharan, Kenji Fukumizu. Koby Crammer, Koji Tsuda, Koray Kavukcuoglu, Kun Zhang, Kyunghyun Cho, Laurens van der Maaten, Le Song, Lester Mackey, Li Deng, Lihong Li, Lorenzo Rosasco, Manuel Rodriguez, Marco Cuturi, Mario Marchand, Mark Schmidt, Matthew Blaschko, Matthias Hein, Matthias Seeger, Maxim Raginsky, Maya Gupta, Meg Mitchell, Mehreen Saeed, Michael Mahoney, Michele Sebag, Miguel Carreira-Perpinan, Mingyuan Zhou, Miro Dudik, Mohammad Emtivaz Khan, Mohammad Ghavamzadeh, Moritz Hardt, Navdeep Jaitly, Nicolas LeRoux, Nicolas Usunier. Novi Quadrianto. Nuno Vasconcelos, Ofer Dekel, Oliver Stegle, Oriol Vinyals, Patrick Flaherty,

Pavel Laskov, Peter Orbanz, Philipp Hennig, Prateek Jain, Purnamrita Sarkar, Raia Hadsell, Remi Munos, Ricardo Silva, Richard Wilkinson, Rita Cucchiara, Romer Rosales, Ronan Collobert, Ruslan Salakhutdinov, Ruth Urner, Ryan Adams, Sally Goldman, Sameer Singh, Samuel Kaski, Sanja Fidler, Sanjiv Kumar, Sanmi Koyejo, Sebastian Bubeck, Sebastian Nowozin, Seungjin Choi, Shakir Mohamed, Shie Mannor, Shinichi Nakaiima. Simon Lacoste-Julien, Sinead Williamson, Stefanie Jegelka, Surya Ganguli, Suvrit Sra, Tamara Broderick Tamir Hazan Tara Sainath, Thomas Gaertner, Tieyan Liu. Tomoharu Iwata. Umar Sved. Venkatesh Saligrama, Viren Jain, Virginia de Sa, Vitaly Kuznetsov, Vlad Mnih, Wee Sun Lee, Xiaoli Fern, Xinhua Zhang, Yaron Singer, Y-Lan Boureau, Yuanging Lin, Yves Grandvalet, Zaid Harchaoui, Zhi-Hua Zhou, Zico Kolter

MONDAY TUTORIALS

TIME & DESCRIPTION LOCATION

8:00 am - 10:15 am - Tutorial Sessions

A Primer on Optimal Transport

Marco Cuturi, Justin M Solomon

Deep Learning: Practice and Trends

Nando de Freitas, Scott Reed, Oriol Vinyals

Reinforcement Learning with People

Emma Brunskill

10:45 am -- 1:00 pm - Tutorial Sessions

Coffee break - 10:15 am - 10:45 am

Fairness in Machine Learning

Solon Barocas, Moritz Hardt

Deep Probabilistic Modelling with Gaussian Processes

Neil D Lawrence

Statistical Relational Artificial Intelligence: Logic, Probability and Computation

Luc De Raedt, David Poole, Kristian Kersting, Sriraam Natarajan

Hall C

Hall A

Grand Ballroom

Grand Ballroom

Hall A

Hall C

1 pm - 2:30 pm - Lunch Break (On Your Own)

2:30 pm - 4:45 pm - Tutorial Sessions

Differentially Private Machine Learning: Theory, Algorithms and Applications

Kamalika Chaudhuri, Anand D Sarwate

Grand Ballroom

Geometric Deep Learning on Graphs and Manifolds

Michael Bronstein, Joan Bruna, Arthur Szlam, Xavier Bresson, Yann LeCun

Engineering and Reverse-Engineering Intelligence Using Probabilistic

Programs, Program Induction, and Deep Learning

Hall C

Hall A

Josh Tenenbaum, Vikash K Mansinghka

5:30 pm - 6:20 pm

Invited Talk: Posner Lecture - Energy Strategies to Decrease CO2 Emissions

John Platt

Hall A

6:30 pm - 10:30 pm Opening Reception & Posters

Pacific Ballroom

Tutorials: 8:00 - 10:15 AM

A Primer on Optimal Transport

Location: Grand Ballroom

Marco Cuturi (Univ. Paris-Saclay) Justin M Solomon (MIT)

Optimal transport (OT) provides a powerful and flexible way to compare probability measures, discrete and continuous, which includes therefore point clouds, histograms, datasets, parametric and generative models. Originally proposed in the eighteenth century, this theory later led to Nobel Prizes for Koopmans and Kantorovich as well as Villani's Fields Medal in 2010. OT recently has reached the machine learning community, because it can tackle challenging learning scenarios including dimensionality reduction, structured prediction problems that involve histogram outputs, and estimation of generative models such as GANs in highly degenerate, high-dimensional problems. Despite very recent successes bringing OT from theory to practice, OT remains challenging for the machine learning community because of its mathematical formality. This tutorial will introduce in an approachable way crucial theoretical, computational, algorithmic and practical aspects of OT needed for machine learning Applications.

Deep Learning: Practice and Trends

Location: Hall A

Nando de Freitas (DeepMind) Scott Reed (DeepMind) Oriol Vinyals (DeepMind)

Deep Learning has become an essential toolbox which is used in a wide variety of Applications, research labs, industry, etc. In this tutorial, we will provide a set of guidelines which will help newcomers to the field understand the most recent and advanced models, their application to diverse data modalities (such as images, videos, waveforms, sequences, graphs,) and to complex tasks (such as learning to learn from a few examples, or generating molecules).

Reinforcement Learning with People

Location: Hall C

Emma Brunskill (Stanford)

There has been recent very exciting advances in (deep) Reinforcement learning, particularly in the areas of games and robotics. Yet perhaps the largest impact could come when Reinforcement learning systems interact with people. In this tutorial we will discuss work on Reinforcement learning for helping and assisting people, and frameworks and approaches for enabling people helping Reinforcement learning. We will cover Background on Reinforcement learning. Reinforcement learning for people-focused Applications Approaches for enabling people to assist Reinforcement learners. A number of the ideas presented here will also be relevant to many high stakes Reinforcement learning systems.

Tutorials: 10:45 - 1:00 PM

Fairness in Machine Learning

Location: Grand Ballroom

Solon Barocas (Cornell) Moritz Hardt (UC Berkeley)

Over the past few years, fairness has emerged as a matter of serious concern within machine learning. There is growing recognition that even models developed with the best of intentions may exhibit discriminatory biases, perpetuate inequality, or perform less well for historically disadvantaged groups. Considerable work is already underway within and outside machine learning to both characterize and address these problems. This tutorial will take a novel approach to parsing the topic, adopting three perspectives: statistics, causality, and measurement. Each viewpoint will shed light on different facets of the problem and help explain matters of continuing technical and normative debate. Rather than attempting to resolve questions of fairness within a single technical framework, the tutorial aims to equip the audience with a coherent toolkit to critically examine the many ways that machine learning implicates fairness.

Deep Probabilistic Modelling with Gaussian Processes

Location: Hall A

Neil D Lawrence (Amazon)

Neural network models are algorithmically simple, but mathematically complex. Gaussian process models are mathematically simple, but algorithmically complex. In this tutorial we will explore Deep Gaussian Process models. They bring advantages in their mathematical simplicity but are challenging in their algorithmic complexity. We will give an overview of Gaussian processes and highlight the algorithmic approximations that allow us to stack Gaussian process models: they are based on variational methods. In the last part of the tutorial will explore a use case exemplar: uncertainty quantification. We end with open questions.

Statistical Relational Artificial Intelligence: Logic, Probability and Computation

Location: Hall C

Luc De Raedt (KU Leuven)

Kristian Kersting (Dortmund U.)

David Poole (U. of BC)

Sriraam Natarajan (Indiana)

This tutorial will provide a gentle introduction into the foundations of statistical relational artificial intelligence, and will realize this by introducing the foundations of logic, of probability, of learning, and their respective combinations. Both predicate logic and probability theory extend propositional logic, one by adding relations, individuals and quantified variables, the other by allowing for measures over possible worlds and conditional queries. While logical and Probabilistic approaches have often been studied and used independently within artificial intelligence, they are not in conflict with each other but they are synergistic. This explains why there has been a considerable body of research in combining first-order logic and probability over the last 25 years, evolving into what has come to be called Statistical Relational Artificial Intelligence (StarAI). Relational Probabilistic models — we use this term in the broad sense, meaning any models that combine relations and probabilities — form the basis of StarAI, and can be seen as combinations of probability and predicate calculus that allow for individuals and relations as well as probabilities. In building on top of relational models, StarAl goes far beyond reasoning, optimization, learning and acting optimally in terms of a fixed number of features or variables, as it is typically studied in machine learning, constraint satisfaction, Probabilistic reasoning, and other areas of Al. Since StarAl draws upon ideas developed within many different fields, however, it can also be quite challenging for newcomers to get started and our tutorial precisely aims to provide this background.

Tutorials: 2:30 - 4:45 PM

Differentially Private Machine Learning: Theory, Algorithms and Applications

Location: Grand Ballroom

Kamalika Chaudhuri (UCSD) Anand D Sarwate (Rutgers, U. of New Jersey)

Differential privacy has emerged as one of the de-facto standards for measuring privacy risk when performing computations on sensitive data and disseminating the results. Algorithms that guarantee differential privacy are randomized, which causes a loss in performance, or utility. Managing the privacy-utility tradeoff becomes easier with more data. Many machine learning algorithms can be made differentially private through the judicious introduction of randomization, usually through noise, within the computation. In this tutorial we will describe the basic framework of differential privacy, key mechanisms for guaranteeing privacy, and how to find differentially private approximations to several contemporary machine learning tools: convex optimization, Bayesian methods, and deep learning.

Geometric Deep Learning on Graphs and Manifolds

Location: Hall A

Michael Bronstein (USI Lugano, Tel Aviv U.& Intel) Joan Bruna (NYU) Arthur Szlam (Facebook) Xavier Bresson (NTU) Yann LeCun (Facebook Al Research, New York U.)

In the past years, deep learning methods have achieved unprecedented performance on a broad range of problems in various fields from computer vision to speech recognition. So far research has mainly focused on developing deep learning methods for Euclidean-structured data, while many important Applications have to deal with non-Euclidean structured data, such as graphs and manifolds. Such geometric data are becoming increasingly important in computer graphics and 3D vision, sensor networks, drug design, biomedicine, recommendation systems, and web Applications. The adoption of deep learning in these fields has been lagging behind until recently, primarily since the non-Euclidean nature of objects dealt with makes the very definition of basic operations used in deep networks rather elusive.

The purpose of the proposed tutorial is to introduce the emerging field of geometric deep learning on graphs and manifolds, overview existing solutions and Applications for this class of problems, as well as key difficulties and future research directions.

Engineering and Reverse-Engineering Intelligence Using Probabilistic Programs, Program Induction, and Deep Learning

Location: Hall C

Josh Tenenbaum (MIT) Vikash K Mansinghka (MIT)

Recent successes in computer vision, natural language processing and other areas of artificial intelligence have been largely driven by methods for sophisticated pattern recognition — most prominently deep neural networks. But human intelligence is more than just pattern recognition. In particular, it depends on a suite of cognitive capacities for modeling the world: for making judgment calls in ambiguous situations, explaining and understanding what we see, imagining things we could see but haven't yet, solving problems and planning actions to make these things real, and building new models as we learn more about the world. We will talk about prospects for reverse-engineering these capacities at the heart of human intelligence, and using what we learn to make machines smarter in more human-like ways. We introduce basic concepts and techniques of Probabilistic programs, inference programming and program induction, which together with tools from deep learning and modern video game engines provide an approach to capturing many aspects of everyday intelligence.

Specific units in our tutorial will show how:

- (1) Defining Probabilistic programs over algorithms and representations drawn from modern video game engines graphics engines, physics engines, and planning engines allows us to capture how people can perceive rich three-dimensional structure in visual scenes and objects, perceive and predict objects' motion based on their physical characteristics, and infer the mental states of other people from observing their actions.
- (2) By formulating model learning as higher-order inference in these systems, we can construct ``program-learning programs'. These programs can learn new concepts from just one or a few examples.
- (3) It is possible to build Probabilistic programming systems in which scalable, general-purpose, efficient inference and model discovery algorithms can be easily and flexibly programmed by end users. These languages provide powerful tools for robotics, interactive data analysis, and scientific discovery.

Posner Lecture - 5:30 PM - Hall A

Energy Strategies to Decrease CO2 Emissions

The problem of climate change is very difficult to solve. On the one hand, fossil fuels are ubiquitous in human civilization: we get 16 trillion watts of power by burning fossil fuels. On the other hand, according to climate modeling, we have less than 30 years at current burn rates before we run out of carbon budget to keep the mean global temperature rise below 2 degrees C.

There are many different proposed strategies to combat climate change. This talk will attempt to clarify the confusion via economic modeling. First, I will give a tutorial about the energy system. Then, I will show a simple economic model which predicts the cost of and CO2 produced by electricity generation, given a number of assumptions. We will go through possible scenarios and see how we can reduce CO2 dramatically at least cost.

The biggest lesson from the economic model is that we need a "strong energy miracle": a zero-carbon 24x7 technology that can produce electricity cheaper than the isolated cost of burning the fossil fuel. Currently, there is no such technology. I'll talk about one technology that may become a strong energy miracle, and discuss progress towards making that a reality.

John Platt (Google)

John Platt is best known for his work in machine learning: the SMO algorithm for support vector machines and calibrating the output of models. He was an early adopter of convolutional neural

networks in the 1990s. However, John has worked in many different fields: data systems, computational geometry, object recognition, media Uls, analog computation, handwriting recognition, and applied math. He has discovered two asteroids, and won a Technical Academy Award in 2006 for his work in computer graphics.

John currently leads the Applied Science branch of Google Research, which works at the intersection between computer science and physical or biological science.

Monday Poster Session

- **#1** Learning Active Learning from Data
 Ksenia Konyushkova, Raphael Sznitman, Pascal Fua
- **#2** Scalable Variational Inference for Dynamical Systems
 Stefan Bauer, Nico S Gorbach, Joachim M Buhmann
- **#3** Active Learning from Peers Keerthiram Murugesan, Jaime Carbonell
- #4 Gradient Episodic Memory for Continuum
 Learning

David Lopez-Paz, Marc'Aurelio Ranzato

#5 Consistent Multitask Learning with Nonlinear Output Relations

Carlo Ciliberto, Alessandro Rudi, Lorenzo Rosasco, Massimiliano Pontil

#6 Joint distribution optimal transportation for domain adaptation

Nicolas Courty, Rémi Flamary, Amaury Habrard, Alain Rakotomamonjy

#7 Learning Multiple Tasks with Deep Relationship Networks

Mingsheng Long, Jianmin Wang, Philip S Yu

#8 Label Efficient Learning of Transferable Representations acrosss Domains and Tasks Alan Luo, Yuliang Zou, Judy Hoffman, Li Fei-Fei

- #9 Matching neural paths: transfer from recognition to correspondence search
 Nikolay Savinov, Lubor Ladicky, Marc Pollefeys
- #10 Do Deep Neural Networks Suffer from Crowding?

Anna Volokitin, Gemma Roig, Tomaso A Poggio

#11 SVCCA: Singular Vector Canonical Correlation Analysis for Deep Understanding and Improvement

Maithra Raghu, Justin Gilmer, Jason Yosinski, Jascha Sohl-Dickstein

- **#12 Neural Expectation Maximization**Klaus Greff, Sjoerd van Steenkiste, Jürgen Schmidhuber
- #13 PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
 Charles Ruizhongtai Qi, Li Yi, Hao Su, Leonidas J Guibas
- #14 Preserving Proximity and Global Ranking for Node Embedding

Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, Shou-De Lin

#15 Unsupervised Transformation Learning via Convex Relaxations

Tatsunori B Hashimoto, Percy Liang, John C Duchi

#16 Hunt For The Unique, Stable, Sparse And Fast **Feature Learning On Graphs**

Saurabh Verma, Zhi-Li Zhang

#17 Deep Subspace Clustering Network

Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann,

#18 Learning Graph Embeddings with Embedding **Propagation**

Alberto Garcia Duran, Mathias Niepert

#19 Unsupervised Sequence Classification using **Sequential Output Statistics**

Yu Liu, Jianshu Chen, Li Deng

#20 Context Selection for Embedding Models Liping Liu, Francisco Ruiz, David Blei

Probabilistic Rule Realization and Selection Haizi Yu, Tianxi Li, Lav Varshney

#22 Trimmed Density Ratio Estimation

Song Liu, Akiko Takeda, Taiji Suzuki, Kenji Fukumizu

#23 A Minimax Optimal Algorithm for Crowdsourcing

Richard Combes, Thomas Bonald

#24 Introspective Classification with Convolutional **Nets**

Long Jin, Justin Lazarow, Zhuowen Tu

#25 Adaptive Classification for Prediction Under a **Budget**

Feng Nan, Venkatesh Saligrama

#26 Learning with Feature Evolvable Streams

Bo-Jian Hou, Lijun Zhang, Zhi-Hua Zhou

#27 Aggressive Sampling for Multi-class to **Binary Reduction with Applications to Text** Classification

Bikash Joshi, Massih-Reza Amini, Ioannis Partalas, Franck lutzeler, Yury Maximov

#28 Adversarial Surrogate Losses for Ordinal Regression

Rizal Fathony, Mohammad Ali Bashiri, Brian Ziebart

#29 Formal Guarantees on the Robustness of a **Classifier against Adversarial Manipulation** Matthias Hein, Maksym Andriushchenko

#30 Cost efficient gradient boosting

Sven Peter, Ferran Diego, Fred Hamprecht, Boaz Nadler

A Highly Efficient Gradient Boosting Decision Tree

Guolin Ke, Qi Meng, Taifeng Wang, Wei Chen, Weidong Ma, Tie-Yan Liu

#32 Estimating Accuracy from Unlabeled Data: A **Probabilistic Logic Approach**

Emmanouil Platanios, Hoifung Poon, Tom M Mitchell, Eric J Horvitz

#33 Inferring Generative Model Structure with Static **Analysis**

Paroma Varma, Bryan He, Payal Bajaj, Nish Khandwala, Chris Ré

Scalable Model Selection for Belief Networks

Zhao Song, Yusuke Muraoka, Ryohei Fujimaki, Lawrence Carin

Time-dependent spatially varying graphical models, with application to brain fMRI data analysis

Kristjan Greenewald, Seyoung Park, Shuheng Zhou, Alexander Giessing

#36 A Bayesian Data Augmentation Approach for **Learning Deep Models**

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, Ian Reid

#37 Union of Intersections (UoI) for Interpretable **Data Driven Discovery and Prediction**

Kris Bouchard, Alejandro Bujan, Farbod Roosta-Khorasani, Shashanka Ubaru, Mr. Prabhat, Antoine Snijders, Jian-Hua Mao, Edward Chang, Michael W Mahoney, Sharmodeep Bhattacharya

Deep Learning with Topological Signatures Christoph Hofer, Roland Kwitt, Marc Niethammer,

Andreas Uhl

Practical Hash Functions for Similarity Estimation and Dimensionality Reduction

Søren Dahlgaard, Mathias Knudsen, Mikkel Thorup

Maxing and Ranking with Few Assumptions

Venkatadheeraj Pichapati, Alon Orlitsky, Vaishakh Ravindrakumar, Moein Falahatgar, Yi Hao

Kernel functions based on triplet comparisons

Matthäus Kleindessner, Ulrike von Luxburg

Learning A Structured Optimal Bipartite Graph for Co-Clustering

Feiping Nie, Xiaoqian Wang, Heng Huang

Multi-way Interacting Regression via **Factorization Machines**

Mikhail Yurochkin, Long Nguyen, nikolaos Vasiloglou

Maximum Margin Interval Trees

Alexandre Drouin, Toby Hocking, Francois Laviolette

Kernel Feature Selection via Conditional Covariance Minimization

Jianbo Chen, Mitchell Stern, Martin J Wainwright, Michael

#46 Improved Graph Laplacian via Geometric Self-Consistency

Dominique Joncas, Marina Meila, James McQueen

Mixture-Rank Matrix Approximation for Collaborative Filtering

Dongsheng Li, Kehan Chen, Wei Liu, Tun Lu, Ning Gu, Stephen Chu

Monday Poster Session

- **#48** Predictive State Recurrent Neural Networks
 Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey
 Gordon, Boyue Li
- **#49 Hierarchical Methods of Moments**Matteo Ruffini, Guillaume Rabusseau, Borja Balle
- **#50** Multitask Spectral Learning of Weighted Automata

Guillaume Rabusseau, Borja Balle, Joelle Pineau

#51 Generative Local Metric Learning for Kernel Regression

Yung-Kyun Noh, Masashi Sugiyama, Kee-Eung Kim, Frank Park, Daniel Lee

#52 Principles of Riemannian Geometry in Neural Networks

Michael Hauser, Asok Ray

- #53 Subset Selection for Sequential Data Ehsan Elhamifar
- #54 On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning

Xingguo Li, Lin Yang, Jason Ge, Jarvis Haupt, Tong Zhang, Tuo Zhao

#55 Fast, Sample-Efficient Algorithms for Structured Phase Retrieval

Gauri Jagatap, Chinmay Hegde

- #56 k-Support and Ordered Weighted Sparsity for Overlapping Groups: Hardness and Algorithms Cong Han Lim, Stephen Wright
- **#57** Parametric Simplex Method for Sparse Learning Haotian Pang, Tuo Zhao, Han Liu, Robert J Vanderbei
- #58 Learned D-AMP: Principled Neural-networkbased Compressive Image Recovery Chris Metzler, Ali Mousavi, Richard Baraniuk
- #59 FALKON: An Optimal Large Scale Kernel Method

Alessandro Rudi, Luigi Carratino, Lorenzo Rosasco

- #60 Recursive Sampling for the Nystrom Method
 Cameron Musco, Christopher Musco
- #61 Efficient Approximation Algorithms for Strings
 Kernel Based Sequence Classification

 Muhammad Farhan, Juvaria Taria, Arif Zaman, Mudassi

Muhammad Farhan, Juvaria Tariq, Arif Zaman, Mudassir Shabbir, Imdad Khan

- #62 Robust Hypothesis Test for Functional Effect with Gaussian Processes

 Jeremiah Liu, Brent Coull
- #63 Invariance and Stability of Deep Convolutional Representations

Alberto Bietti, Julien Mairal

#64 Testing and Learning on Distributions with Symmetric Noise Invariance

Law Ho Chung, Christopher Yau, Dino Sejdinovic

#65 An Empirical Study on The Properties of Random Bases for Kernel Methods

Maximilian Alber, Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, Fei Sha

#66 Max-Margin Invariant Features from Transformed Unlabelled Data

> Dipan Pal, Ashwin Kannan, Gautam Arakalgud, Marios Savvides

- #67 SafetyNets: Verifiable Execution of Deep Neural Networks on an Untrusted Cloud Zahra Ghodsi, Tianyu Gu, Siddharth Garg
- #68 Multi-output Polynomial Networks and Factorization Machines
 Mathieu Blondel, Vlad Niculae, Takuma Otsuka, Naonori Ueda
- #69 The Neural Hawkes Process: A Neurally Self-Modulating Multivariate Point Process Hongyuan Mei, Jason Eisner
- #70 Maximizing the Spread of Influence from Training Data
 Eric Balkanski, Nicole Immorlica, Yaron Singer
- #71 Inductive Representation Learning on Large Graphs
 Will Hamilton, Rex Ying, Jure Leskovec
- **#72** A Meta-Learning Perspective on Cold-Start Recommendations for Items
 Manasi Vartak, Hugo Larochelle, Arvind Thiagarajan
- #73 DropoutNet: Addressing Cold Start in Recommender Systems
 Maksims Volkovs, Guangwei Yu, Tomi Poutanen
- **#74** Federated Multi-Task Learning
 Ginger Smith, Maziar Sanjabi, Chao-Kai Chiang, Ameet
 S Talwalkar
- #75 Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks
 Urs Köster, Tristan Webb, Xin Wang, Marcel Nassar, Arjun K Bansal, William Constable, Oguz Elibol, Stewart Hall, Luke Hornof, Amir Khosrowshahi, Carey Kloss, Ruby J Pai, Naveen Rao
- #76 Bayesian Inference of Individualized Treatment
 Effects using Multi-task Gaussian Processes
 Ahmed M. Alaa, Mihaela van der Schaar
- #77 Tomography of the London Underground: a Scalable Model for Origin-Destination Data Nicolò Colombo, Ricardo Silva, Soong Moon Kang
- #78 Matching on Balanced Nonlinear
 Representations for Treatment Effects
 Estimation
 Sheng Li, Yun Fu

#79 MolecuLeNet: A continuous-filter convolutional neural network for modeling quantum interactions

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre Tkatchenko, Klaus-Robert Müller

#80 Hiding Images in Plain Sight: Deep Steganography

Shumeet Baluja

#81 Universal Style Transfer via Feature TransformsYijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, Ming-Hsuan Yang

#82 Attend and Predict: Understanding Gene Regulation by Selective Attention on Chromatin Ritambhara Singh, Jack Lanchantin, Yanjun Qi

#83 Unbounded cache model for online language modeling with open vocabulary

Edouard Grave, Moustapha Cisse, Armand Joulin

#84 Deconvolutional Paragraph Representation Learning

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, Lawrence Carin

#85 Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems Yonatan Belinkov, Jim Glass

#86 Best of Both Worlds: Transferring Knowledge from Discriminative Learning to a Generative Visual Dialog Model

Jiasen Lu, Anitha Kannan, Jianwei Yang, Dhruv Batra, Devi Parikh

#87 Teaching Machines to Describe Images with Natural Language Feedback

huan ling, Sanja Fidler

#88 High-Order Attention Models for Visual Question Answering

Idan Schwartz, Alex Schwing, Tamir Hazan

#89 Visual Reference Resolution using Attention Memory for Visual Dialog

Paul Hongsuck Seo, Andreas Lehrmann, Bohyung Han, Leonid Sigal

#90 Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks

Wei-Sheng Lai, Jia-Bin Huang, Ming-Hsuan Yang

#91 Associative Embedding: End-to-End Learning for Joint Detection and Grouping

Alejandro Newell, Zhiao Huang, Jia Deng

#92 Learning Deep Structured Multi-Scale Features using Attention-Gated CRFs for Contour Prediction

Dan Xu, Wanli Ouyang, Xavier Alameda-Pineda, Elisa Ricci, Xiaogang Wang, Nicu Sebe

#93 Incorporating Side Information by Adaptive Convolution

Di Kang, Debarun Dhar, Antoni Chan

#94 Learning a Multi-View Stereo Machine Abhishek Kar, Jitendra Malik, Christian Häne

#95 Pose Guided Person Image Generation Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, Luc Van Gool

#96 Working hard to know your neighbor's margins: Local descriptor learning loss

Anastasiia Mishchuk, Dmytro Mishkin, Filip Radenovic, Jiri Matas

#97 Multimodal Image-to-Image Translation by Enforcing Bi-Cycle Consistency

Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Prof. Darrell, Oliver Wang, Eli Shechtman, Alexei Efros

#98 Deep supervised discrete hashing

Qi Li, Zhenan Sun, Ran He, Tieniu Tan

#99 SVD-Softmax: Fast Softmax Approximation on Large Vocabulary Neural Networks

Kyuhong Shim, Minjae Lee, Iksoo Choi, Yoonho Boo, Wonyong Sung

#100 Hash Embeddings for Efficient Word Representations

Dan Tito Svenstrup, Jonas Hansen, Ole Winther

#101 A Regularized Framework for Sparse and Structured Neural Attention

Vlad Niculae, Mathieu Blondel

#102 Attentional Pooling for Action Recognition

Rohit Girdhar, Deva Ramanan

#103 Plan, Attend, Generate: Planning for Sequenceto-Sequence Models

Caglar Gulcehre, Francis Dutil, Adam Trischler, Yoshua Bengio

#104 Dilated Recurrent Neural Networks

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark A Hasegawa-Johnson, Thomas Huang

#105 Thalamus Gated Recurrent Modules

Danijar Hafner, Alexander Irpan, James Davidson, Nicolas Heess

#106 Wasserstein Learning of Deep Generative Point Process Models

Benjamin XIAO, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, Hongyuan Zha

#107 Stabilizing Training of Generative Adversarial Networks through Regularization

Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, Thomas Hofmann

#108 Neural Variational Inference and Learning in Undirected Graphical Models

Volodymyr Kuleshov, Stefano Ermon

#109 Adversarial Symmetric Variational Autoencoder Yuchen Pu, Weiyao Wang, Ricardo Henao, Liqun Chen, Zhe Gan, Chunyuan Li, Lawrence Carin

#110 Diverse and Accurate Image Description Using a Variational Auto-Encoder with an Additive Gaussian Encoding Space

Liwei Wang, Alex Schwing, Svetlana Lazebnik

#111 Z-Forcing: Training Stochastic Recurrent Networks

Anirudh Goyal ALIAS PARTH GOYAL, Alessandro Sordoni, Marc-Alexandre Côté, Rosemary Ke, Yoshua Bengio

#112 One-Shot Imitation Learning

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAl Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter Abbeel, Wojciech Zaremba

#113 Reconstruct & Crush Network

Erinc Merdivan, Mohammad Reza Loghmani, Matthieu

#114 Fader Networks: Generating Image Variations by Sliding Attribute Values

Guillaume Lample, Neil Zeghidour, Nicolas Usunier, Antoine Bordes, Ludovic DENOYER, Marc'Aurelio Ranzato

#115 PredRNN: Recurrent Neural Networks for Video Prediction using Spatiotemporal LSTMs

Yunbo Wang, Mingsheng Long, Jianmin Wang, Philip S Yu

#116 Multi-agent Predictive Modeling with Attentional CommNets

Yedid Hoshen

#117 Real Time Image Saliency for Black Box Classifiers

Piotr Dabkowski, Yarin Gal

#118 Prototypical Networks for Few-shot Learning Jake Snell, Kevin Swersky, Richard Zemel

#119 Few-Shot Learning Through an Information Retrieval Lens

Eleni Triantafillou, Richard Zemel, Raquel Urtasun

#120 The Reversible Residual Network: Backpropagation Without Storing Activations Aidan N Gomez, Mengye Ren, Raquel Urtasun, Roger Grosse

#121 Gated Recurrent Convolution Neural Network for OCR

Jianfeng Wang, Xiaolin Hu

#122 Learning Efficient Object Detection Models with Knowledge Distillation

Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, Manmohan Chandraker

#123 Active Bias: Training a More Accurate Neural Network by Emphasizing High Variance Samples

Haw-Shiuan Chang, Andrew McCallum, Erik Learned-Miller

#124 Decoupling "when to update" from "how to update"

Eran Malach, Shai Shalev-Shwartz

#125 Langevin Dynamics with Continuous Tempering for Training Deep Neural Networks

Lincoln Ye, Zhanxing Zhu, Rafal Mantiuk

#126 Differentiable Learning of Logical Rules for Knowledge Base Reasoning

Fan Yang, Zhilin Yang, William W Cohen

#127 Deliberation Networks: Sequence Generation Beyond One-Pass Decoding

Yingce Xia, Lijun Wu, Jianxin Lin, Fei Tian, Tao Qin, Tie-Yan Liu

#128 Neural Program Meta-Induction

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, Pushmeet Kohli

#129 Saliency-based Sequential Image Attention with Multiset Prediction

Sean Welleck, Kyunghyun Cho, Zheng Zhang

#130 Protein Interface Prediction using Graph Convolutional Networks

Alex Fout, Basir Shariat, Jonathon Byrd, Asa Ben-Hur

#131 Dual-Agent GANs for Photorealistic and Identity Preserving Profile Face Synthesis

Jian Zhao, Lin Xiong, Panasonic Karlekar Jayashree, Jianshu Li, Fang Zhao, Zhecan Wang, Panasonic Sugiri Pranata, Panasonic Shengmei Shen, Jiashi Feng

#132 Toward Robustness against Label Noise in Training Deep Discriminative Neural Networks Arash Vahdat

#133 Soft-to-Hard Vector Quantization for End-to-End Learning Compressible Representations

Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu Timofte, Luca Benini, Luc V Gool

#134 Selective Classification for Deep Neural Networks

Yonatan Geifman, Ran El-Yaniv

#135 Deep Lattice Networks and Partial Monotonic Functions

Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya Gunta

#136 Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon

Xin Dong, Shangyu Chen, Sinno Pan

#137 Bayesian Compression for Deep Learning

Christos Louizos, Karen Ullrich, Max Welling

Monday Poster Session

#138 Lower bounds on the robustness to adversarial perturbations

Jonathan Peck, Yvan Saeys, Bart Goossens, Joris Roels

#139 Sobolev Training for Neural Networks

Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, Razvan Pascanu

#140 Structured Bayesian Pruning via Log-Normal Multiplicative Noise

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov

#141 Population Matching Discrepancy and Applications in Deep Learning

Jianfei Chen, Chongxuan LI, Yizhong Ru, Jun Zhu

#142 Investigating the learning dynamics of deep neural networks using random matrix theory Jeffrey Pennington, Sam Schoenholz, Surya Ganguli

#143 Robust Imitation of Diverse Behaviors

Ziyu Wang, Josh Merel, Scott Reed, Nando de Freitas, Greg Wayne, Nicolas Heess

#144 Question Asking as Program Generation

Anselm Rothe, Brenden Lake, Todd Gureckis

#145 Variational Laws of Visual Attention for Dynamic Scenes

Dario Zanca, Marco Gori

#146 Flexible statistical inference for mechanistic models of neural dynamics

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Oecal, Marcel Nonnenmacher, Jakob H Macke

#147 Training recurrent networks to generate hypotheses about how the brain solves hard navigation problems

Ingmar Kanitscheider, Ila Fiete

#148 YASS: Yet Another Spike Sorter

Jin Hyung Lee, David E Carlson, Hooshmand Shokri Razaghi, Weichi Yao, Georges A Goetz, chichilnisky Chichilnisky, Espen Hagen, Gaute T. Einevoll, Liam Paninski

#149 Neural system identification for large populations separating "what" and "where" David Klindt, Alexander Ecker, Thomas Euler, Matthias

David Klindt, Alexander Ecker, Thomas Euler, Matthias Bethge

#150 A simple model of recognition and recall memoryNisheeth Srivastava, Edward Vul

#151 Gaussian process based nonlinear latent structure discovery in multivariate spike train

Anqi Wu, Nicholas Roy, Stephen Keeley, Jonathan W Pillow

#152 Deep adversarial neural decoding

Yağmur Güçlütürk, Umut Güçlü, Katja Seeliger, Sander Bosch, Rob van Lier, Marcel A. J. van Gerven

#153 Cross-Spectral Factor Analysis

Neil Gallagher, Kyle Ulrich, Austin Talbot, Kafui Dzirasa, David E Carlson, Lawrence Carin

#154 Cognitive Impairment Prediction in Alzheimer's Disease with Regularized Modal Regression

Xiaoqian Wang, Hong Chen, Dinggang Shen, Heng Huang

#155 Stochastic Submodular Maximization: The Case of Coverage Functions

Mohammad Karimi, Mario Lucic, Hamed Hassani, Andreas Krause

#156 Gradient Methods for Submodular Maximization Hamed Hassani. Mahdi Soltanolkotabi. Amin Karbasi

Tranicu Trassani, Maridi Goltanoikotabi, Amiii Karbasi

#157 Non-convex Finite-Sum Optimization Via SCSG Methods

Lihua Lei, Cheng Ju, Jianbo Chen, Michael Jordan

#158 Influence Maximization with \$\varepsilon\$Almost Submodular Threshold Function

Qiang Li, Wei Chen, Institute of Computing Xiaoming Sun, Institute of Computing Jialin Zhang

#159 Subset Selection under Noise

Chao Qian, Jing-Cheng Shi, Yang Yu, Ke Tang, Zhi-Hua Zhou

#160 Polynomial time algorithms for dual volume sampling

Chengtao Li, Stefanie Jegelka, Suvrit Sra

#161 Lookahead Bayesian Optimization with Inequality Constraints

Remi Lam, Karen Willcox

#162 Non-monotone Continuous DR-submodular Maximization: Structure and Algorithms

An Bian, Joachim M Buhmann, Andreas Krause, Kfir Levy

#163 Solving (Almost) all Systems of Random Quadratic Equations

Gang Wang, Georgios Giannakis, Yousef Saad, Jie Chen

#164 Learning ReLUs via Gradient Descent

Mahdi Soltanolkotabi

#165 Stochastic Mirror Descent for Non-Convex Optimization

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, Peter W Glynn

#166 Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds

Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao

#167 On the Fine-Grained Complexity of Empirical Risk Minimization: Kernel Methods and Neural Networks

Arturs Backurs, Piotr Indyk, Ludwig Schmidt

#168 Large-Scale Quadratically Constrained Quadratic Program via Low-Discrepancy Sequences

Kinjal Basu, Ankan Saha, Shaunak Chatterjee

#169 A New Alternating Direction Method for Linear Programming

Sinong Wang, Ness Shroff

- #170 Dykstra's Algorithm, ADMM, and Coordinate **Descent: Connections, Insights, and Extensions** Rvan Tibshirani
- **#171 Smooth Primal-Dual Coordinate Descent Algorithms for Nonsmooth Convex Optimization** Ahmet Alacaoglu, Quoc Tran Dinh, Olivier Fercoq, Volkan Cevher
- **#172 First-Order Adaptive Sample Size Methods** to Reduce Complexity of Empirical Risk Minimization

Aryan Mokhtari, Alejandro Ribeiro

- #173 Accelerated consensus via Min-Sum Splitting Patrick Rebeschini, Sekhar C Tatikonda
- #174 Integration Methods and Optimization **Algorithms**

Damien Scieur, Vincent Roulet, Francis Bach, Alexandre d'Aspremont

#175 Efficient Use of Limited-Memory Resources to **Accelerate Linear Learning**

Celestine Dünner, Thomas Parnell, Martin Jaggi

#176 A Screening Rule for I1-Regularized Ising Model

Charles Kuang, Sinong Geng, David Page

#177 Uprooting and Rerooting Higher-order **Graphical Models**

Adrian Weller, Mark Rowland

- **#178 Concentration of Multilinear Functions of the** Ising Model with Applications to Network Data Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath
- #179 Inference in Graphical Models via Semidefinite **Programming Hierarchies**

Murat A. Erdogdu, Yash Deshpande, Andrea Montanari

#180 Beyond normality: Learning sparse Probabilistic graphical models in the non-Gaussian setting

Rebecca Morrison, Ricardo Baptista, Youssef Marzouk

#181 Dynamic Importance Sampling for Anytime **Bounds of the Partition Function** Qi Lou, Rina Dechter, Alexander Ihler

#182 Nonbacktracking Bounds on the Influence in **Independent Cascade Models**

Emmanuel Abbe, Sanjeev Kulkarni, Eun Jee Lee

#183 Rigorous Dynamics and Consistent Estimation in Arbitrarily Conditioned Linear Systems Allie Fletcher, Sundeep Rangan, Moji Sahraee-Ardakan,

- **#184 Learning Disentangled Representations with** Semi-Supervised Deep Generative Models Siddharth Narayanaswamy, T. Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Frank Wood, Noah Goodman, Pushmeet Kohli, Philip Torr
- #185 Gauging Variational Inference Sung-Soo Ahn, Michael Chertkov, Jinwoo Shin

Phil Schniter

#186 Variational Inference via \$\chi\$ Upper Bound Minimization

Adji Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, David Blei

#187 Collapsed variational Bayes for Markov jump processes

Bogian Zhang, Jiangwei Pan, Vinayak A Rao

#188 Bayesian Dyadic Trees and Histograms for Regression

Stéphanie van der Pas, Veronika Rockova

#189 Differentially private Bayesian learning on distributed data

> Mikko Heikkilä, Eemil Lagerspetz, Samuel Kaski, Kana Shimizu, Sasu Tarkoma, Antti Honkela

- #190 Model-Powered Conditional Independence Test Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alex Dimakis, Sanjay Shakkottai
- #191 When Worlds Collide: Integrating Different **Counterfactual Assumptions in Fairness** Chris Russell, Ricardo Silva, Matt Kusner, Joshua Loftus
- #192 Q-LDA: Uncovering Latent Patterns in Textbased Sequential Decision Processes Jianshu Chen, Chong Wang, Lin Xiao, Ji He, Lihong Li, Li Deng
- **#193 Probabilistic Models for Integration Error in the Assessment of Functional Cardiac Models** Chris Oates, Steven Niederer, Angela Lee, François-Xavier Briol, Mark Girolami
- #194 Expectation Propagation for t-Exponential Family Using Q-Algebra Futoshi Futami, Issei Sato, Masashi Sugiyama

#195 A Probabilistic Framework for Nonlinearities in **Stochastic Neural Networks** Qinliang Su, xuejun Liao, Lawrence Carin

#196 Clone MCMC: Parallel High-Dimensional Gaussian Gibbs Sampling

Andrei-Cristian Barbos, François Caron, Jean-François Giovannelli, Arnaud Doucet

#197 Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data Stéphanie ALLASSONNIERE, Juliette Chevallier

#198 Scalable Levy Process Priors for Spectral Kernel Learning

Phillip A Jang, Andrew Loeb, Matthew Davidow, Andrew Wilson

#199 Inferring The Latent Structure of Human Decision-Making from Raw Visual Inputs

Yunzhu Li, Jiaming Song, Stefano Ermon

#200 Hybrid Reward Architecture for Reinforcement Learning

Harm Van Seijen, Laroche Laroche, Mehdi Fatemi, Joshua Romoff

#201 Shallow Updates for Deep Reinforcement Learning

Nir Levine, Tom Zahavy, Daniel J Mankowitz, Aviv Tamar, Shie Mannor

#202 Towards Generalization and Simplicity in Continuous Control

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, Sham Kakade

#203 Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning

Shixiang Gu, Timothy Lillicrap, Richard E Turner, Zoubin Ghahramani, Bernhard Schölkopf, Sergey Levine

#204 Scalable Planning with Tensorflow for Hybrid Nonlinear Domains

Ga Wu, Buser Say, Scott Sanner

#205 Task-based End-to-end Model Learning in Stochastic Optimization

Priya Donti, J. Zico Kolter, Brandon Amos

#206 Value Prediction Network

Junhyuk Oh, Satinder Singh, Honglak Lee

#207 Variable Importance Using Decision Trees

Arash Amini, Jalil Kazemitabar, Adam Bloniarz, Ameet S Talwalkar

#208 The Expressive Power of Neural Networks: A View from the Width

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, Liwei Wang

#209 SGD Learns the Conjugate Kernel Class of the Network

Amit Daniely

#210 Radon Machines: Effective Parallelisation for Machine Learning

Michael Kamp, Mario Boley, Olana Missura, Thomas Gärtner

#211 Noise-Tolerant Interactive Learning Using Pairwise Comparisons

Yichong Xu, Hongyang Zhang, Aarti Singh, Artur Dubrawski, Kyle Miller

#212 A PAC-Bayesian Analysis of Randomized Learning with Application to Stochastic Gradient Descent

Ben London

#213 Revisiting Perceptron: Efficient and Label-Optimal Learning of Halfspaces

Songbai Yan, Chicheng Zhang

#214 Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions Maria-Florina Balcan, Hongyang Zhang

#215 Nearest-Neighbor Sample Compression:
Efficiency, Consistency, Infinite Dimensions
Aryeh Kontorovich, Sivan Sabato, Roi Weiss

#216 Learning Identifiable Gaussian Bayesian Networks in Polynomial Time and Sample Complexity

Asish Ghoshal, Jean Honorio

#217 From which world is your graph

Cheng Li, Varun Kanade, Felix MF Wong, Zhenming Liu

#218 Mean Field Residual Networks: On the Edge of Chaos

Ge Yang

#219 Learning from uncertain curves: The 2-Wasserstein metric for Gaussian processes Anton Mallasto, Aasa Feragen

#220 On clustering network-valued dataSoumendu Sundar Mukherjee, Purnamrita Sarkar, Lizhen

Soumendu Sundar Muknerjee, Purnamnta Sarkar, Liznen Lin

#221 On the Power of Truncated SVD for General High-rank Matrix Estimation Problems Simon Du, Yining Wang, Aarti Singh

Ilya Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann SIMON-GABRIEL, Bernhard Schölkopf

#223 Discovering Potential Influence via Information Bottleneck

Weihao Gao, Sreeram Kannan, Hyeji Kim, Sewoong Oh, Pramod Viswanath

#224 Phase Transitions in the Pooled Data ProblemJonathan Scarlett, Volkan Cevher

#225 Coded Distributed Computing for Inverse

Yaoqing Yang, Pulkit Grover, Soummya Kar

#226 Query Complexity of Clustering with Side Information

Arya Mazumdar, Barna Saha

#227 Revisit Fuzzy Neural Network: Demystifying Batch Normalization and ReLU with Generalized Hamming Network

Lixin Fan

Problems

TUESDAY SESSIONS

7:30 - 9:00 AM	Coffee	
9:00 - 9:50 AM	Invited Talk: Brendan Frey Why AI Will Make it Possible to Reprogram the Human Genor	Hall A me
9:50 - 10:10 AM	Test Of Time Award: Ali Rahimi, Benjamin Recht Random Features for Large-Scale Kernel Machines	
10:10 - 10:40 AM	Coffee break	
10:40 - 12:00 PM	Parallel Tracks: Algorithms Optimization	Hall A Hall C
12:00 - 1:50 PM	Lunch on your own	
1:50 - 2:40 PM	Invited Talk: Kate Crawford The Trouble with Bias	Hall A
2:40 - 2:50 PM	Quick break	
2:50 - 3:50 PM	Parallel Tracks: Algorithms, Optimization Theory	Hall A Hall C
3:50 - 4:20 PM	Coffee break	
4:20 - 6:00 PM	Parallel Tracks: Deep Learning, Applications Algorithms	Hall A Hall C
6:00 - 7:00 PM	Light snack	
7:00 - 10:30 PM	Poster session and Demos Pac	ific Ballroom

<u>Tuesday Invited Talks</u>

Why AI Will Make it Possible to **Reprogram the Human Genome**

Hall A, 9:00 - 9:50 AM

We have figured out how to write to the genome using DNA editing, but we don't know what the outcomes of genetic modifications will be. This is called the "genotype-phenotype gap". To close the gap, we need to reverse-engineer the genetic code, which is very hard because biology is too complicated and noisy for human interpretation. Machine learning and Al are needed. The data? Six billion letters per genome, hundreds of thousands of types of biomolecules, hundreds of cell types, over seven billion people on the planet. A new generation of "Bio-AI" researchers are poised to crack the problem, but we face extraordinary challenges. I'll discuss these challenges, focusing on which branches of AI and machine learning will have the most impact and why.

Brendan J Frey (Vector Institute for AI & U. of Toronto)

Brendan Frey is Co-Founder and CEO of Deep Genomics, a Co-Founder of the Vector Institute for Artificial Intelligence, and a Professor of Engineering and Medicine at the University of Toronto. He is internationally recognized

as a leader in machine learning and in genome biology and his group has published over a dozen papers on these topics in Science, Nature and Cell. His work on using deep learning to identify protein-DNA interactions was recently highlighted on the front cover Nature Biotechnology (2015), while his work on deep learning dates back to an early paper on what are now called variational autoencoders (Science 1995). He is a Fellow of the Royal Society of Canada, a Fellow of the Institute for Electrical and Electronic Engineers, and a Fellow of the American Association for the Advancement of Science. He has consulted for several industrial research and development laboratories in Canada, the United States and England, and has served on the Technical Advisory Board of Microsoft Research

The Trouble With Bias

Hall A, 1:50 - 2:40 PM

Computer scientists are increasingly concerned about the many ways that machine learning can reproduce and reinforce forms of bias. When ML systems are incorporated into core social institutions, like healthcare, criminal justice and education, issues of bias and discrimination can be extremely serious. But what can be done about it? Part of the trouble with bias in machine learning in high-stakes decision making is that it can be the result of one or many factors: the training data, the model, the system goals, and whether the system works less well for some populations, among several others. Given the difficulty of understanding how a machine learning system produced a particular result, bias is often discovered after a system has been producing unfair results in the wild. But there is another problem as well: the definition of bias changes significantly depending on your discipline, and there are exciting approaches from other fields that have not yet been included by computer science. This talk will look at the recent literature on bias in machine learning, consider how we can incorporate approaches from the social sciences, and offer new strategies to address bias.

Kate Crawford (Microsoft Research)

Prof. Kate Crawford is leading researcher, academic and author who has spent 10 years studying the social impacts of largescale data, machine learning and artificial intelligence. She is a Distinguished Research

Professor at New York University, a Principal Researcher at Microsoft Research New York, and a Visiting Professor at the MIT Media Lab. In 2016, she co-chaired the White House symposium on the social and economic implications of artificial intelligence in the next decade. She is on the World Economic Forum Global Agenda Council on AI and Robotics, and she was recently appointed as a Richard von Weizsaecker Fellow. She has outlined in Nature a social systems approach to studying the impacts of machine learning systems, and she has also written about AI, ethics and discrimination for The New York Times and Harper's Magazine. She is the co-founder and co-director of the AI Now Institute at NYU, along with Meredith Whittaker, an interdisciplinary research institute that work across computer science, social science, law, and the humanities to better understand and address the social implications of artificial intelligence.

Student Paper Awards

Track 1 - 10:40 am - 12:20 pm Algorithms

Location: Hall A

Diffusion Approximations for Online Principal Component Estimation and Global Convergence

Chris Junchi Li, Mengdi Wang, Tong Zhang

In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for PCA under bounded noise.

Positive-Unlabeled Learning with Non-Negative Risk Estimator

Ryuichi Kiryo, Gang Niu, Marthinus C du Plessis, Masashi Sugiyama

From only positive \sim (P) and unlabeled \sim (U) data, a binary classifier can be trained with PU learning, in which the state of the art is unbiased PU learning. However, if its model is very flexible, its empirical risk on training data will go negative and we will suffer from serious overfitting. In this paper, we propose a non-negative risk estimator for PU learning. When being minimized, it is more robust against overfitting and thus we are able to train very flexible models given limited P data. Moreover, we analyze the bias, consistency and mean-squared-error reduction of the proposed risk estimator and the estimation error of the corresponding risk minimizer. Experiments show that the proposed risk estimator successfully fixes the overfitting problem of its unbiased counterparts.

An Applied Algorithmic Foundation for Hierarchical Clustering

Joshua Wang (Stanford) Benjamin Moseley (Washington U. in St Louis)

Hierarchical clustering is a data analysis method that has been used for decades. Despite its widespread use, there is a lack of an analytical foundation for the method. Having such a foundation would both support the methods currently used and guide future improvements. This paper gives an applied algorithmic foundation for hierarchical clustering. The goal of this paper is to give an analytic framework supporting observations seen in practice. This paper considers the dual of a problem framework for hierarchical clustering introduced by Dasgupta. The main results are that one of the most popular algorithms used in practice, average-linkage agglomerative clustering, has a small constant approximation ratio. Further, this paper establishes that using recursive k-means divisive clustering has a very poor lower bound on its approximation ratio, perhaps explaining why is it not as popular in practice. Motivated by the poor performance of k-means, we seek to find divisive algorithms that do perform well theoretically and this paper gives two constant approximation algorithms. This paper represents some of the first work giving a foundation for hierarchical clustering algorithms used in practice

SPOTLIGHTS

- Mean teachers are better role models:
 Weight-averaged consistency targets improve semisupervised deep learning results
 - Antti Tarvainen, Harri Valpola
- Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, Milan Vojnovic

 Inhomogoenous Hypergraph Clustering with Applications

Pan Li, Olgica Milenkovic

- K-Medoids For K-Means Seeding James Newling, François Fleuret
- Online Learning with Transductive Regret Scott Yang, Mehryar Mohri
- Matrix Norm Estimation from a Few Entries Sewoong Oh, Ashish Khetan
- Semisupervised Clustering, AND-Queries and Locally Encodable Source Coding Arya Mazumdar, Soumyabrata Pal

Track 2 - 10:40 am - 12:20 pm Optimization

Location: Hall C

On the Optimization Landscape of Tensor Decompositions

Rong Ge (Duke University) Tengyu Ma (Facebook Al Research)

Non-convex optimization with local search heuristics has been widely used in machine learning, achieving many state-of-art results. It becomes increasingly important to understand why they can work for these NP-hard problems on typical data. The landscape of many objective functions in learning has been conjectured to have the geometric property that "all local optima are (approximately) global optima", and thus they can be solved efficiently by local search algorithms. However, establishing such property can be very difficult. In this paper, we analyze the optimization landscape of the random over-complete tensor decomposition problem, which has many Applications in unsupervised leaning, especially in learning latent variable models. In practice, it can be efficiently solved by gradient ascent on a non-convex objective. We show that for any small constant $\epsilon > 0$, among the set of points with function values (1+ ϵ)-factor larger than the expectation of the function, all the local maxima are approximate global maxima. Previously, the best-known result only characterizes the geometry in small neighborhoods around the true components. Our result implies that even with an initialization that is barely better than the random guess, the gradient ascent algorithm is guaranteed to solve this problem. Our main technique uses Kac-Rice formula and random matrix theory. To our best knowledge, this is the first time when Kac-Rice formula is successfully applied to counting the number of local minima of a highly-structured random polynomial with dependent coefficients.

Robust Optimization for Non-Convex Objectives

Yaron Singer (Harvard University) Robert S Chen (Harvard University) Vasilis Syrgkanis (Microsoft Research) Brendan Lucier (Microsoft Research)

We consider robust optimization problems, where the goal is to optimize in the worst case over a class of objective functions. We develop a reduction from robust improper optimization to Bayesian optimization: given an oracle that returns ∞ -approximate solutions for distributions over objectives, we compute a distribution over solutions that is ∞ -approximate in the worst case. We show that derandomizing this solution is NP-hard in general, but can be done for a broad class of statistical learning tasks. We apply our results to robust neural network training and submodular optimization. We evaluate our approach experimentally on a character classification task subject to adversarial distortion, and robust influence maximization on large networks.

Bayesian Optimization with Gradients

Jian Wu (AQR Capital Management) Matthias Poloczek (Cornell University) Andrew Wilson (Cornell University) Peter Frazier (Cornell University)

Bayesian optimization has shown success in global optimization of expensive-to-evaluate multimodal objective functions. However, unlike most optimization methods, Bayesian optimization typically does not use derivative information. In this paper we show how Bayesian optimization can exploit derivative information to find good solutions with fewer objective function evaluations. In particular, we develop a novel Bayesian optimization algorithm, the derivative-enabled knowledge-gradient (dKG), which is one-step Bayes-optimal, asymptotically consistent, and provides greater onestep value of information than in the derivative-free setting. dKG accommodates noisy and incomplete derivative information, comes in both sequential and batch forms, and can optionally reduce the computational cost of inference through automatically selected retention of a single directional derivative. We also compute the dKG acquisition function and its gradient using a novel fast discretizationfree technique. We show dKG provides state-of-the-art performance compared to a wide range of optimization procedures with and without gradients, on benchmarks including logistic regression, deep learning, kernel learning, and k-nearest neighbors.

SPOTLIGHTS

 Gradient Descent Can Take Exponential Time to Escape Saddle Points

Simon Du, Chi Jin, Jason D Lee, Michael Jordan, Aarti Singh, Barnabas Poczos

- Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration Jason Altschuler, Jon Weed, Philippe Rigollet
- Limitations on Variance-Reduction and Acceleration Schemes for Finite Sums Optimization Yossi Arjevani
- Implicit Regularization in Matrix Factorization

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nati Srebro

 Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls
 Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li

• Acceleration and Averaging in Stochastic Descent Dynamics

Walid Krichene

 When Cyclic Coordinate Descent Beats Randomized Coordinate Descent

Mert Gurbuzbalaban, Denizcan Vanli, Asuman Ozdaglar

Tuesday Session Tracks

Track 1 - 2:50 - 3:50 pm Algorithms, Optimization

Location: Hall A

Streaming Weak Submodularity: Interpreting Neural Networks on the Fly

Ethan Elenberg, Alex Dimakis, Moran Feldman, Amin Karbasi

In many machine learning Applications, it is important to explain the predictions of a black-box classifier. For example, why does a deep neural network assign an image to a particular class? We cast interpretability of black-box classifiers as a combinatorial maximization problem and propose an efficient streaming algorithm to solve it subject to cardinality constraints. By extending ideas from Badanidiyuru et al. [2014], we provide a constant factor approximation guarantee for our algorithm in the case of random stream order and a weakly submodular objective function. This is the first such theoretical guarantee for this general class of functions, and we also show that no such algorithm exists for a worst case stream order. Our algorithm obtains similar explanations of Inception V3 predictions 10 times faster than the state-of-the-art LIME framework of Ribeiro et al. [2016]

A Unified Approach To Interpreting Model Predictions

Scott M Lundberg, Su-In Lee

Understanding why a model made a certain prediction is crucial in many Applications. However, with large modern datasets the best accuracy is often achieved by complex models even experts struggle to interpret, such as ensemble or deep learning models. This creates a tension between accuracy and interpretability. In response, a variety of methods have recently been proposed to help users interpret the predictions of complex models. Here, we present a unified framework for interpreting predictions, namely SHAP (SHapley Additive exPlanations), which assigns each feature an importance for a particular prediction. The key components of the SHAP framework are the identification of a class of additive feature importance measures and theoretical results that there is a unique solution in this class with a set of desired properties. This class unifies six existing methods, and several recent methods in this class do not have these desired properties. This means that our framework can inform the development of new methods for explaining prediction models. We demonstrate that several new methods we presented in this paper based on the SHAP framework show better computational performance and better consistency with human intuition than existing methods

SPOTLIGHTS

 Differentiable Learning of Submodular Functions

Josip Djolonga, Andreas Krause

- Generalized Linear Model Regression under Distance-to-set Penalties
 Jason Xu, Eric Chi, Kenneth Lange
- Decomposable Submodular Function Minimization: Discrete and Continuous Alina Ene, Huy Nguyen, László A. Végh
- Unbiased estimates for linear regression via volume sampling

Michal Derezinski, Manfred Warmuth

 On Frank-Wolfe and Equilibrium Computation

Jacob D Abernethy, Jun-Kun Wang

 On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models Adarsh Prasad, Pradeep Ravikumar

Tuesday Session Tracks

Track 2 - 2:50 - 3:50 pm Theory

Location: Hall C

Safe and Nested Subgame Solving for Imperfect-Information Games

Noam Brown, Tuomas Sandholm

Unlike perfect-information games, imperfect-information games cannot be solved by decomposing the game into subgames that are solved independently. Thus more computationally intensive equilibrium-finding techniques are used, and all decisions must consider the strategy of the game as a whole. While it is not possible to solve an imperfect-information game exactly through decomposition, it is possible to approximate solutions, or improve existing solutions, by solving disjoint subgames. This process is referred to as subgame solving. We introduce subgame solving techniques that outperform prior methods both in theory and practice. We also show how to adapt them, and past subgame-solving techniques, to respond to opponent actions that are outside the original action abstraction; this significantly outperforms the prior state-of-the-art approach, action translation. Finally, we show that subgame solving can be repeated as the game progresses down the tree, leading to significantly lower exploitability. We applied these techniques to develop the first AI to defeat top humans in heads-up no-limit Texas hold'em poker.

A Graph-theoretic Approach To Multitasking

Noga Alon, Daniel Reichman, Igor Shinkar, Tal Wagner, Sebastian Musslick, Tom Griffiths, Jonathan D Cohen, Biswadip dey, Kayhan Ozcimder

A key feature of neural network architectures is their ability to support the simultaneous interaction among large numbers of units in the learning and processing of representations. However, how the richness of such interactions trades off against the ability of a network to simultaneously carry out multiple independent processes -- a salient limitation in many domains of human cognition -- remains largely unexplored. In this paper we use a graph-theoretic analysis of network architecture to address this question, where tasks are represented as edges in a bipartite graph $G = (A \cup B, E)$. We define a new measure of multitasking capacity of such networks, based on the assumptions that tasks that \emph{need} to be multitasked rely on independent resources, i.e., form a matching, and that tasks can be performed without interference if they form an induced matching. Our main result is an inherent tradeoff between the multitasking capacity and the average degree of the network that holds \ emph{regardless of the network architecture}. These results are also extended to networks of depth greater than 2. On the positive side, we demonstrate that networks that are random-like (e.g., locally sparse) can have desirable multitasking properties. Our results shed light into the parallel-processing limitations of neural systems and provide insights that may be useful for the analysis and design of parallel architectures.

SPOTLIGHTS

- Information-theoretic analysis of generalization capability of learning algorithms Maxim Raginsky, Aolin Xu
- Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee Alireza Aghasi, Nam Nguyen, Justin Romberg
- Clustering Billions of Reads for DNA Data Storage

Cyrus Rashtchian, Konstantin Makarychev, Luis Ceze, Karin Strauss, Sergey Yekhanin, Djordje Jevdjic, Miklos Racz, Siena Ang

 On the Complexity of Learning Neural Networks

Le Song, Santosh Vempala, John Wilmes, Bo Xie

 Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos

Gerasimos Palaiopanos, Ioannis Panageas, Georgios Piliouras

• Estimating Mutual Information for Discrete-Continuous Mixtures

Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath

Track 1 - 4:20 - 6:00 pm Deep Learning, Applications

Location: Hall A

Unsupervised Object Learning From Dense Equivariant Image Labelling

James Thewlis, Andrea Vedaldi, Hakan Bilen

One of the key challenges of visual perception is to extract abstract models of 3D objects and object categories from visual measurements, which are affected by complex nuisance factors such as viewpoint, occlusion, motion, and deformations. Starting from the recent idea of viewpoint factorization, we propose a new approach that, given a large number of images of an object and no other supervision, can extract a dense object-centric coordinate frame. This coordinate frame is invariant to deformations of the images and comes with a dense equivariant labelling neural network that can map image pixels to their corresponding object coordinates. We demonstrate the applicability of this method to simple articulated objects and deformable objects such as human faces, learning embeddings from random synthetic transformations or optical flow correspondences, all without any manual supervision.

Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts

Raymond Yeh, Jinjun Xiong, Wen-Mei Hwu, Minh Do, Alexander Schwing

Textual grounding is an important but challenging task for human-computer interaction, robotics and knowledge mining. Existing algorithms generally formulate the task as selection of the solution from a set of bounding box proposals obtained from deep net based systems. In this work, we demonstrate that we can cast the problem of textual grounding into a unified framework that permits efficient search over all possible bounding boxes. Hence, we able to consider significantly more proposals and, due to the unified formulation, our approach does not rely on a successful first stage. Beyond, we demonstrate that the trained parameters of our model can be used as word-embeddings which capture spatial-image relationships and provide interpretability. Lastly, our approach outperforms the current state-of-the-art methods on the Flickr 30k Entities and the ReferltGame dataset by 3.08 and 7.77 respectively.

Eigen-Distortions of Hierarchical Representations

Alexander Berardino, Valero Laparra, Johannes Ballé, Eero Simoncelli

We develop a method for comparing hierarchical image representations in terms of their ability to explain perceptual sensitivity in humans. Specifically, we utilize Fisher information to establish a model-derived prediction of local sensitivity to perturbations around a given natural image. For a given image, we compute the eigenvectors of the Fisher information matrix with largest and smallest eigenvalues, corresponding to the model-predicted most- and least-noticeable image distortions, respectively. For human subjects, we then measure the amount of each distortion

that can be reliably detected when added to the image, and compare these thresholds to the predictions of the corresponding model. We use this method to test the ability of a variety of representations to mimic human perceptual sensitivity. We find that the early layers of VGG16, a deep neural network optimized for object recognition, provide a better match to human perception than later layers, and a better match than a 4-stage convolutional neural network (CNN) trained on a database of human ratings of distorted image quality. On the other hand, we find that simple models of early visual processing, incorporating one or more stages of local gain control, trained on the same database of distortion ratings, predict human sensitivity significantly better than both the CNN and all layers of VGG16.

SPOTLIGHTS

 Towards Accurate Binary Convolutional Neural Network

Wei Pan, Xiaofan Lin, Cong Zhao

Deep Learning for Precipitation
 Nowcasting: A Benchmark and A New Model

Xingjian Shi, Hao Wang, Zhihan Gao, Leonard Lausen, Dit-Yan Yeung, Wang-chun WOO, Wai-kin Wong

 Poincaré Embeddings for Learning Hierarchical Representations

Maximillian Nickel, Douwe Kiela

Deep Hyperspherical Learning
 Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai,
 Tuo Zhao, Le Song

- What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? Alex Kendall, Yarin Gal
- One-Sided Unsupervised Domain Mapping Sagie Benaim, Lior Wolf
- Deep Mean-Shift Priors for Image Restoration
 Siavash Arjomand Bigdeli, Matthias Zwicker, Paolo Favaro,
 Meiguang Jin
- Deep Voice 2: Multi-Speaker Neural Text-to-Speech Andrew Gibiansky
- **Graph Matching via Multiplicative Update Algorithm**Bo Jiang, Jin Tang, Bin Luo
- Dynamic Routing Between Capsules
 Sara Sabour, Nicholas Frosst, Geoffrey E Hinton
- Modulating early visual processing by language
 Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle,
 Olivier Pietquin, Aaron C Courville

Track 2 - 4:20 am - 6:00 pm Algorithms

Location: Hall C

A Linear-Time Kernel Goodness-of-Fit Test

Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabo, Kenji Fukumizu, Arthur Gretton

We propose a novel adaptive test of goodness-of-fit, with computational cost linear in the number of samples. We learn the test features that best indicate the differences between observed samples and a reference model, by minimizing the false negative rate. These features are constructed via Stein's method, meaning that it is not necessary to compute the normalising constant of the model. We analyse the asymptotic Bahadur efficiency of the new test, and prove that under a mean-shift alternative, our test always has greater relative efficiency than a previous linear-time kernel test, regardless of the choice of parameters for that test. In experiments, the performance of our method exceeds that of the earlier linear-time test, and matches or exceeds the power of a quadratic-time kernel test. In high dimensions and where model structure may be exploited, our goodness of fit test performs far better than a quadratic-time twosample test based on the Maximum Mean Discrepancy, with samples drawn from the model.

Generalization Properties of Learning with Random Features

Alessandro Rudi, Lorenzo Rosasco

We study the generalization properties of ridge regression with random features in the statistical learning framework. We show for the first time that $O(1/\sqrt{n})$ learning bounds can be achieved with only $O(\sqrt{n} \log n)$ random features rather than O(n) as suggested by previous results. Further, we prove faster learning rates and show that they might require more random features, unless they are sampled according to a possibly problem dependent distribution. Our results shed light on the statistical computational trade-offs in large scale kernelized learning, showing the potential effectiveness of random features in reducing the computational complexity while keeping optimal generalization properties.

Communication-Efficient Distributed Learning of Discrete Distributions

Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak, Ludwig Schmidt

We initiate a systematic study of distribution learning (or density estimation) in the distributed model. In this problem the data drawn from an unknown distribution is partitioned across multiple machines. The machines must succinctly communicate with a referee so that in the end the referee can estimate the underlying distribution of the data. The problem is motivated by the pressing need to build communication-efficient protocols in various distributed systems, where power consumption or limited bandwidth impose stringent communication constraints. We give the first upper and lower bounds on the communication complexity of nonparametric density

estimation of discrete probability distributions under both I1 and the I2 distances. Specifically, our results include the following: 1. In the case when the unknown distribution is arbitrary and each machine has only one sample, we show that any interactive protocol that learns the distribution must essentially communicate the entire sample. 2. In the case of structured distributions, such as k-histograms and monotone, we design distributed protocols that achieve better communication guarantees than the trivial ones, and show tight bounds in some regimes.

SPOTLIGHTS

- Posterior sampling for Reinforcement learning: worst-case regret bounds
 Shipra Agrawal, Randy Jia
- Regret Analysis for Continuous Dueling Bandit

Wataru Kumagai

 Minimal Exploration in Structured Stochastic Bandits

Stefan Magureanu, Richard Combes, Alexandre Proutiere

- Fast Rates for Bandit Optimization with Upper-Confidence Frank-Wolfe
 Quentin Berthet, Vianney Perchet
- Diving into the shallows: a computational perspective on large-scale shallow learning Siyuan Ma, Mikhail Belkin
- Monte-Carlo Tree Search by Best Arm Identification

Emilie Kaufmann, Wouter Koolen

 A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control

Fanny Yang, Aaditya Ramdas, Kevin Jamieson, Martin Wainwright

- Parameter-Free Online Learning via Model Selection Dylan J Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan
- Bregman Divergence for Stochastic Variance
 Reduction: Saddle-Point and Adversarial Prediction
 Zhan Shi, Xinhua Zhang, Yaoliang Yu
- Gaussian Quadrature for Kernel Features
 Tri Dao, Christopher M De Sa, Christopher Ré
- Online Learning of Linear Dynamical Systems Elad Hazan, Karan Singh, Cyril Zhang

#1 Posterior sampling for Reinforcement learning: worst-case regret bounds

Shipra Agrawal, Randy Jia

#2 A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control

Fanny Yang, Aaditya Ramdas, Kevin Jamieson, Martin Wainwright

#3 Monte-Carlo Tree Search by Best Arm Identification

Emilie Kaufmann, Wouter Koolen

#4 Minimal Exploration in Structured Stochastic Bandits

Stefan Magureanu, Richard Combes, Alexandre Proutiere

#5 Regret Analysis for Continuous Dueling Bandit Wataru Kumagai

#6 Elementary Symmetric Polynomials for Optimal Experimental Design

Zelda E. Mariet, Suvrit Sra

#7 Online Learning of Linear Dynamical Systems Elad Hazan, Karan Singh, Cyril Zhang

#8 Efficient and Flexible Inference for Stochastic Systems

Stefan Bauer, Djordje Miladinovic, Nico S Gorbach, Joachim M Buhmann

#9 Group Sparse Additive Machine

Hong Chen, Xiaoqian Wang, Heng Huang

#10 Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction

Zhan Shi, Xinhua Zhang, Yaoliang Yu

#11 Online multiclass boosting

Young Jung, Jack Goetz, Ambuj Tewari

#12 Universal consistency and minimax rates for online Mondrian Forest

Jaouad Mourtada, Stéphane Gaïffas, Erwan Scornet

#13 Mean teachers are better role models: Weightaveraged consistency targets improve semisupervised deep learning results

Antti Tarvainen, Harri Valpola

#14 Learning from Complementary Labels

Takashi Ishida, Gang Niu, Weihua Hu, Masashi Sugiyama

#15 Positive-Unlabeled Learning with Non-Negative Risk Estimator

Ryuichi Kiryo, Gang Niu, Marthinus C du Plessis, Masashi Sugiyama

#16 Semisupervised Clustering, AND-Queries and Locally Encodable Source Coding

Arya Mazumdar, Soumyabrata Pal

#17 On Learning Errors of Structured Prediction with Approximate Inference

Yuanbin Wu

#18 On Optimal Generalizability in Parametric Learning

Ahmad Beirami, Meisam Razaviyayn, Shahin Shahrampour, Vahid Tarokh

#19 Multi-Objective Non-parametric Sequential Prediction

Guy Uziel, Ran El-Yaniv

#20 Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data

Joel A Tropp, Alp Yurtsever, Madeleine Udell, Volkan Cevher

#21 Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, Milan Vojnovic

#22 Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, Julien Stainer

#23 Ranking Data with Continuous Labels through Oriented Recursive Partitions

Stéphan Clémençon, Mastane Achab

#24 Practical Data-Dependent Metric Compression with Provable Guarantees

Piotr Indyk, Ilya Razenshteyn, Tal Wagner

#25 Simple strategies for recovering inner products from coarsely quantized random projections

Ping Li, Martin Slawski

#26 Clustering Stable Instances of Euclidean k-means.

Aravindan Vijayaraghavan, Abhratanu Dutta, Alex Wang

#27 On Distributed Hierarchical Clustering

Mahsa Derakhshan, Soheil Behnezhad, Mohammadhossein Bateni, Vahab Mirrokni, MohammadTaghi Hajiaghayi, Silvio Lattanzi, Raimondas Kiveris

#28 Sparse k-Means Embedding

Weiwei Liu, Xiaobo Shen, Ivor Tsang

#29 K-Medoids For K-Means Seeding

James Newling, François Fleuret

#30 An Applied Algorithmic Foundation for Hierarchical Clustering

Joshua Wang, Benjamin Moseley

#31 Inhomogoenous Hypergraph Clustering with Applications

Pan Li, Olgica Milenkovic

#32 Subspace Clustering via Tangent Cones

Amin Jalali, Rebecca Willett

#33 Tensor Biclustering

Soheil Feizi, Hamid Javadi, David Tse

#34 A unified approach to interpreting model predictions

Scott M Lundberg, Su-In Lee

#35 Efficient Sublinear-Regret Algorithms for Online **Sparse Linear Regression**

Shinji Ito, Akihiro Yabe, Ken-Ichi Kawarabayashi, Naonori Kakimura, Takuro Fukunaga, Daisuke Hatano, Hanna Sumita

#36 Unbiased estimates for linear regression via volume sampling

Michal Derezinski, Manfred Warmuth

On Separability of Loss Functions, and **Revisiting Discriminative Vs Generative Models** Adarsh Prasad, Pradeep Ravikumar

Generalized Linear Model Regression under Distance-to-set Penalties

Jason Xu, Eric Chi, Kenneth Lange

Group Additive Structure Identification for #39 Kernel Nonparametric Regression

Chao Pan. Michael Zhu

Learning Overcomplete HMMs #40

Vatsal Sharan, Sham Kakade, Percy Liang, Gregory Valiant

Matrix Norm Estimation from a Few Entries Sewoong Oh, Ashish Khetan

#42 Optimal Shrinkage of Singular Values Under **Random Data Contamination**

Danny Barash, Matan Gavish

#43 A New Theory for Nonconvex Matrix Completion Guangcan Liu, Xiaotong Yuan, Qingshan Liu

#44 Learning Low-Dimensional Metrics Blake Mason, Lalit Jain, Robert Nowak

#45 Fast Alternating Minimization Algorithms for **Dictionary Learning**

Niladri Chatterji, Peter Bartlett

#46 Consistent Robust Regression

Kush Bhatia, Prateek Jain, Puru Kar

Partial Hard Thresholding: A Towards Unified Analysis of Support Recovery

Jie Shen, Ping Li

#48 **Minimax Estimation of Bandable Precision Matrices**

Addison Hu, Sahand Negahban

Diffusion Approximations for Online Principal Component Estimation and Global Convergence Chris Junchi Li, Mengdi Wang, Tong Zhang

#50 Estimation of the covariance structure of heavytailed distributions

Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition

Naoya Takeishi, Yoshinobu Kawahara, Takehisa Yairi

Stochastic Approximation for Canonical Correlation Analysis

Raman Arora, Teodor Vanislavov Marinov, Poorya Mianjy

Diving into the shallows: a computational perspective on large-scale shallow learning SIYUAN MA, Mikhail Belkin

The Unreasonable Effectiveness of Structured **Random Orthogonal Embeddings**

Krzysztof M Choromanski, Mark Rowland, Adrian Weller

Generalization Properties of Learning with Random Features

Alessandro Rudi, Lorenzo Rosasco

Fukumizu, Arthur Gretton

Gaussian Quadrature for Kernel Features Tri Dao, Christopher M De Sa, Chris Ré

#57 A Linear-Time Kernel Goodness-of-Fit Test Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabo, Kenji

Convergence rates of a partition based Bayesian multivariate density estimation method

Linxi Liu, Dangna Li, Wing Hung Wong

The power of absolute discounting: alldimensional distribution estimation

Moein Falahatgar, Mesrob Ohannessian, Alon Orlitsky, Venkatadheeraj Pichapati

#60 Optimally Learning Populations of Parameters Kevin Tian, Weihao Kong, Gregory Valiant

Communication-Efficient Distributed Learning of Discrete Distributions

Ilias Diakonikolas, Elena Grigorescu, Jerry Li, Abhiram Natarajan, Krzysztof Onak, Ludwig Schmidt

Improved Dynamic Regret for Non-degeneracy **Functions**

Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, Zhi-Hua Zhou

#63 Parameter-Free Online Learning via Model Selection

Dylan J Foster, Satyen Kale, Mehryar Mohri, Karthik Sridharan

#64 Fast Rates for Bandit Optimization with Upper-**Confidence Frank-Wolfe**

Quentin Berthet, Vianney Perchet

#65 Online Learning with Transductive Regret Scott Yang, Mehryar Mohri

Multi-Armed Bandits with Metric Movement Costs

Tomer Koren, Roi Livni, Yishay Mansour

#67 Differentially Private Empirical Risk Minimization Revisited: Faster and More General

Di Wang, Minwei Ye, Jinhui Xu

- #68 Certified Defenses for Data Poisoning Attacks
 Jacob Steinhardt, Pang Wei W Koh, Percy Liang
- **#69** Sparse Approximate Conic Hulls
 Greg Van Buskirk, Ben Raichel, Nicholas Ruozzi
- #70 On Tensor Train Rank Minimization : Statistical Efficiency and Scalable Algorithm

 Masaaki Imaizumi, Takanori Maehara, Kohei Hayashi

#71 Sparse convolutional coding for neuronal assembly detection

Sven Peter, Elke Kirschbaum, Martin Both, Intramural Lee Campbell, Intramural Brandon Harvey, Intramural Conor Heins, Daniel Durstewitz, Ferran Diego, Fred Hamprecht

#72 Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein's Lemma

Zhuoran Yang, krishnakumar balasubramanian, Princeton Zhaoran Wang, Han Liu

#73 Solid Harmonic Wavelet Scattering: Predicting Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities

Michael Eickenberg, Georgios Exarchakis, Matthew Hirn, Stephane Mallat

#74 Clustering Billions of Reads for DNA Data Storage

Cyrus Rashtchian, Konstantin Makarychev, Luis Ceze, Karin Strauss, Sergey Yekhanin, Djordje Jevdjic, Miklos Racz, Siena Ang

#75 Deep Recurrent Neural Network-Based Identification of Precursor microRNAs

Seunghyun Park, Seonwoo Min, Hyun-Soo Choi, Sungroh Yoon

#76 Decoding with Value Networks for Neural Machine Translation

Di He, Hanqing Lu, Yingce Xia, Tao Qin, Liwei Wang, Tieyan Liu

#77 Towards the ImageNet-CNN of NLP: Pretraining Sentence Encoders with Machine TranslationBryan McCann, James Bradbury, Caiming Xiong, Richard

Socher

#78 Deep Voice 2: Multi-Speaker Neural Text-to-Speech

Andrew Gibiansky

#79 Modulating early visual processing by language

Harm de Vries, Florian Strub, Jeremie Mary, Hugo Larochelle, Olivier Pietquin, Aaron C Courville

#80 Multimodal Learning and Reasoning for Visual Question Answering

Ilija Ilievski, Jiashi Feng

#81 Learning to Model the Tail

Yu-Xiong Wang, Deva Ramanan, Martial Hebert

- #82 Interpretable and Globally Optimal Prediction for Textual Grounding using Image Concepts
 Raymond Yeh, Jinjun Xiong, Wen-Mei Hwu, Minh Do, Alex Schwing
- **#83** Multiscale Quantization for Fast Similarity Search Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Daniel Holtmann-Rice, David Simcha, Felix Yu, Sanjiv Kumar
- #84 MaskRNN: Instance Level Video Object Segmentation

Yuan-Ting Hu, Jia-Bin Huang, Alex Schwing

- #85 Flat2Sphere: Learning Spherical Convolution for Fast Features from 360° Imagery
 Yu-Chuan Su, Kristen Grauman
- **Beep Mean-Shift Priors for Image Restoration**Siavash Arjomand Bigdeli, Matthias Zwicker, Paolo
 Favaro, Meiguang Jin
- #87 Pixels to Graphs by Associative Embedding Alejandro Newell, Jia Deng
- #88 3D Shape Reconstruction by Modeling 2.5D Sketch

Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, Bill Freeman, Josh Tenenbaum

#89 Temporal Coherency based Criteria for Predicting Video Frames using Deep Multi-stage Generative Adversarial Networks

Prateep Bhattacharjee, S. Das

#90 Learning to Generalize Intrinsic Images with a Structured Disentangling Autoencoder

Michael Janner, Jiajun Wu, Tejas Kulkarni, Ilker Yildirim, Josh Tenenbaum

#91 Unsupervised object learning from dense equivariant image labelling

James Thewlis, Andrea Vedaldi, Hakan Bilen

- **#92 One-Sided Unsupervised Domain Mapping**Sagie Benaim, Lior Wolf
- #93 Contrastive Learning for Image Captioning
 Bo Dai, Dahua Lin
- **#94 Dynamic Routing Between Capsules**Sara Sabour, Nicholas Frosst, Geoffrey E Hinton
- #95 What Uncertainties Do We Need in Bayesian
 Deep Learning for Computer Vision?
 Alex Kendall, Yarin Gal

#96 Efficient Optimization for Linear Dynamical Systems with Applications to Clustering and Sparse Coding

Wenbing Huang, Fuchun Sun, Tong Zhang, Junzhou Huang, Mehrtash Harandi

#97 Label Distribution Learning Forests Wei Shen, KAI ZHAO, Yilu Guo, Alan Yuille

#98 Graph Matching via Multiplicative Update Algorithm

Bo Jiang, Jin Tang, Bin Luo

#99 Training Quantized Nets: A Deeper Understanding
Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan
Samet, Tom Goldstein

#100 Inner-loop free ADMM using Auxiliary Deep Neural Networks

Kai Fan, Qi Wei, Katherine A Heller

#101 Towards Accurate Binary Convolutional Neural Network

Wei Pan, Xiaofan Lin, Cong Zhao

#102 Runtime Neural Pruning

Ji Lin, Yongming Rao, Jiwen Lu

#103 Structured Embedding Models for Grouped DataMaja Rudolph, Francisco Ruiz, David Blei

#104 Poincaré Embeddings for Learning Hierarchical Representations

Maximillian Nickel, Douwe Kiela

#105 Language modeling with recurrent highway hypernetworks

Joseph Suarez

#106 Preventing Gradient Explosions in Gated Recurrent Units

Sekitoshi Kanai, Yasuhiro Fujiwara, Sotetsu Iwamura

#107 Wider and Deeper, Cheaper and Faster: Tensorized LSTMs for Sequence Learning Zhen He, Shaobing Gao, Liang Xiao, David Barber

#108 Fast-Slow Recurrent Neural NetworksAsier Mujika, Florian Meier, Angelika Steger

#109 Cold-Start Reinforcement Learning with Softmax Policy Gradients

Nan Ding, Radu Soricut

#110 Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model

Xingjian Shi, Hao Wang, Zhihan Gao, Leonard Lausen, Dit-Yan Yeung, Wang-chun WOO, Wai-kin Wong

#111 Recurrent Ladder Networks

Isabeau Prémont-Schwarz, Alexander Ilin, Hotloo Hao, Antti Rasmus, Rinu Boney, Harri Valpola

#112 Predictive-State Decoders: Encoding the Future into Recurrent Networks

Arun Venkatraman, Nick Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert, Byron Boots, Kris Kitani, J. Bagnell

#113 QMDP-Net: Deep Learning for Planning under Partial Observability

Peter Karkus, David Hsu, Wee Sun Lee

#114 Filtering Variational Objectives

Chris Maddison, Dieterich Lawson, George Tucker, Mohammad Norouzi, Nicolas Heess, Andriy Mnih, Yee Teh, Arnaud Doucet

#115 Unsupervised Learning of Disentangled Latent Representations from Sequential Data

Wei-Ning Hsu, Yu Zhang, James Glass

#116 Neural Discrete Representation Learning

Aaron van den Oord, Oriol Vinyals, koray kavukcuoglu

#117 Variational Memory Addressing in Generative Models

Jörg Bornschein, Andriy Mnih, Daniel Zoran, Danilo Jimenez Rezende

#118 Cortical microcircuits as gated-recurrent neural networks

Rui Costa, Yannis Assael, Brendan Shillingford, Nando de Freitas, TIm Vogels

#119 Continual Learning with Deep Generative ReplayHanul Shin, Jung Kwon Lee, Jaehong Kim, Jiwon Kim

#120 Hierarchical Attentive Recurrent Tracking
Adam Kosiorek, Alex Bewley, Ingmar Posner

#121 VAE Learning via Stein Variational Gradient Descent

Yuchen Pu, Zhe Gan, Ricardo Henao, Chunyuan Li, Shaobo Han, Lawrence Carin

#122 Learning to Inpaint for Image Compression

Mohammad Haris Baig, Vladlen Koltun, Lorenzo Torresani

#123 Visual Interaction Networks

Nick Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, Andrea Tacchetti

#124 NeuralFDR: Learning Discovery Thresholds from Hypothesis Features

Martin J Zhang, Fei Xia, James Zou, David Tse

#125 Eigen-Distortions of Hierarchical Representations

Alexander Berardino, Valero Laparra, Johannes Ballé, Eero Simoncelli

#126 On-the-fly Operation Batching in Dynamic Computation Graphs

Graham Neubig, Yoav Goldberg, Chris Dyer

#127 Learning Affinity via Spatial Propagation Networks

Sifei Liu, Guangyu Zhong, Ming-Hsuan Yang, Shalini De Mello, Jan Kautz, Jinwei Gu

#128 Supervised Adversarial Domain Adaptation

Saeid Motiian, Quinn Jones, Gianfranco Doretto

#129 Deep Hyperspherical Learning

Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song

#130 Riemannian approach to batch normalizationMinhyung Cho, Jaehyung Lee

willing Cho, Jaenyung Lee

#131 Backprop without Learning Rates Through Coin Betting

Francesco Orabona, Tatiana Tommasi

#132 On the Convergence of Block Coordinate Descent in Training DNNs with Tikhonov Regularization Ziming Zhang, Matthew Brand

#133 Collaborative Deep Learning in Fixed Topology

Zhanhong Jiang, Aditya Balu, Chinmay Hegde, Soumik Sarkar

#134 How regularization affects the critical points in linear networks

Amir Taghvaei, Jin W Kim, Prashant Mehta

#135 Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network

Wengong Jin, Connor Coley, Regina Barzilay, Tommi Jaakkola

#136 Predicting Scene Parsing and Motion Dynamics in the Future

Xiaojie Jin, Jiashi Feng, Huaxin Xiao, Yunpeng Chen, Shuicheng Yan, Xiaohui Shen, Jimei Yang, Zequn Jie, Li Ping

#137 Houdini: Democratizing Adversarial Examples Moustapha Cisse, adiyoss Adi, Natalia Neverova, Yossi

#138 Geometric Matrix Completion with Recurrent Multi-Graph Neural Networks

Federico Monti, Michael Bronstein, Xavier Bresson

#139 Compression-aware Training of Deep Neural Networks

Jose Alvarez, Mathieu Salzmann

#140 Non-parametric Neural Networks

Andreas Lehrmann, Leonid Sigal

#141 GibbsNet: Iterative Adversarial Inference for Deep Graphical Models

Alex Lamb, devon Hjelm, Yaroslav Ganin, Joseph Paul Cohen, Aaron C Courville, Yoshua Bengio

#142 Exploring Generalization in Deep Learning

Behnam Neyshabur, Srinadh Bhojanapalli, Nati Srebro

#143 Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization

Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, Bohyung

#144 Extracting low-dimensional dynamics from multiple large-scale neural population recordings by learning to predict correlations Marcel Nonnenmacher, Srini C Turaga, Jakob H Macke

#145 Adaptive sampling for a population of neurons Benjamin Cowley, Ryan Williamson, Katerina Clemens, Matthew Smith, Byron M Yu

#146 OnACID: Online Analysis of Calcium Imaging **Data in Real Time**

Andrea Giovannucci, Johannes Friedrich, Matt Kaufman, Anne Churchland, Dmitri Chklovskii, Liam Paninski, Eftychios Pnevmatikakis

#147 Detrended Partial Cross Correlation for Brain **Connectivity Analysis**

Jaime Ide, Fábio Cappabianco, Fabio Faria, Chiang-shan R Li

#148 Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search Luigi Acerbi, Wei Ji

#149 An Error Detection and Correction Framework for Connectomics

Jonathan Zung, Ignacio Tartavull

#150 GP CaKe: Effective brain connectivity with causal kernels

Luca Ambrogioni, Max Hinne, Marcel Van Gerven, Eric Maris

#151 Learning Neural Representations of Human Cognition across Many fMRI Studies

Arthur Mensch, Julien Mairal, Danilo Bzdok, Bertrand Thirion, Gael Varoquaux

#152 Mapping distinct timescales of functional interactions among brain networks

Mali Sundaresan, Arshed Nabeel, Devarajan Sridharan

#153 Robust Estimation of Neural Signals in Calcium

Hakan Inan, Murat A. Erdogdu, Mark Schnitzer

#154 Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding

Mainak Jas, Tom Dupré la Tour, Umut Simsekli, Alex Gramfort

#155 Streaming Weak Submodularity: Interpreting **Neural Networks on the Fly**

Ethan Elenberg, Alex Dimakis, Moran Feldman, Amin Karbasi

#156 Decomposable Submodular Function Minimization: Discrete and Continuous

Alina Ene, Huy Nguyen, László A. Végh

#157 Differentiable Learning of Submodular Functions Josip Djolonga, Andreas Krause

#158 Robust Optimization for Non-Convex Objectives

Yaron Singer, Robert S Chen, Vasilis Syrgkanis, Brendan

#159 On the Optimization Landscape of Tensor Decompositions

Rong Ge, Tengyu Ma

#160 Gradient Descent Can Take Exponential Time to **Escape Saddle Points**

Simon Du, Chi Jin, Jason D Lee, Michael Jordan, Aarti Singh, Barnabas Poczos

#161 Convolutional Phase Retrieval

Qing Qu, Yuqian Zhang, Yonina Eldar, John Wright

#162 Implicit Regularization in Matrix Factorization

Suriya Gunasekar, Blake Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, Nati Srebro

- #163 Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
 Jason Altschuler, Jon Weed, Philippe Rigollet
- **#164 On Frank-Wolfe and Equilibrium Computation**Jacob D Abernethy, Jun-Kun Wang
- #165 Greedy Algorithms for Cone Constrained
 Optimization with Convergence Guarantees
 Francesco Locatello, Michael Tschannen, Gunnar
 Raetsch, Martin Jaggi
- Randomized Coordinate Descent Mert Gurbuzbalaban, Denizcan Vanli, Asuman Ozdaglar

#166 When Cyclic Coordinate Descent Beats

- #167 Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, Yuanzhi Li
- #168 Adaptive Accelerated Gradient Converging
 Method under H\"{o}Iderian Error Bound
 Condition
 Mingrui Liu, Tianbao Yang
- #169 Searching in the Dark: Practical SVRG Methods under Error Bound Conditions with Guarantee Yi Xu, Qihang Lin, Tianbao Yang
- #170 Geometric Descent Method for Convex Composite Minimization
 Shixiang Chen, Shigian Ma, Wei Liu
- #171 Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers Cong Fang, Feng Cheng, Zhouchen Lin
- #172 Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization Tomoya Murata, Taiji Suzuki
- #173 Limitations on Variance-Reduction and Acceleration Schemes for Finite Sums Optimization

 Yossi Arjevani
- **#174 Nonlinear Acceleration of Stochastic Algorithms**Damien Scieur, Francis Bach, Alexandre d'Aspremont
- #175 Acceleration and Averaging in Stochastic

 Descent Dynamics

 Walid Krichene
- #176 Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces Daniel Milstein, Jason Pacheco, Leigh Hochberg, John D Simeral, Beata Jarosiewicz, Erik Sudderth
- #177 EEG-GRAPH: A Factor Graph Based Model for Capturing Spatial, Temporal, and Observational Relationships in Electroencephalograms
 Yogatheesan Varatharajah, Min Jin Chong, Krishnakant

Yogatheesan Varatharajah, Min Jin Chong, Krishnakant Saboo, Brent Berry, Benjamin Brinkmann, Gregory Worrell, Ravishankar Iyer #178 Asynchronous Parallel Coordinate Minimization for MAP Inference

Ofer Meshi, Alex Schwing

#179 Speeding Up Latent Variable Gaussian
Graphical Model Estimation via Nonconvex
Optimization

Pan Xu, Jian Ma, Quanquan Gu

- #180 The Expxorcist: Nonparametric Graphical
 Models Via Conditional Exponential Densities
 Arun Suggala, Mladen Kolar, Pradeep Ravikumar
- #181 Reducing Reparameterization Gradient Variance
 Andrew Miller, Nick Foti, Alexander D'Amour, Ryan
 Adams
- **#182 Robust Conditional Probabilities**Yoav Wald, Amir Globerson
- #183 Stein Variational Gradient Descent as Gradient Flow
 Qiang Liu
- #184 Parallel Streaming Wasserstein Barycenters
 Matt Staib, Sebastian Claici, Justin M Solomon, Stefanie
 Jegelka
- #185 AIDE: An algorithm for measuring the accuracy of Probabilistic inference algorithms

 Marco Cusumano-Towner, Vikash K Mansinghka
- **#186 Deep Dynamic Poisson Factorization Model**Chengyue Gong, win-bin huang
- #187 On the Model Shrinkage Effect of Gamma Process Edge Partition Models Iku Ohama, Issei Sato, Takuya Kida, Hiroki Arimura
- #188 Model evidence from nonequilibrium simulations

 Michael Habeck

#189 A-NICE-MC: Adversarial Training for MCMCJiaming Song, Shengjia Zhao, Stefano Ermon

#190 Identification of Gaussian Process State Space

Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, James Hensman

#191 Streaming Sparse Gaussian Process Approximations

Thang D Bui, Cuong Nguyen, Richard E Turner

- #192 Bayesian Optimization with Gradients
 Jian Wu, Matthias Poloczek, Andrew Wilson, Peter
 Frazier
- #193 Variational Inference for Gaussian Process
 Models with Linear Complexity
 Ching-An Cheng, Byron Boots
- #194 Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes Zhenwen Dai, Mauricio A. Álvarez, Neil Lawrence

Tuesday Poster Session

- #195 Non-Stationary Spectral Kernels
 Sami Remes, Markus Heinonen, Samuel Kaski
- #196 Scalable Log Determinants for Gaussian Process Kernel Learning

David Eriksson, Kun Dong, David Bindel, Andrew Wilson, Hannes Nickisch

#197 Spectral Mixture Kernels for Multi-Output Gaussian Processes

Gabriel Parra, Felipe Tobar

- **#198 Linearly constrained Gaussian processes**Carl Jidling, Niklas Wahlström, Adrian Wills, Thomas B
 Schön
- #199 Hindsight Experience Replay
 Marcin Andrychowicz, fjwolski Wolski, Alex Ray, Jonas
 Schneider, rfong Fong, Peter Welinder, Bob McGrew,
 Josh Tobin, OpenAl Pieter Abbeel, Wojciech Zaremba
- #200 Log-normality and Skewness of Estimated
 State/Action Values in Reinforcement Learning
 Liangpeng Zhang, Ke Tang, Xin Yao
- #201 Finite sample analysis of the GTD Policy Evaluation Algorithms in Markov Setting Yue Wang
- **#202 Inverse Filtering for Hidden Markov Models**Robert Mattila, Cristian Rojas, Vikram Krishnamurthy, Bo
 Wahlberg
- #203 Safe Model-based Reinforcement Learning with Stability Guarantees

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, Andreas Krause

- #204 Data-Efficient Reinforcement Learning in Continuous State-Action Gaussian-POMDPs
 Rowan McAllister, Carl Edward Rasmussen
- **#205** Linear regression without correspondence Daniel Hsu, Kevin Shi, Xiaorui Sun
- **#206** On the Complexity of Learning Neural Networks
 Le Song, Santosh Vempala, John Wilmes, Bo Xie
- #207 Near Optimal Sketching of Low-Rank Tensor Regression

Jarvis Haupt, Xingguo Li, David Woodruff

#208 Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?

Cameron Musco, David Woodruff

- #209 Higher-Order Total Variation Classes on Grids:
 Minimax Theory and Trend Filtering Methods
 Veeranjaneyulu Sadhanala, Yu-Xiang Wang, James
 Sharpnack, Ryan Tibshirani
- #210 Alternating Estimation for Structured High-Dimensional Multi-Response Models Sheng Chen, Arindam Banerjee

- #211 Adaptive Clustering through Semidefinite
 Programming
 Martin Royer
- #212 Compressing the Gram Matrix for Learning
 Neural Networks in Polynomial Time
 Surbhi Goel, Adam Klivans
- **#213 Learning with Average Top-k Loss**Yanbo Fan, Siwei Lyu, Yiming Ying, Baogang Hu
- #214 Hierarchical Clustering Beyond the Worst-Case
 Vincent Cohen-Addad, Varun Kanade, Frederik
 Mallmann-Trenn
- #215 Net-Trim: Convex Pruning of Deep Neural Networks with Performance Guarantee Alireza Aghasi, Nam Nguyen, Justin Romberg
- **#216 A graph-theoretic approach to multitasking**Noga Alon, Daniel Reichman, Igor Shinkar, Tal Wagner,
 Sebastian Musslick, Tom Griffiths, Jonathan D Cohen,
 Biswadip dey, Kayhan Ozcimder
- #217 Information-theoretic analysis of generalization capability of learning algorithms

 Maxim Raginsky, Aolin Xu
- #218 Independence clustering (without a matrix)
 Daniil Ryabko
- #219 Polynomial Codes: an Optimal Design for High-Dimensional Coded Matrix Multiplication Qian Yu, Mohammad Maddah-Ali, Salman Avestimehr
- #220 Estimating Mutual Information for Discrete-Continuous Mixtures Weihao Gao, Sreeram Kannan, Sewoong Oh, Pramod Viswanath
- **#221 Best Response Regression**Omer Ben Porat, Moshe Tennenholtz
- #222 Statistical Cost Sharing
 Eric Balkanski, Umar Syed, Sergei Vassilvitskii
- #223 A Sample Complexity Measure with Applications to Learning Optimal Auctions Vasilis Syrgkanis
- #224 Multiplicative Weights Update with Constant Step-Size in Congestion Games: Convergence, Limit Cycles and Chaos Gerasimos Palaiopanos, Ioannis Panageas, Georgios

Gerasimos Palaiopanos, Ioannis Panageas, Georgios Piliouras

- **#225 Efficiency Guarantees from Data**Darrell Hoy, Denis Nekipelov, Vasilis Syrgkanis
- #226 Safe and Nested Subgame Solving for Imperfect-Information Games Noam Brown, Tuomas Sandholm

See Page 9 For Specific Demo Locations

D1 A Deep Reinforcement Learning Chatbot

Iulian Vlad Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Mike J Pieper, Sarath Chandar, Rosemary Ke, Sai Rajeswar Mudumba, Alexandre de Brébisson, Jose Sotelo, Dendi A Suhubdy, Vincent Michalski, Joelle Pineau, Yoshua Bengio

Dialogue systems and conversational agents - including chatbots, personal assistants and voice-control interfaces - are becoming ubiquitous in modern society. Examples include personal assistants on mobile devices, customer service assistants and technical support help, as well as online bots selling anything from fashion clothes, cosmetics to legal advice and self-help therapy. Nevertheless, building high-quality intelligent conversational agents remains a major challenge for the machine learning community. This demo shows the chatbot developed by the team at the Montreal Institute of Learning Algorithms (MILA), which also participated in the Amazon Alexa Prize competition held between 2016 - 2017. The system is a socialbot: a spoken conversational agent capable of conversing engagingly with humans on popular small talk topics. Between April and August, 2017, the system had over ten thousand conversations with real-world users in the Amazon Alexa Prize competition

D2 CTRL-Labs: Non-invasive Neural Interface

Patrick Kaifosh, Tudor Giurgica-Tiron, Alan Du, Adam Alnatsheh, Jeffrey Seely, Steven Demers

CTRL-Labs is developing a non-invasive neural interface for everyday use. This interactive demo will showcase a complete end-to-end neural control application. Users will be able to: (A) wear our non-invasive device prototype on the wrist (B) map their own choice of neuromotor control schemes to multiple continuous and discrete degrees of freedom (C) play an arcadestyle computer game in real time based on their own choice of control schemes.

D3 TincyYolo: Smaller still, faster, and more efficient Michaela Blott, Nicholas Fraser

Recent research demonstrated that even extreme reduced precision works well for convolutional neural networks used for object classification. We leveraged similar quantization techniques in combination with filter pruning to reduce the computational footprint of YOLO networks such that high performance implementations within power-constraint embedded compute environments can be achieved. The demo will consist of a small embedded platform at ~6Watts power consumption, directly connected to a USB camera and a display port. The compute is performed by a Xilinx Zynq Ultrascale+ device which consists of a quadcore ARM processor and a medium-sized FPGA fabric. The live camera video stream will be processed by the MPSOC device's ARM processors, NEON cores and a NN accelerator in the FPGA fabric in real-time and shown on a monitor, whereby the 20 object classes of Pascal VOC are live classified and indicated through bounding boxes. The run-time

environment is fully integrated with DarkNet and demonstrated with dynamic off-loading and on- loading the accelerators. Users can directly interact with the demo through holding different types of objects in front of the camera to test the accuracy of the heavily quantized and pruned neural network. Furthermore, users can dynamically move layers from ARM processors and NEON to the FPGA fabric to experience the speed up and latency reduction of custom hardware accelerators. To the best of our knowledge, this is the first extreme reduced precision and pruned variant of YOLO demonstrated. While FPGA-based neural networks have started to emerge, this is a first which demonstrates high performance and reduced power for object recognition. Furthermore, our extensions of a DarkNet run-time that allows for dynamic on- and offloading on ARM, NEON and FPGA is novel.

D4 A cortical neural network simulator for kids Michiro Negishi

Technology: An educational tool for learning, building, and testing cortical micro-circuit. The student can learn about the cortical tissue structure by reading descriptions and knowing default properties presented in kid-friendly manners, and then experiment by tuning simple parameters (e.g. dendric and axonal distributions by layers and cell types) and running predefined learning algorithms (Self Organizing Feature Maps, contrastive Hebbian).

Activity: The audience will define the cortical tissue microstructure using a simple, kid-friendly interface and run the network using an OCR database. The operation of the neural network is displayed in semi-realistic 3D graphics. The audience can also draw digits online and run the network. The network parameters and test performance are recorded and the best performers are listed on a screen.

D5 Libratus: Beating Top Humans in No-Limit Poker Noam Brown, Tuomas Sandholm

Heads-up no-limit Texas Hold'em is a primary benchmark challenge for Al. Due to the hidden information in poker, techniques used for games like chess and Go are ineffective. We present Libratus, the first Al to defeat top human professionals in no-limit poker. Libratus features three main components: pre-computing a solution to an abstraction of the game which provides a high-level blueprint for how the Al should play, a new nested subgame-solving algorithm which repeatedly calculates a more detailed strategy as play progresses, and a self-improving module which augments the pre-computed blueprint based on opponent behavior.

<u>Tuesday Demos</u>

D6 Deep Robotic Learning using Visual Imagination and Meta-Learning

Chelsea Finn, Frederik Ebert, Tianhe Yu, Annie Xie, Sudeep Dasari, Pieter Abbeel, Sergey Levine

A key, unsolved challenge for learning with real robotic systems is the ability to acquire vision-based behaviors from raw RGB images that can generalize to new objects and new goals. We present two approaches to this goal that we plan to demonstrate: first, learning task-agnostic visual models for planning, which can generalize to new objects and goals, and second, learning to quickly adapt to new objects and environments using meta-imitation learning. In essence, these two approaches seek to generalize and dynamically adapt to new settings, respectively, as we discuss next.

D7 Conversational Speech Search on Massive Audio Datasets

Anthony Scodary, Wonkyum Lee, Nico Benitez, Samuel Kim

We present the Sift conversational search system. Our search system is designed to search through billions of minutes of long-form, conversational speech data. The core technology allows for complex searches that combine semantic and signal information, and a method for executing constraints on time, logical structure, and metadata.

D8 Symbol Grounding and Program Induction using Multi-modal instructions, Visual Cues and Eye Tracking.

Yordan Hristov, Emmanuel Kahembwe, Subramanian Ramamoorthy

As situated agents begin to cohabit with humans in semistructured environments, the need arises to understand their instructions, conveyed to the agent via a combination of natural language utterances and physical actions. Understanding the instructions involves decoding the speaker's intended message from their signal, and this involves learning how to ground the symbols in the physical world. The latter can be ambiguous due to variability in the physical instantiations of concepts - different people might use turquoise, sky blue, light blue and blue while referring to the same color or small-sized building blocks for one person could be determined as medium-sized by another. Realistically, symbol grounding is a task which must cope with small datasets consisting of a particular user's contextual assignment of meaning to terms. We demonstrate a framework for inferring abstract plans and symbol groundings over human Demos of a task.

D9 Sensomind: Democratizing deep learning for the food industry

Michael Sass Hansen, Sebastian Brandes Kraaijenzank

Microsoft exhibits great use of technology at the Technology Centers around the globe. Sensomind is one of the solutions showcased at their Copenhagen center and shows how the cloud and the power of arti cial intelligence can be put to use with the purpose of increasing product quality and optimizing production processes for manufacturing companies of every type all over the world. At the Technology Center, visitors get to experience what it is like to be a modern plant manager in an Industry 4.0 world. The demo allows visitors to train a neural network that can detect aws in products of di erent kinds. At the stand, there are various types of fake plastic foods available for visitors to use when training their models. Using a simple and intuitive web interface, visitors can deploy their newly trained neural network into production and see it running live making predictions on products passing by on a conveyor belt at the stand. The predictions made on the products are being uploaded to Sensomind's solution in the cloud where the data are being visualized in an easy-to-use dashboard hosted in Power BI (https://powerbi.microsoft.com/). Power BI allows the visitor to dig into the data and make analyses on the predictions made. This enables the visitor in their function as a plant manager to get insights about the production and potentially identify pattern and causes for errors. At this stage, the data become very actionable, as the visitor can act upon the insights and resolve the issue causing the errors.

D10 Deep Neural Net implementations with FPGAs

Thomas Boser, Paolo Calafiura, Ian Johnson

With recent increases in the luminosity of Large Hadron Collider (LHC) collisions creating more tracking data an efficient track reconstruction solution has become necessary. As it currently stands during the level 1 trigger it is necessary to identify 50 million particle tracks per second with lower than 5 microsecond latency per track. This requires a low latency highly parallel implementation or a connectthedots track reconstruction algorithm. Current algorithms are implemented on ASIC chips or FPGAs and scale O(N2)or worse. It is projected that we'll experience a O(10x) resource shortage with current implementations.

Simultaneously deep learning has become a standard technique in computer vision. We explore the viability of a deep learning solution for track reconstruction. We have explored various implementations of DNNs applied to the tracking problem and have promising preliminary results. We've explored using CNNs, RNNs, LSTMs, and Deep Kalman Filters. Current popular deep learning libraries are all heavily reliant on Graphics Processing Units (GPUs) to shoulder the bulk of heavy computation. These libraries show incredible results with rapidly improving throughput. Unfortunately this cannot be applied for latency sensitive Applications such as our track reconstruction problem because GPUs cannot guarantee low latency.

WEDNESDAY SESSIONS

7:30 - 9:00 AM	Coffee	
9:00 - 9:50 AM	Invited Talk: Lise Getoor The Unreasonable Effectiveness of Structure	Hall A
9:50 - 10:20 AM	Coffee break	
10:20 - 12:00 PM	Parallel Tracks: Theory, Probabilistic Methods Deep Learning	Hall A Hall C
12:00 - 1:50 PM	Lunch on your own	
1:50 - 2:40 PM	Invited Talk: Pieter Abbeel Deep Learning for Robotics	Hall A
2:40 - 2:50 PM	Quick break	
2:50 - 3:50 PM	Parallel Tracks: Reinforcement Learning, Deep Learning Optimization	Hall A Hall C
3:50 - 4:20 PM	Coffee break	
4:20 - 6:00 PM	Parallel Tracks: Reinforcement Learning, Algorithms, Applications Probabilistic Methods, Applications	Hall A Hall C
6:00 - 7:00 PM	Light snack	
7:00 - 10:30 PM	Poster session and Demos	Pacific Ballroom

The Unreasonable Effectiveness of Structure

Hall A, 9:00 - 9:50 AM

Our ability to collect, manipulate, analyze, and act on vast amounts of data is having a profound impact on all aspects of society. Much of this data is heterogeneous in nature and interlinked in a myriad of complex ways. From information integration to scientific discovery to computational social science, we need machine learning methods that are able to exploit both the inherent uncertainty and the innate structure in a domain. Statistical relational learning (SRL) is a subfield that builds on principles from probability theory and statistics to address uncertainty while incorporating tools from knowledge representation and logic to represent structure. In this talk, I will give a brief introduction to SRL, present templates for common structured prediction problems, and describe modeling approaches that mix logic, Probabilistic inference and latent variables. I'll overview our recent work on Probabilistic soft logic (PSL), an SRL framework for large-scale collective, Probabilistic reasoning in relational domains. I'll close by highlighting emerging opportunities (and challenges!!) in realizing the effectiveness of data and structure for knowledge discovery.

Lise Getoor (UC Santa Cruz)

Lise Getoor is a professor in the Computer Science Department at the University of California, Santa Cruz. Her research areas include machine learning, data integration and reasoning under uncertainty, with

an emphasis on graph and network data. She has over 250 publications and extensive experience with machine learning and Probabilistic modeling methods for graph and network data. She is a Fellow of the Association for Artificial Intelligence, an elected board member of the International Machine Learning Society, serves on the board of the Computing Research Association (CRA), and was co-chair for ICML 2011. She is a recipient of an NSF Career Award and eleven best paper and best student paper awards. She received her PhD from Stanford University in 2001, her MS from UC Berkeley, and her BS from UC Santa Barbara, and was a professor in the Computer Science Department at the University of Maryland, College Park from 2001-2013.

Deep Learning for Robotics

Hall A, 1:50 - 2:40 PM

Computer scientists are increasingly concerned about the many ways that machine learning can reproduce and reinforce forms of bias. When ML systems are incorporated into core social institutions, like healthcare, criminal justice and education, issues of bias and discrimination can be extremely serious. But what can be done about it? Part of the trouble with bias in machine learning in high-stakes decision making is that it can be the result of one or many factors: the training data, the model, the system goals, and whether the system works less well for some populations, among several others. Given the difficulty of understanding how a machine learning system produced a particular result, bias is often discovered after a system has been producing unfair results in the wild. But there is another problem as well: the definition of bias changes significantly depending on your discipline, and there are exciting approaches from other fields that have not yet been included by computer science. This talk will look at the recent literature on bias in machine learning, consider how we can incorporate approaches from the social sciences, and offer new strategies to address bias.

Pieter Abbeel (OpenAI / UC Berkeley / Gradescope)

Pieter Abbeel (Associate Professor at UC Berkeley, Research Scientist at OpenAl, Co-Founder Gradescope) works in machine learning and robotics, in particular his research is on making robots learn from

people (apprenticeship learning) and how to make robots learn through their own trial and error (Reinforcement learning). His robots have learned advanced helicopter aerobatics, knottying, basic assembly, and organizing laundry. His group has pioneered deep Reinforcement learning for robotics, including learning visuomotor skills and simulated locomotion. He has won various awards, including best paper awards at ICML, NIPS and ICRA, the Sloan Fellowship, the Air Force Office of Scientific Research Young Investigator Program (AFOSR-YIP) award, the Office of Naval Research Young Investigator Program (ONR-YIP) award, the DARPA Young Faculty Award (DARPA-YFA), the National Science Foundation Faculty Early Career Development Program Award (NSF-CAREER), the Presidential Early Career Award for Scientists and Engineers (PECASE), the CRA-E Undergraduate Research Faculty Mentoring Award, the MIT TR35, the IEEE Robotics and Automation Society (RAS) Early Career Award, and the Dick Volz Best U.S. Ph.D. Thesis in Robotics and Automation Award.

Track 1 - 10:20 am - 12:00 pm Theory, Probabilistic Methods

Location: Hall A

On Structured Prediction Theory with Calibrated Convex Surrogate Losses

Anton Osokin, Francis Bach, Simon Lacoste-Julien

We provide novel theoretical insights on structured prediction in the context of efficient convex surrogate loss minimization with consistency guarantees. For any task loss, we construct a convex surrogate that can be optimized via stochastic gradient descent and we prove tight bounds on the so-called "calibration function" relating the excess surrogate risk to the actual risk. In contrast to prior related work, we carefully monitor the effect of the exponential number of classes in the learning guarantees as well as on the optimization complexity. As an interesting consequence, we formalize the intuition that some task losses make learning harder than others, and that the classical 0-1 loss is ill-suited for structured prediction.

REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

George Tucker, Andriy Mnih, Chris J Maddison, Dieterich Lawson, Jascha Sohl-Dickstein

Learning in models with discrete latent variables is challenging due to high variance gradient estimators. Generally, approaches have relied on control variates to reduce the variance of the REINFORCE estimator. Recent work {jang2016categorical, maddison2016concrete} has taken a different approach, introducing a continuous relaxation of discrete variables to produce low-variance, but biased, gradient estimates. In this work, we combine the two approaches through a novel control variate that produces low-variance, \emph{unbiased} gradient estimates. Then, we introduce a novel continuous relaxation and show that the tightness of the relaxation can be adapted online, removing it as a hyperparameter. We show state-of-the-art variance reduction on several benchmark generative modeling tasks, generally leading to faster convergence to a better final log likelihood.

Variance-based Regularization with Convex Objectives

Hong Namkoong, John C Duchi

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

More powerful and flexible rules for online FDR control with memory and weights

Aaditya Ramdas, Fanny Yang, Martin Wainwright, Michael Jordan

In the online multiple testing problem, p-values corresponding to different null hypotheses are presented one by one, and the decision of whether to reject a hypothesis must be made immediately, after which the next p-value is presented. Alpha-investing algorithms to control the false discovery rate were first formulated by Foster and Stine and have since been generalized and applied to various settings, varying from quality-preserving databases for science to multiple A/B tests for internet commerce. This paper improves the class of generalized alphainvesting algorithms (GAI) in four ways: (a) we show how to uniformly improve the power of the entire class of GAI procedures under independence by awarding more alpha-wealth for each rejection, giving a near win-win resolution to a dilemma raised by Javanmard and Montanari, (b) we demonstrate how to incorporate prior weights to indicate domain knowledge of which hypotheses are likely to be null or non-null, (c) we allow for differing penalties for false discoveries to indicate that some hypotheses may be more meaningful/important than others, (d) we define a new quantity called the decaying memory false discovery rate, or memfdr that may be more meaningful for Applications with an explicit time component, using a discount factor to incrementally forget past decisions and alleviate some potential problems that we describe and name "piggybacking" and "alphadeath". Our GAI++ algorithms incorporate all four generalizations (a, b, c, d) simulatenously, and reduce to more powerful variants of earlier algorithms when the weights and decay are all set to unity.

SPOTLIGHTS

 Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues

Noga Alon, Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran, Amir Yehudayoff

 Fast Black-box Variational Inference through Stochastic Trust-Region Optimization

Jeff Regier, Michael Jordan, Jon McAuliffe

 A Universal Analysis of Large-Scale Regularized Least Squares Solutions

Ashkan Panahi, Babak Hassibi

 A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, Ole Winther

 Accelerated Stochastic Greedy Coordinate Descent by Soft Thresholding Projection onto Simplex Chaobing Song, Shaobo Cui, Shu-Tao Xia, Yong Jiang

- Early stopping for kernel boosting algorithms: A general analysis with localized complexities
 Yuting Wei, Fanny Yang, Martin Wainwright
- Spectrally-normalized margin bounds for neural networks Soft Thresholding Projection onto Simplex Matus Telgarsky, Peter Bartlett, Dylan J Foster
- The Scaling Limit of High-Dimensional Online Independent Component Analysis Chuang Wang, Yue Lu

Track 2 - 10:20 am - 12:00 pm Deep Learning

Location: Hall C

TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, Helen Li

High network communication cost for synchronizing gradients and parameters is the well-known bottleneck of distributed training. In this work, we propose TernGrad that uses ternary gradients to accelerate distributed deep learning in data parallelism. Our approach requires only three numerical levels {-1,0,1} which can aggressively reduce the communication time. We mathematically prove the convergence of TernGrad under the assumption of a bound on gradients. Guided by the bound, we propose layer-wise ternarizing and gradient clipping to improve its convergence. Our experiments show that applying TernGrad on AlexNet doesn't incur any accuracy loss and can even improve accuracy. The accuracy loss of GoogLeNet induced by TernGrad is less than 2% on average. Finally, a performance model is proposed to study the scalability of TernGrad. Experiments show significant speed gains for various deep neural networks.

Train longer, generalize better: closing the generalization gap in large batch training of neural networks

Elad Hoffer, Itay Hubara, Daniel Soudry

Background: Deep learning models are typically trained using stochastic gradient descent or one of its variants. These methods update the weights using their gradient, estimated from a small fraction of the training data. It has been observed that when using large batch sizes there is a persistent degradation in generalization performance - known as the "generalization gap" phenomena. Identifying the origin of this gap and closing it had remained an open problem. Contributions: We examine the initial high learning rate training phase. We find that the weight distance from its initialization grows logarithmicaly with the number of weight updates. We therefore propose a "random walk on random landscape" statistical model which is known to exhibit similar "ultra-slow" diffusion behavior. Following this hypothesis we conducted experiments to show empirically that the "generalization gap" stems from the relatively small number of updates rather than the batch size, and can be completely eliminated by adapting the training regime used. We further investigate different techniques to train models in the large-batch regime and present a novel algorithm named "Ghost Batch Normalization" which enables significant decrease in the generalization gap without increasing the number of updates. To validate our findings we conduct several additional experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet. Finally, we reassess common practices and beliefs concerning training of deep models and suggest they may not be optimal to achieve good generalization.

End-to-end Differentiable Proving

Tim Rocktäschel, Sebastian Riedel

We introduce deep neural networks for end-to-end differentiable theorem proving that operate on dense vector representations of symbols. These neural networks are recursively constructed by following the backward chaining algorithm as used in Prolog. Specifically, we replace symbolic unification with a differentiable computation on vector representations of symbols using a radial basis function kernel, thereby combining symbolic reasoning with learning subsymbolic vector representations. The resulting neural network can be trained to infer facts from a given incomplete knowledge base using gradient descent. By doing so, it learns to (i) place representations of similar symbols in close proximity in a vector space, (ii) make use of such similarities to prove facts, (iii) induce logical rules, and (iv) it can use provided and induced logical rules for complex multi-hop reasoning. On four benchmark knowledge bases we demonstrate that this architecture outperforms ComplEx, a state-of-the-art neural link prediction model, while at the same time inducing interpretable function-free first-order logic rules.

Gradient descent GAN optimization is locally stable

Vaishnavh Nagarajan, J. Zico Kolter

Despite their growing prominence, optimization in generative adversarial networks (GANs) is still a poorly-understood topic. In this paper, we analyze the gradient descent" form of GAN optimization (i.e., the natural setting where we simultaneously take small gradient steps in both generator and discriminator parameters). We show that even though GAN optimization does \emph{not} correspond to a convex-concave game even for simple parameterizations, under proper conditions, equilibrium points of this optimization procedure are still \emph{locally asymptotically stable} for the traditional GAN formulation. On the other hand, we show that the recentlyproposed Wasserstein GAN can have non-convergent limit cycles near equilibrium. Motivated by this stability analysis, we propose an additional regularization term for gradient descent GAN updates, which \emph{is} able to guarantee local stability for both the WGAN and for the traditional GAN, and which also shows practical promise in speeding up convergence and addressing mode collapse.

SPOTLIGHTS

- f-GANs in an Information Geometric Nutshell Richard Nock, Zac Cranko, Aditya K Menon, Lizhen Qu, Robert C Williamson
- Unsupervised Image-to-Image Translation Networks Ming-Yu Liu, Thomas Breuel, Jan Kautz
- The Numerics of GANs
 Lars Mescheder, Sebastian Nowozin, Andreas Geiger
- Dual Discriminator Generative Adversarial Nets Tu Nguyen, Trung Le, Hung Vu, Dinh Phung
- Bayesian GANs Yunus Saatci, Andrew Wilson
- Approximation and Convergence Properties of Generative Adversarial Learning
 Shuang Liu, Olivier Bousquet, Kamalika Chaudhuri
 - Shaarig Ela, Shvier Boasquee, Karnanka eriaaanan
- Dualing GANs
 Yujia Li, Alex Schwing, Kuan-Chieh Wang, Richard Zemel
- Generalizing GANs: A Turing Perspective Roderich Gross, Yue Gu, Wei Li, Melvin Gauci

Track 1 - 2:50 - 3:50 pm Reinforcement Learning, Deep Learning

Location: Hall A

ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games

Yuandong Tian, Qucheng Gong, Wendy Shang, Yuxin Wu, Larry Zitnick

In this paper, we propose ELF, an Extensive, Lightweight and Flexible platform for fundamental Reinforcement learning research. Using ELF, we implement a highly customizable real-time strategy (RTS) engine with three game environments (Mini-RTS, Capture the Flag and Tower Defense). Mini-RTS, as a miniature version of StarCraft, captures key game dynamics and runs at 165K frame-per-second (FPS) on a Macbook Pro notebook. When coupled with modern Reinforcement learning methods, the system can train a full-game bot against builtin Als end-to-end in one day with 6 CPUs and 1 GPU. In addition, our platform is flexible in terms of environment-agent communication topologies, choices of RL methods, changes in game parameters, and can host existing C/C++-based game environments like ALE. Using ELF, we thoroughly explore training parameters and show that a network with Leaky ReLU and Batch Normalization coupled with long-horizon training and progressive curriculum beats the rulebased built-in AI more than 70% of the time in the full game of Mini-RTS. Strong performance is also achieved on the other two games. In game replays, we show our agents learn interesting strategies. ELF, along with its RL platform, will be open-sourced.

Imagination-Augmented Agents for Deep Reinforcement Learning

Seb Racanière, David Reichert, Theophane Weber, Oriol Vinyals, Daan Wierstra, Lars Buesing, Peter Battaglia, Razvan Pascanu, Yujia Li, Nicolas Heess, Arthur Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, David Silver

We introduce Imagination-Augmented Agents (I2As), a novel architecture for deep Reinforcement learning combining model-free and model-based aspects. In contrast to most existing model-based Reinforcement learning and planning methods, which prescribe how a model should be used to arrive at a policy, I2As learn to interpret predictions from a trained environment model to construct implicit plans in arbitrary ways, by using the predictions as additional context in deep policy networks. I2As show improved data efficiency, performance, and robustness to model misspecification compared to several strong baselines.

SPOTLIGHTS

Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

A simple neural network module for relational reasoning

Adam Santoro, David Raposo, David Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap

Second-order Optimization in Deep Reinforcement Learning using Kronecker-factored Approximation

Yuhuai Wu, Elman Mansimov, Roger Grosse, Shun Liao, Jimmy Ba

· Attention is All you Need

Ashish Vaswani, Noam Shazeer, Niki Parmar, Llion Jones, Jakob Uszkoreit, Aidan N Gomez, Łukasz Kaiser

Learning Combinatorial Optimization Algorithms over Graphs

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, Le Song

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell

Wednesday Session Tracks

Track 2 - 2:50 - 3:50 pm Optimization

Location: Hall C

The Marginal Value of Adaptive Gradient Methods in Machine Learning

Ashia C Wilson, Becca Roelofs, Mitchell Stern, Nati Srebro, Benjamin Recht

Adaptive optimization methods, which perform local optimization with a metric constructed from the history of iterates, are becoming increasingly popular for training deep neural networks. Examples include AdaGrad, RMSProp, and Adam. We show that for simple overparameterized problems, adaptive methods often find drastically different solutions than vanilla stochastic gradient descent (SGD). We construct an illustrative binary classification problem where the data is linearly separable, SGD achieves zero test error, and AdaGrad and Adam attain test errors arbitrarily close to 1/2. We additionally study the empirical generalization capability of adaptive methods on several state-of-the-art deep learning models. We observe that the solutions found by adaptive methods generalize worse (often significantly worse) than SGD, even when these solutions have better training performance. These results suggest that practitioners should reconsider the use of adaptive methods to train neural networks.

Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu

Most distributed machine learning systems nowadays, including TensorFlow and CNTK, are built in a centralized fashion. One bottleneck of centralized algorithms lies on high communication cost on the central node. Motivated by this, we ask, can decentralized algorithms be faster than its centralized counterpart? Although decentralized PSGD (D-PSGD) algorithms have been studied by the control community, existing analysis and theory do not show any advantage over centralized PSGD (C-PSGD) algorithms, simply assuming the application scenario where only the decentralized network is available. In this paper, we study a D-PSGD algorithm and provide the first theoretical analysis that indicates a regime in which decentralized algorithms might outperform centralized algorithms for distributed stochastic gradient descent. This is because D-PSGD has comparable total computational complexities to C-PSGD but requires much less communication cost on the busiest node. We further conduct an empirical study to validate our theoretical analysis across multiple frameworks (CNTK and Torch), different network configurations, and computation platforms up to 112 GPUs. On network configurations with low bandwidth or high latency, D-PSGD can be up to one order of magnitude faster than its well-optimized centralized counterparts.

SPOTLIGHTS

 Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization

Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien

- Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure
 Alberto Bietti, Julien Mairal
- Process-constrained batch Bayesian optimisation
 Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin,
 Alessandra Sutti, Thomas Dorin, Murray Height, Paul Sanders,
 Svetha Venkatesh
- Safe Adaptive Importance Sampling Sebastian Stich, Anant Raj, Martin Jaggi
- Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization Omar El Housni, Vineet Goyal
- Straggler Mitigation in Distributed Optimization Through Data Encoding

Can Karakus, Yifan Sun, Suhas Diggavi, Wotao Yin

Track 1 - 4:20 - 6:00 pm Reinforcement Learning, Algorithms, Applications

Location: Hall A

Off-policy evaluation for slate recommendation

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miro Dudik, John Langford, Damien Jose, Imed Zitouni

This paper studies the evaluation of policies that recommend an ordered set of items (e.g., a ranking) based on some context—a common scenario in web search, ads, and recommendation. We build on techniques from combinatorial bandits to introduce a new practical estimator. A thorough empirical evaluation on real-world data reveals that our estimator is accurate in a variety of settings, including as a subroutine in a learning-to-rank task, where it achieves competitive performance. We derive conditions under which our estimator is unbiased—these conditions are weaker than prior heuristics for slate evaluation—and experimentally demonstrate a smaller bias than parametric approaches, even when these conditions are violated. Finally, our theory and experiments also show exponential savings in the amount of required data compared with general unbiased estimators.

Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes

Sam Daulton, Taylor Killian, Finale Doshi-Velez, George Konidaris

We introduce a new formulation of the Hidden Parameter Markov Decision Process (HiP-MDP), a framework for modeling families of related tasks using low-dimensional latent embeddings. We replace the original Gaussian Process-based model with a Bayesian Neural Network. Our new framework correctly models the joint uncertainty in the latent weights and the state space and has more scalable inference, thus expanding the scope the HiP-MDP to Applications with higher dimensions and more complex dynamics.

Inverse Reward Design

Dylan Hadfield-Menell, Smitha Milli, Stuart J Russell, Pieter Abbeel, Anca Dragan

Autonomous agents optimize the reward function we give them. What they don't know is how hard it is for us to design a reward function that actually captures what we want. When designing the reward, we might think of some specific scenarios (driving on clean roads), and make sure that the reward will lead to the right behavior in those scenarios. Inevitably, agents encounter new scenarios (snowy roads), and optimizing the reward can lead to undesired behavior (driving too fast). Our insight in this work is that reward functions are merely observations about what the designer actually wants, and that they should be interpreted in the context in which they were designed. We introduce Inverse Reward Design (IRD) as the problem of inferring the true reward based on the designed reward and the training MDP. We introduce approximate methods for solving IRD problems, and use their solution to plan risk-averse behavior in test MDPs. Empirical results suggest that this approach takes a step towards alleviating negative side effects and preventing reward hacking.

SPOTLIGHTS

 Dynamic Safe Interruptibility for Decentralized Multi-Agent Reinforcement Learning

El Mahdi El Mhamdi, Rachid Guerraoui, Hadrien Hendrikx, Alexandre Maurer

 Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning

Christoph Dann, Tor Lattimore, Emma Brunskill

- Repeated Inverse Reinforcement Learning Kareem Amin, Nan Jiang, Satinder Singh
- Learning multiple visual domains with residual adapters

Sylvestre-Alvise Rebuffi, Hakan Bilen, Andrea Vedaldi

Natural value approximators: learning when to trust past estimates

Tom Schaul, Zhongwen Xu, Joseph Modayil, Hado van Hasselt, Andre Barreto, David Silver

 EX2: Exploration with Exemplar Models for Deep Reinforcement Learning

Justin Fu, John Co-Reyes, Sergey Levine

 Regret Minimization in MDPs with Options without Prior Knowledge

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Emma Brunskill

 Successor Features for Transfer in Reinforcement Learning

Andre Barreto, Will Dabney, Remi Munos, Jonathan Hunt, Tom Schaul, David Silver, Hado van Hasselt

 Overcoming Catastrophic Forgetting by Incremental Moment Matching

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, Byoung-Tak Zhang

• Fair Clustering Through Fairlets

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii

 Fitting Low-Rank Tensors in Constant Time Kohei Hayashi, Yuichi Yoshida

Track 2 - 4:20 - 6:00 pm Probabilistic Methods, Applications

Location: Hall C

What-If Reasoning using Counterfactual Gaussian Processes

Peter Schulam, Suchi Saria

Answering "What if?" questions is important in many domains. For example, would a patient's disease progression slow down if I were to give them a dose of drug A? Ideally, we answer our question using an experiment, but this is not always possible (e.g., it may be unethical). As an alternative, we can use non-experimental data to learn models that make counterfactual predictions of what we would observe had we run an experiment. In this paper, we propose the counterfactual GP, a counterfactual model of continuous-time trajectories (time series) under sequences of actions taken in continuous-time. We develop our model within the potential outcomes framework of Neyman and Rubin. The counterfactual GP is trained using a joint maximum likelihood objective that adjusts for dependencies between observed actions and outcomes in the training data. We report two sets of experimental results using the counterfactual GP. The first shows that it can be used to learn the natural progression (i.e. untreated progression) of biomarker trajectories from observational data. In the second, we show how the CGP can be used for medical decision support by learning counterfactual models of renal health under different types of dialysis.

Convolutional Gaussian Processes

Mark van der Wilk, Carl Edward Rasmussen, James Hensman

We introduce a practical way of introducing convolutional structure into Gaussian processes, which makes them better suited to high-dimensional inputs like images than existing kernels. The main contribution of our work is the construction of an interdomain inducing point approximation that is well-tailored to the convolutional kernel. This allows us to gain the generalisation benefit of a convolutional kernel, together with fast but accurate posterior inference. We investigate several variations of the convolutional kernel, and apply it to MNIST and CIFAR-10 that have been known to be challenging for Gaussian processes. We also show how the marginal likelihood can be used to find an optimal weighting between convolutional and RBF kernels to further improve performance. We hope this illustration of the usefulness of a marginal likelihood will help to automate discovering architectures in larger models.

Counterfactual Fairness

Matt Kusner, Joshua Loftus, Chris Russell, Ricardo Silva

Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be

biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school.

SPOTLIGHTS

 An Empirical Bayes Approach to Optimizing Machine Learning Algorithms

James McInerney

 PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference

Jonathan Huggins, Ryan Adams, Tamara Broderick

 Multiresolution Kernel Approximation for Gaussian Process Regression

Yi Ding, Risi Kondor, Jon Eskreis-Winkler

Multi-Information Source Optimization

Matthias Poloczek, Jialei Wang, Peter Frazier

Doubly Stochastic Variational Inference for Deep Gaussian Processes

Hugh Salimbeni, Marc Deisenroth

 Permutation-based Causal Inference Algorithms with Interventions

Yuhao Wang, Liam Solus, Karren Yang, Caroline Uhler

- Gradients of Generative Models for Improved
 Discriminative Analysis of Tandem Mass Spectra
 John T Halloran, David M Rocke
- Style Transfer from Non-parallel Text by Cross-Alignment

Tianxiao Shen, Tao Lei, Regina Barzilay, Tommi Jaakkola

 Premise Selection for Theorem Proving by Deep Graph Embedding

Mingzhe Wang, Yihe Tang, Jian Wang, Jia Deng

 Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks

Ahmed M. Alaa, Mihaela van der Schaar

 Unsupervised Learning of Disentangled Representations from Video

Emily Denton, vighnesh Birodkar

#1 Deep Reinforcement Learning from Human Preferences

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, Dario Amodei

#2 Multi-Modal Imitation Learning from Unstructured Demos using Generative Adversarial Nets

Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, Joseph J Lim

#3 EX2: Exploration with Exemplar Models for Deep Reinforcement Learning

Justin Fu, John Co-Reyes, Sergey Levine

#4 #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

Haoran Tang, Pieter Abbeel, Davis Foote, Yan Duan, OpenAl Xi Chen, Rein Houthooft, Adam Stooke, Filip DeTurck

#5 Thinking Fast and Slow with Deep Learning and Tree Search

Thomas Anthony, Zheng Tian, David Barber

#6 Natural value approximators: learning when to trust past estimates

Tom Schaul, Zhongwen Xu, Joseph Modayil, Hado van Hasselt, Andre Barreto, David Silver

#7 Active Exploration for Learning Symbolic Representations

Garrett Andersen, George Konidaris

#8 State Aware Imitation Learning

Yannick Schroecker, Charles L Isbell

#9 Successor Features for Transfer in Reinforcement Learning

Andre Barreto, Will Dabney, Remi Munos, Jonathan Hunt, Tom Schaul, David Silver, Hado van Hasselt

#10 Bridging the Gap Between Value and Policy Based Reinforcement Learning

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, Dale Schuurmans

#11 Using Options and Covariance Testing for Long Horizon Off-Policy Policy Evaluation

Daniel Guo, Philip S. Thomas, Emma Brunskill

#12 Compatible Reward Inverse Reinforcement Learning

Alberto Maria Metelli, Matteo Pirotta, Marcello Restelli

#13 Adaptive Batch Size for Safe Policy Gradients Matteo Papini, Matteo Pirotta, Marcello Restelli

#14 Regret Minimization in MDPs with Options without Prior Knowledge

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, Emma Brunskill

#15 Is the Bellman residual a bad proxy? Matthieu Geist, Bilal Piot, Olivier Pietquin

#16 Learning Unknown Markov Decision Processes:
A Thompson Sampling Approach

Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, Rahul Jain

#17 Online Reinforcement Learning in Stochastic Games

Chen-Yu Wei, Yi-Te Hong, Chi-Jen Lu

#18 Reinforcement Learning under Model Mismatch Aurko Roy, Huan Xu, Sebastian Pokutta

#19 Zap Q-Learning

Adithya M Devraj, Sean Meyn

#20 Ensemble Sampling

Xiuyuan Lu, Benjamin Van Roy

#21 Action Centered Contextual Bandits

Kristjan Greenewald, Ambuj Tewari, Susan Murphy, Predag Klasnja

#22 Conservative Contextual Linear Bandits

Abbas Kazerouni, Mohammad Ghavamzadeh, Yasin Abbasi, Benjamin Van Roy

#23 Rotting Bandits

Nir Levine, Koby Crammer, Shie Mannor

#24 Identifying Outlier Arms in Multi-Armed Bandit Honglei Zhuang, Chi Wang, Yifan Wang

#25 Multi-Task Learning for Contextual Bandits Aniket Anand Deshmukh, Urun Dogan, Clay Scott

#26 Boltzmann Exploration Done Right

Nicolò Cesa-Bianchi, Claudio Gentile, Gergely Neu, Gabor Lugosi

#27 Improving the Expected Improvement Algorithm

Chao Qin, Diego Klabjan, Daniel Russo

#28 A KL-LUCB algorithm for Large-Scale Crowdsourcing

Ervin Tanczos, Robert Nowak, Bob Mankoff

#29 Scalable Generalized Linear Bandits: Online Computation and Hashing

Kwang-Sung Jun, Aniruddha Bhargava, Robert Nowak, Rebecca Willett

#30 Bandits Dueling on Partially Ordered Sets

Julien Audiffren, Liva Ralaivola

#31 Position-based Multiple-play Multi-armed Bandit Problem with Unknown Position Bias

Junpei Komiyama, Junya Honda, Akiko Takeda

#32 Online Influence Maximization under Independent Cascade Model with Semi-Bandit Feedback

Zheng Wen, Branislav Kveton, Michal Valko, Sharan Vaswani

#33 A Scale Free Algorithm for Stochastic Bandits with Bounded Kurtosis

Tor Lattimore

#34 Adaptive Active Hypothesis Testing under Limited Information

Fabio Cecchi, Nidhi Hegde

#35 Near-Optimal Edge Evaluation in Explicit Generalized Binomial Graphs

Sanjiban Choudhury, Shervin Javdani, Siddhartha Srinivasa, Sebastian Scherer

#36 Robust and Efficient Transfer Learning with Hidden Parameter Markov Decision Processes

Sam Daulton, Taylor Killian, Finale Doshi-Velez, George Konidaris

#37 Overcoming Catastrophic Forgetting by Incremental Moment Matching

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, Byoung-Tak Zhang

#38 Hypothesis Transfer Learning via Transformation Functions

Simon Du, Jayanth Koushik, Aarti Singh, Barnabas Poczos

#39 Learning multiple visual domains with residual adapters

Sylvestre-Alvise Rebuffi, Hakan Bilen, Andrea Vedaldi

#40 Self-supervised Learning of Motion Capture

Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki

#41 Information Theoretic Properties of Markov Random Fields, and their Algorithmic Applications

Linus Hamilton, Frederic Koehler, Ankur Moitra

#42 Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification

Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J Kim, Johannes Fürnkranz

#43 Local Aggregative Games

Vikas Garg, Tommi Jaakkola

#44 An Empirical Bayes Approach to Optimizing Machine Learning Algorithms

James McInerney

#45 Learning Chordal Markov Networks via Branch and Bound

Kari Rantanen, Antti Hyttinen, Matti Järvisalo

#46 Optimal Sample Complexity of M-wise Data for Top-K Ranking

Minje Jang, Sunghyun Kim, Changho Suh, Sewoong Oh

#47 Translation Synchronization via Truncated Least Squares

Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, Qixing Huang

#48 From Bayesian Sparsity to Gated Recurrent Nets

Hao He, Bo Xin, David Wipf

#49 Online Learning for Multivariate Hawkes Processes

Yingxiang Yang, Jalal Etesami, Niao He, Negar Kiyavash

#50 Efficient Second-Order Online Kernel Learning with Adaptive Embedding

Daniele Calandriello, Michal Valko, Alessandro Lazario

#51 Online to Offline Conversions and Adaptive Minibatch Sizes

Kfir Levy

#52 Nonparametric Online Regression while Learning the Metric

Ilja Kuzborskij, Nicolò Cesa-Bianchi

#53 Stochastic and Adversarial Online Learning without Hyperparameters

Ashok Cutkosky, Kwabena A Boahen

#54 Affine-Invariant Online Optimization

Tomer Koren, Roi Livni

#55 Online Convex Optimization with Stochastic Constraints

Hao Yu, Michael Neely, Xiaohan Wei

#56 Online Learning with a Hint

Ofer Dekel, arthur flajolet, Nika Haghtalab, Patrick Jaillet

#57 Efficient Online Linear Optimization with Approximation Algorithms

Dan Garber

#58 Random Permutation Online Isotonic Regression

Wojciech Kotlowski, Wouter Koolen, Alan Malek

#59 Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem

Yasin Abbasi, Peter Bartlett, Victor Gabillon

#60 Online Learning of Optimal Bidding Strategy in Repeated Multi-Commodity Auctions

Sevi Baltaoglu, Lang Tong, Qing Zhao

#61 Online Prediction with Selfish Experts

Tim Roughgarden, Okke Schrijvers

#62 Real-Time Bidding with Side Information

arthur flajolet, Patrick Jaillet

#63 Improving Regret Bounds for Combinatorial Semi-Bandits with Probabilistically Triggered Arms and Its Applications

Qinshi Wang, Wei Chen

#64 A General Framework for Robust Interactive Learning

Ehsan Emamjomeh-Zadeh, David Kempe

#65 Practical Locally Private Heavy Hitters

kobbi nissim, Raef Bassily, Uri Stemmer, Abhradeep Guha Thakurta

#66 Deanonymization in the Bitcoin P2P Network

Giulia Fanti, Pramod Viswanath

#67 Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM

Steven Wu, Bo Waggoner, Seth Neel, Aaron Roth, Katrina Ligett

#68 Renyi Differential Privacy Mechanisms for Posterior Sampling

Joseph Geumlek, Shuang Song, Kamalika Chaudhuri

#69 Collecting Telemetry Data Privately

Bolin Ding, Janardhan Kulkarni, Sergey Yekhanin

#70 Generating steganographic images via adversarial training

Jamie Hayes, George Danezis

#71 Fitting Low-Rank Tensors in Constant Time Kohei Hayashi, Yuichi Yoshida

#72 Thy Friend is My Friend: Iterative Collaborative Filtering for Sparse Matrix Estimation

Christian Borgs, Jennifer Chayes, Christina Lee, Devavrat Shah

#73 Fair Clustering Through Fairlets

Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii

#74 On Fairness and Calibration

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, Kilian Weinberger

#75 Avoiding Discrimination through Causal Reasoning

Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt, Dominik Janzing, Bernhard Schölkopf

#76 Optimized Pre-Processing for Discrimination Prevention

Flavio Calmon, Dennis Wei, Karthi Natesan Ramamurthy, Bhanu Vinzamuri, Kush R Varshney

#77 Recycling for Fairness: Learning with Conditional Distribution Matching Constraints Novi Quadrianto. Viktorija Sharmanska

#78 From Parity to Preference: Learning with Costeffective Notions of Fairness

Bilal Zafar, Isabel Valera, Manuel Rodriguez, Krishna Gummadi, Adrian Weller

#79 Beyond Parity: Fairness Objectives for Collaborative Filtering

Sirui Yao, Bert Huang

#80 Multi-view Matrix Factorization for Linear Dynamical System Estimation

Mahdi Karami, Martha White, Dale Schuurmans, Csaba Szepesvari

#81 Random Projection Filter Bank for Time Series Data

Amir-massoud Farahmand, Sepideh Pourazarm, Daniel Nikovski

#82 A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering

Hongteng Xu, Hongyuan Zha

#83 Predicting User Activity Level In Point Process Models With Mass Transport Equation

Yichen Wang, Xiaojing Ye, Hongyuan Zha, Le Song

#84 Off-policy evaluation for slate recommendation Adith Swaminathan, Akshay Krishnamurthy, Alekh

Agarwal, Miro Dudik, John Langford, Damien Jose, Imed Zitouni

#85 Expectation Propagation with Stochastic Kinetic Model in Complex Interaction Systems Wen Dong, Le Fang, Fan Yang, Tong Guan, Chunming

#86 A multi-agent Reinforcement learning model of common-pool resource appropriation

Julien Pérolat, Joel Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, Thore Graepel

#87 Balancing information exposure in social networks

Kiran Garimella, Aris Gionis, Nikos Parotsidis, Nikolaj Tatti

#88 Scalable Demand-Aware Recommendation

Jinfeng Yi, Cho-Jui Hsieh, Kush R Varshney, Lijun Zhang,

#89 A Greedy Approach for Budgeted Maximum Inner Product Search

Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, Inderjit S Dhillon

#90 DPSCREEN: Dynamic Personalized Screening

Kartik Ahuja, William Zame, Mihaela van der Schaar

#91 Deep Multi-task Gaussian Processes for Survival Analysis with Competing Risks Ahmed M. Alaa, Mihaela van der Schaar

#92 Premise Selection for Theorem Proving by Deep Graph Embedding

Mingzhe Wang, Yihe Tang, Jian Wang, Jia Deng

#93 Gradients of Generative Models for Improved Discriminative Analysis of Tandem Mass Spectra

John T Halloran, David M Rocke

#94 Style Transfer from Non-parallel Text by Cross-Alignment

Tianxiao Shen, Tao Lei, Regina Barzilay, Tommi Jaakkola

#95 Emergence of Language with Multi-agent Games: Learning to Communicate with Sequences of Symbols

Serhii Havrylov, Ivan Titov

#96 ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games

Yuandong Tian, Qucheng Gong, Wendy Shang, Yuxin Wu, Larry Zitnick

- #97 ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events

 Evan Racah, Christopher Beckham, Tegan Maharaj, Mr. Prabhat, Chris Pal
- #98 Approximation and Convergence Properties of Generative Adversarial Learning
 Shuang Liu, Olivier Bousquet, Kamalika Chaudhuri
- #99 Gradient descent GAN optimization is locally stable
 Vaishnavh Nagarajan, J. Zico Kolter
- #100 f-GANs in an Information Geometric Nutshell Richard Nock, Zac Cranko, Aditya K Menon, Lizhen Qu, Robert C Williamson
- **#101 The Numerics of GANs**Lars Mescheder, Sebastian Nowozin, Andreas Geiger
- **#102 Generalizing GANs: A Turing Perspective**Roderich Gross, Yue Gu, Wei Li, Melvin Gauci
- **#103 Dualing GANs**Yujia Li, Alex Schwing, Kuan-Chieh Wang, Richard Zemel
- #104 Fisher GAN
 Youssef Mroueh, Tom Sercu
- #105 Learning to Pivot with Adversarial Networks Gilles Louppe, Michael Kagan, Kyle Cranmer
- #106 Improved Training of Wasserstein GANs Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron C Courville
- #107 MMD GAN: Towards Deeper Understanding of Moment Matching Network Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabas Poczos
- #108 Two Time-Scale Update Rule for Generative
 Adversarial Nets
 Hubert Ramsauer, Martin Heusel, Sepp Hochreiter,
 Bernhard Nessler, Thomas Unterthiner
- #109 VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning Akash Srivastava, Lazar Valkoz, Chris Russell, Michael U. Gutmann, Charles Sutton
- #110 Improved Semi-supervised Learning with GANs using Manifold Invariances
 Abhishek Kumar, Prasanna Sattigeri, Tom Fletcher
- #111 Good Semi-supervised Learning That Requires a Bad GAN

Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, Ruslan Salakhutdinov

- #112 Bayesian GANs
 Yunus Saatci, Andrew Wilson
- **#113 Dual Discriminator Generative Adversarial Nets**Tu Nguyen, Trung Le, Hung Vu, Dinh Phung

#114 Towards Understanding Adversarial Learning for Joint Distribution Matching

Chunyuan Li, Hao Liu, Ricardo Henao, Liqun Chen, Yuchen Pu, Changyou Chen, Lawrence Carin

- **#115 Triple Generative Adversarial Nets**Chongxuan LI, Kun Xu, Jun Zhu, Bo Zhang
- **#116 Triangle Generative Adversarial Networks**Zhe Gan, Liqun Chen, Weiyao Wang, Yuchen Pu, Yizhe Zhang, Lawrence Carin
- #117 Structured Generative Adversarial Networks
 Hao Zhang, Zhijie Deng, Xiaodan Liang, Jun Zhu, Eric P
 Xing
- **#118 PixelGAN Autoencoders**Alireza Makhzani, Brendan J Frey
- #119 Learning to Compose Domain-Specific
 Transformations for Data Augmentation
 Alexander Ratner, Henry Ehrenberg, Zeshan Hussain,
 Jared Dunnmon, Chris Ré
- #120 Unsupervised Image-to-Image Translation Networks Ming-Yu Liu, Thomas Breuel, Jan Kautz
- **#121 Adversarial Invariant Feature Learning**Qizhe Xie, Zihang Dai, Yulun Du, Eduard Hovy, Graham Neubig
- #122 Adversarial Ranking for Language Generation
 Dianqi Li, Kevin Lin, Xiaodong He, Ming-ting Sun,
 Zhengyou Zhang
- #123 Efficient Computation of Moments in Sum-Product Networks
 Han Zhao, Geoffrey Gordon
- #124 Attention is All you Need
 Ashish Vaswani, Noam Shazeer, Niki Parmar, Llion
 Jones, Jakob Uszkoreit, Aidan N Gomez, Łukasz Kaiser
- #125 Masked Autoregressive Flow for Density
 Estimation
 George Papamakarios, Iain Murray, Theo Pavlakou
- #126 Variational Walkback: Learning a Transition Operator as a Stochastic Recurrent Net Anirudh Goyal ALIAS PARTH GOYAL, Rosemary Ke, Surya Ganguli, Yoshua Bengio
- #127 TernGrad: Ternary Gradients to Reduce
 Communication in Distributed Deep Learning
 Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
 Wang, Yiran Chen, Helen Li
- **#128 End-to-end Differentiable Proving**Tim Rocktäschel, Sebastian Riedel
- #129 A simple neural network module for relational reasoning

Adam Santoro, David Raposo, David Barrett, Mateusz Malinowski, Razvan Pascanu, Peter Battaglia, Timothy Lillicrap

#130 Dual Path Networks

Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin, Shuicheng Yan, Jiashi Feng

#131 Spherical convolutions and their application in molecular modelling

Wouter Boomsma, Jes Frellsen

#132 Deep Sets

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, Alex Smola

#133 Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles

Balaji Lakshminarayanan, Alexander Pritzel, Charles Blundell

#134 Self-Normalizing Neural Networks

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Sepp Hochreiter

#135 Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models

Sergey Ioffe

#136 Train longer, generalize better: closing the generalization gap in large batch training of neural networks

Elad Hoffer, Itay Hubara, Daniel Soudry

#137 Nonlinear random matrix theory for deep learning

Jeffrey Pennington, Pratik Worah

#138 DisTraL: Robust multitask Reinforcement learning

Yee Teh, Victor Bapst, Razvan Pascanu, Nicolas Heess, John Quan, James Kirkpatrick, Wojciech M. Czarnecki, Raia Hadsell

#139 Imagination-Augmented Agents for Deep Reinforcement Learning

Seb Racanière, David Reichert, Theophane Weber, Oriol Vinyals, Daan Wierstra, Lars Buesing, Peter Battaglia, Razvan Pascanu, Yujia Li, Nicolas Heess, Arthur Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, David Silver

#140 Second-order Optimization in Deep Reinforcement Learning using Kroneckerfactored Approximation

Yuhuai Wu, Elman Mansimov, Roger Grosse, Shun Liao, Jimmy Ba

#141 Learning Combinatorial Optimization Algorithms over Graphs

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, Le Song

#142 Targeting EEG/LFP Synchrony with Neural NetsYitong Li, David E Carlson, Lawrence Carin

#143 Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System

Chengxu Zhuang, Jonas Kubilius, Mitra JZ Hartmann, Daniel Yamins

#144 Fast amortized inference of neural activity from calcium imaging data with variational autoencoders

Artur Speiser, Jinyao Yan, Evan Archer, Lars Buesing, Srini C Turaga, Jakob H Macke

#145 Scene Physics Acquisition via Visual Deanimation

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum

#146 Shape and Material from Sound

zhoutong zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman

#147 Deep Networks for Decoding Natural Images from Retinal Signals

Nikhil Parthasarathy, Eleanor Batty, William Falcon, Thomas Rutten, Mohit Rajpal, chichilnisky Chichilnisky, Liam Paninski

#148 Quantifying how much sensory information in a neural code is relevant for behavior

Giuseppe Pica, Eugenio Piasini, Houman Safaai, Caroline Runyan, Christopher Harvey, Mathew Diamond, Christoph Kayser, Tommaso Fellin, Stefano Panzeri

#149 Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit

Laurence Aitchison, Lloyd Russell, Adam Packer, Jinyao Yan, Philippe Castonguay, Michael Hausser, Srini C Turaga

#150 Deep Hyperalignment

Muhammad Yousefnezhad, Daoqiang Zhang

#151 Tensor encoding and decomposition of brain connectomes with application to tractography evaluation

Cesar F Caiafa, Olaf Sporns, Andrew Saykin, Franco Pestilli

#152 Online Dynamic Programming

Holakou Rahmanian, Manfred Warmuth

#153 Unsupervised Learning of Disentangled Representations from Video

Emily Denton, vighnesh Birodkar

#154 Interactive Submodular Bandit

Lin Chen, Andreas Krause, Amin Karbasi

#155 Streaming Robust Submodular Maximization:A Partitioned Thresholding Approach

Slobodan Mitrovic, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub M Tarnawski, Volkan Cevher

#156 Minimizing a Submodular Function from Samples

Eric Balkanski, Yaron Singer

#157 Process-constrained batch Bayesian optimisation

Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Murray Height, Paul Sanders, Svetha Venkatesh

#158 The Marginal Value of Adaptive Gradient Methods in Machine Learning

Ashia C Wilson, Becca Roelofs, Mitchell Stern, Nati Srebro, Benjamin Recht

#159 Breaking the Nonsmooth Barrier: A Scalable **Parallel Method for Composite Optimization**

Fabian Pedregosa, Rémi Leblond, Simon Lacoste-Julien

#160 Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization

Omar El Housni, Vineet Goyal

#161 Approximate Supermodularity Bounds for Experimental Design

Luiz Chamon Chamon, Alejandro Ribeiro

#162 On Blackbox Backpropagation and Jacobian

Krzysztof M Choromanski, Vikas Sindhwani

#163 Asynchronous Coordinate Descent under More Realistic Assumptions

Tao Sun, Robert Hannah, Wotao Yin

#164 Clustering with Noisy Queries

Arya Mazumdar, Barna Saha

#165 Approximation Algorithms for \$\ell 0\$-Low Rank Approximation

Karl Bringmann, Pavel Kolev, David Woodruff

#166 Convergence Analysis of Two-layer Neural Networks with ReLU Activation

Yuanzhi Li, Yang Yuan

#167 Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for **Decentralized Parallel Stochastic Gradient**

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, Ji Liu

#168 Decomposition-Invariant Conditional Gradient for General Polytopes with Line Search Mohammad Ali Bashiri, Xinhua Zhang

#169 Straggler Mitigation in Distributed Optimization Through Data Encoding

Can Karakus, Yifan Sun, Suhas Diggavi, Wotao Yin

#170 No More Fixed Penalty Parameter in ADMM: Faster Convergence with New Adaptive Penalization

Yi Xu, Mingrui Liu, Tianbao Yang, Qihang Lin

#171 Accelerated Stochastic Greedy Coordinate Descent by Soft Thresholding Projection onto Simplex

Chaobing Song, Shaobo Cui, Shu-Tao Xia, Yong Jiang

#172 Safe Adaptive Importance Sampling

Sebastian Stich, Anant Raj, Martin Jaggi

#173 Sharpness, Restart and Acceleration

Vincent Roulet, Alexandre d'Aspremont

#174 Stochastic Optimization with Variance Reduction for Infinite Datasets with Finite Sum Structure

Alberto Bietti, Julien Mairal

#175 Min-Max Propagation

Christopher Srinivasa, Inmar Givoni, Siamak Ravanbakhsh, Brendan J Frey

#176 A Disentangled Recognition and Nonlinear **Dynamics Model for Unsupervised Learning**

Marco Fraccaro, Simon Kamronn, Ulrich Paquet, Ole Winther

#177 Concrete Dropout

Yarin Gal, Jiri Hron, Alex Kendall

#178 REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models

George Tucker, Andriy Mnih, Chris J Maddison, Dieterich Lawson, Jascha Sohl-Dickstein

#179 Hierarchical Implicit Models and Likelihood-Free Variational Inference

Dustin Tran, Rajesh Ranganath, David Blei

#180 Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference Geoffrey Roeder, Yuhuai Wu, David Duvenaud

#181 Perturbative Black Box Variational Inference

Cheng Zhang, Robert Bamler, Manfred Opper, Stephan Mandt

#182 Fast Black-box Variational Inference through Stochastic Trust-Region Optimization

Jeff Regier, Michael Jordan, Jon McAuliffe

#183 Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models

Rishit Sheth, Roni Khardon

#184 Learning Causal Graphs with Latent Variables Murat Kocaoglu, Karthikeyan Shanmugam, Elias

Bareinboim

#185 Permutation-based Causal Inference Algorithms with Interventions

Yuhao Wang, Liam Solus, Karren Yang, Caroline Uhler

#186 Learning Causal Structures Using Regression Invariance

AmirEmad Ghassami, Saber Salehkaleybar, Negar Kiyavash, Kun Zhang

#187 Counterfactual Fairness

Matt Kusner, Joshua Loftus, Chris Russell, Ricardo Silva

#188 Causal Effect Inference with Deep Latent Variable Models

Christos Louizos, Uri Shalit, Joris M Mooij, David Sontag, Richard Zemel, Max Welling

#189 Conic Scan Coverage algorithm for nonparametric topic modeling

Mikhail Yurochkin, Aritra Guha, Long Nguyen

#190 Tractability in Structured Probability Spaces Arthur Choi, Yujia Shen, Adnan Darwiche

#191 PASS-GLM: polynomial approximate sufficient statistics for scalable Bayesian GLM inference Jonathan Huggins, Ryan Adams, Tamara Broderick

#192 Adaptive Bayesian Sampling with Monte Carlo

Anirban Roychowdhury, Srinivasan Parthasarathy

#193 What-If Reasoning using Counterfactual Gaussian Processes

Peter Schulam, Suchi Saria

#194 Multi-Information Source Optimization

Matthias Poloczek, Jialei Wang, Peter Frazier

#195 Doubly Stochastic Variational Inference for Deep Gaussian Processes

Hugh Salimbeni, Marc Deisenroth

#196 Convolutional Gaussian Processes

Mark van der Wilk, Carl Edward Rasmussen, James Hensman

#197 Multiresolution Kernel Approximation for Gaussian Process Regression

Yi Ding, Risi Kondor, Jon Eskreis-Winkler

#198 Unifying PAC and Regret: Uniform PAC Bounds for Episodic Reinforcement Learning

Christoph Dann, Tor Lattimore, Emma Brunskill

#199 Repeated Inverse Reinforcement Learning Kareem Amin, Nan Jiang, Satinder Singh

#200 Inverse Reward Design

Dylan Hadfield-Menell, Smitha Milli, Stuart J Russell, Pieter Abbeel, Anca Dragan

#201 Utile Context Tree Weighting

Joao V Messias, Shimon Whiteson

#202 Policy Gradient With Value Function Approximation For Collective Multiagent Planning

Duc Nguyen, Akshat Kumar, Hoong Chuin Lau

#203 A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, karl Tuyls, Julien Perolat, David Silver, Thore Graepel

#204 Dynamic Safe Interruptibility for Decentralized Multi-Agent Reinforcement Learning

El Mahdi El Mhamdi, Rachid Guerraoui, Hadrien Hendrikx, Alexandre Maurer

#205 Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, Igor Mordatch

#206 Spectrally-normalized margin bounds for neural networks

Matus Telgarsky, Peter Bartlett, Dylan J Foster

#207 On Structured Prediction Theory with Calibrated Convex Surrogate Losses

Anton Osokin, Francis Bach, Simon Lacoste-Julien

#208 Collaborative PAC Learning

Avrim Blum, Nika Haghtalab, Ariel D Procaccia, IIIS Mingda Qiao

#209 Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues

Noga Alon, Moshe Babaioff, Yannai A. Gonczarowski, Yishay Mansour, Shay Moran, Amir Yehudayoff

#210 Discriminative State Space Models

Vitaly Kuznetsov, Mehryar Mohri

#211 Delayed Mirror Descent in Continuous Games

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Peter W Glynn, Claire Tomlin

#212 Variance-based Regularization with Convex Objectives

Hong Namkoong, John C Duchi

#213 Learning Mixture of Gaussians with Streaming Data

Aditi Raghunathan, Prateek Jain, Ravishankar Krishnawamy

#214 On the Consistency of Quick Shift

Heinrich Jiang

#215 Early stopping for kernel boosting algorithms: A general analysis with localized complexities

Yuting Wei, Fanny Yang, Martin Wainwright

#216 A Sharp Error Analysis for the Fused Lasso, with Implications to Broader Settings and Approximate Screening

Kevin Lin, James Sharpnack, Alessandro Rinaldo, Ryan Tibshirani

#217 The Scaling Limit of High-Dimensional Online Independent Component Analysis

Chuang Wang, Yue Lu

#218 A Universal Analysis of Large-Scale Regularized Least Squares Solutions

Ashkan Panahi, Babak Hassibi

#219 Statistical Convergence Analysis of Gradient EM on General Gaussian Mixture Models

Bowei Yan, Mingzhang Yin, Purnamrita Sarkar

#220 More powerful and flexible rules for online FDR control with memory and weights

Aaditya Ramdas, Fanny Yang, Martin Wainwright, Michael Jordan

#221 Learning with Bandit Feedback in Potential Games

Amélie Heliou, Johanne Cohen, Panayotis Mertikopoulos

#222 Fully Decentralized Policies for Multi-Agent Systems: An Information Theoretic Approach

Roel Dobbe, David Fridovich-Keil, Claire Tomlin

#223 Revenue Optimization with Approximate Bid Predictions

Andres Munoz, Sergei Vassilvitskii

#224 A Decomposition of Forecast Error in Prediction Markets

Miro Dudik, Sebastien Lahaie, Ryan M Rogers, Jenn Wortman Vaughan

#225 Dynamic Revenue Sharing

Santiago Balseiro, Max Lin, Vahab Mirrokni, Renato Leme, IIIS Song Zuo

#226 Multi-View Decision Processes

Christos Dimitrakakis, David Parkes, Goran Radanovic, Paul Tylkin

See Page 9 For Specific Demo Locations

D1 Humans Attributes Extraction And Search With A deep Learning Based Real-time Video Analysis System

Matthieu Ospici, Benoit Pelletier, Antoine Cecchi

Our demo is a real-time computer vision Demo with two main features. Firstly, attendees can visualize the detected person on a camera with a set of estimated attributes such as the clothes color or the gender. Then, a search engine enables the participants to request past detections by criteria or photo.

D2 MAgent: A Many-Agent Reinforcement Learning Research Platform for Artificial Collective Intelligence

Lianmin Zheng, Jiacheng Yang, Han Cai, Weinan Zhang, Jun Wang, Yong Yu

We introduce MAgent, a platform to support research and development of many-agent Reinforcement learning. Unlike previous research platforms on single or multi-agent Reinforcement learning, MAgent focuses on supporting the tasks and the Applications that require hundreds to millions of agents. Within the interactions among a population of agents, it enables not only the study of learning algorithms for agents' optimal polices, but more importantly, the observation and understanding of individual agent's behaviors and social phenomena emerging from the AI society. MAgent also provides flexible configurations and a description language for AI researchers to easily design their customized environment, agents, and rewards. In this demo, we present several environments designed on MAgent and show emerged collective intelligence. Visitors can also play interactive games provided by MAgent.

D3 Electronic Screen Protector with Efficient and Robust Mobile Vision

Hee Jung Ryu, Florian Schroff

Face authentication, in the context of privacy for phones, has been explored for some time. However, face recognition alone is not enough when you want to have private online conversations or watch a confidential video in a crowded space where there are many other people present. Each of them may or may not be looking at your private content displayed on your device, e.g. a smart phone. Because of the quick, robust, and accurate gaze detection mobile model we can now easily identify the face identity and gaze simultaneously in real time. Hence, the application, an electronic screen protector, can enable its enrolled users to continue reading private and confidential contents on your mobile device, while protecting their privacy from onlookers in a crowded space such as the subway or an elevator. We enable this by transfer learning from one mobile model to a different, but related task. Our final multihead mobile model is robust under varying lighting conditions and head poses. The runtime is 2ms per face for gaze detection, 47ms per face for face recognition, and 115ms per frame for face detection in average.

D4 3D Surface-to-Structure Translation with Deep Convolutional Networks

Takumi Moriya, Kazuyuki Saito

Our Demo shows a system that estimates internal body structures from 3D surface models using deep convolutional neural networks trained on CT (computed tomography) images of the human body. To take pictures of structures inside the body, we need to use a CT scanner or an MRI (Magnetic Resonance Imaging) scanner. However, assuming that the mutual information between outer shape of the body and its inner structure is not zero, we can obtain an approximate internal structure from a 3D surface model based on MRI and CT image database. This suggests that we could know where and what kind of disease a person is likely to have in his/her body simply by 3D scanning surface of the body. As a first prototype, we developed a system for estimating internal body structures from surface models based on Visible Human Project DICOM CT Datasets from the University of Iowa Magnetic Resonance Research Facility 1. The estimation process given a surface model is shown in Figure 1. The input surface model is not limited to the human body. For instance, our method enables us to create Stanford Armadillo that has internal structures of the human body.

D5 Sharkzor: Interactive Deep Learning for Image Triage, Sort and Summary

Nathan Hodas, Nathan Hilliard, Artem Yankov, Megan Pirrung, Courtney Corley

Sharkzor leverages multiple deep learning techniques to facilitate image identification and organization, exemplar based regression and few-shot learning. These algorithms and methods combined in a user-centric web UI, allowing users to triage large amounts of images, using n-shot learning to "find the needle in the haystack" Sharkzor captures users interactions with a 2D canvas of images. It tracks where users position images on the screen, and which groups they form. It then attempts to position all of the remaining images based on the user's mental model. To address the requirement of users being able to create arbitrary image-related mental models, we aren't able to use traditional multi-label classification techniques. This is because the user may be interested in clustering images into arbitrarily complex arrangements. To make a robust system that can adapt to user supplied groups, we leverage learning techniques requiring few training examples. We have developed our own few-shot learning techniques and exemplar-based regression to transform Sharkzor into an interactive deep learning platform with networks that require no retraining or weight tuning to adapt to each user's unique mental model of their task.

<u>Wednesday Demos</u>

D6 Magenta and deeplearn.js: Real-time Control of DeepGenerative Music Models in the Browser

Curtis "Fjord" Hawthorne, Ian Simon, Adam Roberts, Jesse Engel, Daniel Smilkov, Nikhil Thorat, Douglas Eck

There has recently been increased interest in generating music using deep learning techniques, leading to remarkable improvements in the quality and expressiveness of sequencebased models. Beyond unconditional generation, we aim to explore the ability of the generative models to augment the creativity of musicians and novices alike. To be successful, both the model and the user interface must expose high-level and expressive controls that empower users to explore novel musical possibilities. Furthermore, the interface must be easy both for casual users to access and for professional users to integrate into existing creative workflows. This is key to new directions in adaptive feedback and training of models based on user preferences. To this end, we train state-of-the-art generative models with conditional controls for several musical domains virtuosic piano performances, looping melodies and drum beats and demonstrate user interfaces to control generation from these models in real time using only code running in a browserbased JavaScript environment via deeplearn.js.

D7 Matrix Calculus: The Power of Symbolic Differentiation

Soeren Laue, Matthias Mitterreiter, Joachim Giesen

Numerical optimization is a work horse of machine learning that often requires the derivation and computation of gradients and Hessians. For learning problem that are modeled by some loss or likelihood function, the gradients and Hessians are typically derived man- ually, which is a time consuming and error prone process. Computing gradients (and Hessians) is also an integral part of deep learning frameworks that mostly employ au- tomatic differentiation, aka algorithmic differentiation (typically in reverse mode). At (www. MatrixCalculus.org) we provide a tool for symbolically computing gradients and Hessians that can be used in the classical setting of loss and likelihood functions, but also for deep learning.

D8 Babble Labble: Learning from Natural Language Explanations

Braden Hancock, Stephanie Wang, Paroma Varma, Percy Liang, Christopher Ré

We introduce Babble Labble, a system for converting natural language explanations into massive training sets with Probabilistic labels. In this demo, users will be shown unlabeled examples for a simple relation extraction task (identifying mentions of spouses in the news). For each example, instead of providing a label, users provide a sentence describing one reason why the given example should receive a certain label. These explanations are parsed into executable functions in real-time and applied to the unlabeled dataset. We use data programming to resolve conflicts between the functions and combine their weak labels into a single Probabilistic label per example. This large weakly labeled training set is then used to train a discriminative model that improves generalization as it includes features never mentioned in the small set of explanations. Using the explanations the user wrote, we calculate the final quality of the complete system, finding in most cases that one to two dozen explanations achieve the same quality as hundreds or thousands of labels.

D9 Interactive-Length Multi-Task Video Captioning with Cooperative Feedback

Han Guo, Ramakanth Pasunuru, Mohit Bansal

We present a fast and accurate demo system for our state-of-theart multi-task video captioning model, with additional interactivelength paragraph generation and cooperative user feedback techniques. The task of automatic video captioning has various Applications such as assistance to a visually impaired person and improving the quality of online visual content search or retrieval. Our recent multi-task model uses auxiliary temporal video-tovideo and logical premise-to-entailment generation tasks to achieve the best results on three popular community datasets. To address the lack of useful online demo systems for video captioning, we present a fast and interactive demo system of our state-of-the-art multi-task model, that allows users to upload any video file or YouTube link, with the additional novel aspect of generating multi-sentence, paragraph-style captions based on redundancy filtering (especially useful for real-world lengthy videos), where the user can ask for longer captions on the fly. Our demo system also allows for cooperative user feedback, where the user can click on a displayed alternative top-k beam option or rewrite corrections directly, providing us with valuable data for discriminative retraining.

D10 Fast-speed Intelligent Video Analytics using Deep Learning Algorithms on Low-power FPGA

Yi Shan, Song Yao, Song Han, Yu Wang

Deep learning algorithms, such as CNN (Convolutional Neural Network), could provide high 8 accuracy for great number of Applications including video analytics for surveillance and 9 automotive. Considering processing speed and energy efficiency, FPGA is a good hardware to construct customized CNN solution. In this demo session, we want to benefit from hardware technology, and show a fast speed 12 and accurate video analytics system using state-of-the-art deep learning algorithms running 13 on low power FPGA. This system could process 16 channels of continuous input video 14 with the resolution of 1080p. Two functionalities could be easily switched by just clicking a 15 button in this live demo: one for vehicle, non-motorized vehicle, and pedestrian detection, 16 tracking, and attributes analytics; and the other for face detection and recognition. The deep 17 learning algorithms used are SSD and densebox for two kinds of objects' detection, which 18 have state-of-the-art accuracy. The FPGA used is Xilinx MPSoC ZU9, and the whole 19 board including this FPGA only cost about 50 Watts with Peak performance at 5.6 TOPS.

THURSDAY SESSIONS

7:30 - 9:00 AM	Coffee	
9:00 - 9:50 AM	Invited talk: Yael Niv Learning State Representations	Hall A
9:50 - 10:40 AM	Invited Talk: Breiman Lecture Yee Whye Teh On Bayesian Deep Learning and De	Hall A ep Bayesian Learning
10:40 - 11:10 AM	Coffee break	
11:10 - 12:30 PM	Parallel Tracks: Neuroscience Deep Learning, Algorithms	Hall A Hall C
12:30 - 2:00 PM	Lunch on your own	
2:00 - 4:00 PM	SYMPOSIA	Hall A, Hall C, Grand Ballroom, Beverly Theater
4:00 - 4:30 PM	Coffee break	
4:30 - 6:30 PM	SYMPOSIA	Hall A, Hall C, Grand Ballroom, Beverly Theater
6:30 - 7:30 PM	Light dinner	
7:30 - 9:30 PM	SYMPOSIA	Hall A, Hall C, Grand Ballroom, Beverly Theater

Thursday Invited Talks

Learning State Representations

Hall A, 9:00 - 9:50 AM

On the face of it, most real-world world tasks are hopelessly complex from the point of view of Reinforcement learning mechanisms. In particular, due to the "curse of dimensionality", even the simple task of crossing the street should, in principle, take thousands of trials to learn to master. But we are better than that.. How does our brain do it? In this talk, I will argue that the hardest part of learning is not assigning values or learning policies, but rather deciding on the boundaries of similarity between experiences, which define the "states" that we learn about. I will show behavioral evidence that humans and animals are constantly engaged in this representation learning process, and suggest that in a not too far future, we may be able to read out these representations from the brain, and therefore find out how the brain has mastered this complex problem. I will formalize the problem of learning a state representation in terms of Bayesian inference with infinite capacity models, and suggest that an understanding of the computational problem of representation learning can lead to insights into the machine learning problem of transfer learning, and psychological/neuroscientific questions about the interplay between memory and learning.

Yael Niv (Princeton University)

Yael Niv received her MA in psychobiology from Tel Aviv University and her PhD from the Hebrew University in Jerusalem, having conducted a major part of her thesis research at the Gatsby Computational Neuroscience

Unit in UCL. After a short postdoc at Princeton she became faculty at the Psychology Department and the Princeton Neuroscience Institute. Her lab's research focuses on the neural and computational processes underlying Reinforcement learning and decision-making in humans and animals, with a particular focus on representation learning. She recently co-founded the Rutgers-Princeton Center for Computational Cognitive Neuropsychiatry, and is currently taking the research in her lab in the direction of computational psychiatry.

Breiman Lecture

On Bayesian Deep Learning and Deep Bayesian Learning

Hall A, 9:50 - 10:40 AM

Probabilistic and Bayesian reasoning is one of the principle theoretical pillars to our understanding of machine learning. Over the last two decades, it has inspired a whole range of successful machine learning methods and influenced the thinking of many researchers in the community. On the other hand, in the last few years the rise of deep learning has completely transformed the field and led to a string of phenomenal, era-defining, successes. In this talk I will explore the interface between these two perspectives on machine learning, and through a number of projects I have been involved in, explore questions like: How can Probabilistic thinking help us understand deep learning methods or lead us to interesting new methods? Conversely, how can deep learning technologies help us develop advanced Probabilistic methods?

Yee Whye Teh (Princeton University)

I am a Professor of Statistical Machine Learning at the Department of Statistics, University of Oxford and a Research Scientist at DeepMind. I am also an Alan Turing Institute Fellow and a European

Research Council Consolidator Fellow. I obtained my Ph.D. at the University of Toronto (working with Geoffrey Hinton), and did postdoctoral work at the University of California at Berkeley (with Michael Jordan) and National University of Singapore (as Lee Kuan Yew Postdoctoral Fellow). I was a Lecturer then a Reader at the Gatsby Computational Neuroscience Unit, UCL, and a tutorial fellow at University College Oxford, prior to my current appointment. I am interested in the statistical and computational foundations of intelligence, and works on scalable machine learning, Probabilistic models, Bayesian nonparametrics and deep learning. I was programme co-chair of ICML 2017 and AISTATS 2010.

Thursday Session Tracks

Track 1 - 11:10 am - 12:30 pm Neuroscience

Location: Hall A

Toward Goal-Driven Neural Network Models for the Rodent Whisker-Trigeminal System

Chengxu Zhuang, Jonas Kubilius, Mitra JZ Hartmann, Daniel Yamins

In large part, rodents "see" the world through their whiskers, a powerful tactile sense enabled by a series of brain areas that form the whisker-trigeminal system. Raw sensory data arrives in the form of mechanical input to the exquisitely sensitive, actively-controllable whisker array, and is processed through a sequence of neural circuits, eventually arriving in cortical regions that communicate with decision making and memory areas. Although a long history of experimental studies has characterized many aspects of these processing stages, the computational operations of the whiskertrigeminal system remain largely unknown. In the present work, we take a goal-driven deep neural network (DNN) approach to modeling these computations. First, we construct a biophysically-realistic model of the rat whisker array. We then generate a large dataset of whisker sweeps across a wide variety of 3D objects in highly-varying poses, angles, and speeds. Next, we train DNNs from several distinct architectural families to solve a shape recognition task in this dataset. Each architectural family represents a structurally-distinct hypothesis for processing in the whisker-trigeminal system, corresponding to different ways in which spatial and temporal information can be integrated. We find that most networks perform poorly on the challenging shape recognition task, but that specific architectures from several families can achieve reasonable performance levels. Finally, we show that Representational Dissimilarity Matrices (RDMs), a tool for comparing population codes between neural systems, can separate these higher performing networks with data of a type that could plausibly be collected in a neurophysiological or imaging experiment. Our results are a proof-of-concept that DNN models of the whisker-trigeminal system are potentially within reach.

Model-based Bayesian Inference of Neural Activity And Connectivity From All-optical Interrogation Of A Neural Circuit

Laurence Aitchison, Lloyd Russell, Adam Packer, Jinyao Yan, Philippe Castonguay, Michael Hausser, Srinivas C Turaga

Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spikeand-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Our joint model includes at least two sets of discrete random variables; to avoid the dramatic slowdown typically caused by being unable to differentiate such variables, we introduce two strategies that have not, to our knowledge, been used with variational autoencoders. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

Quantifying How Much Sensory Information In A Neural Code Is Relevant For Behavior

Giuseppe Pica, Eugenio Piasini, Houman Safaai, Caroline Runyan, Christopher Harvey, Mathew Diamond, Christoph Kayser, Tommaso Fellin, Stefano Panzeri

Determining how much of the sensory information carried by a neural code contributes to behavioral performance is key to understand sensory function and neural information flow. However, there are as yet no analytical tools to compute this information that lies at the intersection between sensory coding and behavioral readout. Here we develop a novel measure, termed the information-theoretic intersection information II(R), that quantifies how much sensory information carried by a neural response R is also used for behavior during perceptual discrimination tasks. Building on the Partial Information Decomposition framework, we define II(R) as the mutual information between the presented stimulus S and the consequent behavioral choice C that can be extracted from R. We compute III(R) in the analysis of two experimental cortical datasets, to show how this measure can be used to compare quantitatively the contributions of spike timing and spike rates to task performance, and to identify brain areas or neural populations that specifically transform sensory information into choice.

SPOTLIGHTS

- Scene Physics Acquisition via Visual De-animation
 Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, Josh Tenenbaum
- Shape and Material from Sound
 Zhoutong zhang, Qiujia Li, Zhengjia Huang, Jiajun Wu, Josh Tenenbaum, Bill Freeman
- Deep Hyperalignment
 Muhammad Yousefnezhad, Daoqiang Zhang
- Fast amortized inference of neural activity from calcium imaging data with variational autoencoders Artur Speiser, Jinyao Yan, Evan Archer, Lars Buesing, Srini C Turaga, Jakob H Macke
- Tensor encoding and decomposition of brain connectomes with application to tractography evaluation Cesar F Caiafa, Olaf Sporns, Andrew Saykin, Franco Pestilli
- Targeting EEG/LFP Synchrony with Neural Nets Yitong Li, David E Carlson, Lawrence Carin
- Deep Networks for Decoding Natural Images from Retinal Signals

 Nille Death of the Company of the Million Colors Theory

 The Company of the Colors Theory

 The C

Nikhil Parthasarathy, Eleanor Batty, William Falcon, Thomas Rutten, Mohit Rajpal, EJ Chichilnisky, Liam Paninski

Track 2 - 11:10 am - 12:30 pm Deep Learning, Algorithms

Location: Hall C

Masked Autoregressive Flow for Density Estimation

George Papamakarios, Iain Murray, Theo Pavlakou

Autoregressive models are among the best performing neural density estimators. We describe an approach for increasing the flexibility of an autoregressive model, based on modelling the random numbers that the model uses internally when generating data. By constructing a stack of autoregressive models, each modelling the random numbers of the next model in the stack, we obtain a type of normalizing flow suitable for density estimation, which we call Masked Autoregressive Flow. This type of flow is closely related to Inverse Autoregressive Flow and is a generalization of Real NVP. Masked Autoregressive Flow achieves state-of-the-art performance in a range of general-purpose density estimation tasks.

Deep Sets

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, Alex Smola

We study the problem of designing objective models for machine learning tasks defined on finite \emph{sets}. In contrast to the traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets and are invariant to permutations. Such problems are widespread, ranging from the estimation of population statistics, to anomaly detection in piezometer data of embankment dams, to cosmology. Our main theorem characterizes the permutation invariant objective functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.

From Bayesian Sparsity to Gated Recurrent Nets

Hao He, Bo Xin, David Wipf

The iterations of many first-order algorithms, when applied to minimizing common regularized regression functions, often resemble neural network layers with pre-specified weights. This observation has prompted the development of learning-based approaches that purport to replace these iterations with enhanced surrogates forged as DNN models from available training data. For example, important NP-hard sparse estimation problems have recently benefitted from this genre of upgrade, with simple feedforward or recurrent networks ousting proximal gradient-based iterations. Analogously, this paper demonstrates that more powerful Bayesian algorithms for promoting sparsity, which rely on complex multi-loop majorization-minimization techniques, mirror the structure of more sophisticated long short-term memory (LSTM) networks, or alternative gated feedback networks previously designed for sequence prediction. As

part of this development, we examine the parallels between latent variable trajectories operating across multiple time-scales during optimization, and the activations within deep network structures designed to adaptively model such characteristic sequences. The resulting insights lead to a novel sparse estimation system that, when granted training data, can estimate optimal solutions efficiently in regimes where other algorithms fail, including practical direction-of-arrival (DOA) and 3D geometry recovery problems. The underlying principles we expose are also suggestive of a learning process for a richer class of multi-loop algorithms in other domains.

SPOTLIGHTS

- Self-Normalizing Neural Networks
 Günter Klambauer, Thomas Unterthiner, Andreas Mayr,
 Sepp Hochreiter
- Batch Renormalization: Towards Reducing Minibatch Dependence in Batch-Normalized Models Sergey Loffe
- Nonlinear random matrix theory for deep learning Jeffrey Pennington, Pratik Worah
- Spherical convolutions and their application in molecular modelling

Wouter Boomsma, Jes Frellsen

Translation Synchronization via Truncated Least Squares

Xiangru Huang, Zhenxiao Liang, Chandrajit Bajaj, Qixing Huang

- Self-supervised Learning of Motion Capture
 Hsiao-Yu Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki
- Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification

Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J Kim, Johannes Fürnkranz

SYMPOSIUM

THURSDAY SESSIONS: 2:00 - 9:30 PM

Interpretable Machine Learning

Hall C

Andrew G Wilson (Cornell U.)
Jason Yosinski (Uber Al Labs)
Patrice Simard (Microsoft Research)
Rich Caruana (Microsoft Research)
William Herlands (Carnegie Mellon U.)

Complex machine learning models, such as deep neural networks, have recently achieved outstanding predictive performance in a wide range of Applications, including visual object recognition, speech perception, language modeling, and information retrieval. There has since been an explosion of interest in interpreting the representations learned by these models, with profound implications for research into explainable ML, causality, safe Al, social science, automatic scientific discovery, human computer interaction (HCI), crowdsourcing, machine teaching, and Al ethics. This symposium is designed to broadly engage the machine learning community on these topics — tying together many threads which are deeply related but often considered in isolation.

Metalearning

Grand Ballroom

Risto Miikkulainen (UT Austin) Quoc V Le (Google) Ken Stanley (Uber Al Labs, U. Of Central Florida) Chrisantha Fernando (DeepMind)

Modern learning systems, such as the recent deep learning, Reinforcement learning, and Probabilistic inference architectures, have become increasingly complex, often beyond the human ability to comprehend them. Such complexity is important: The more complex these systems are, the more powerful they often are. A new research problem has therefore emerged: How can the complexity, i.e. the design, components, and hyperparameters, be configured automatically so that these systems perform as well as possible? This is the problem of metalearning. Several approaches have emerged, including those based on Bayesian optimization, gradient descent, Reinforcement learning, and evolutionary computation. The symposium presents an overview of these approaches, given by the researchers who developed them. Panel discussion compares the strengths of the different approaches and potential for future developments and Applications. The audience will thus obtain a practical understanding of how to use metalearning to improve the learning systems they are using, as well as opportunities for research on metalearning in the future.

Deep Reinforcement Learning

Hall A

Pieter Abbeel (Open AI, UC Berkeley, Gradescope)
Yan Duan (UC Berkeley)
David Silver (DeepMind)
Satinder Singh (U. Of Michigan)
Junhyuk Oh (U. Of Michigan)
Rein Houthooft (Ghent U., Open AI)

Although the theory of Reinforcement learning addresses an extremely general class of learning problems with a common mathematical formulation, its power has been limited by the need to develop task-specific feature representations. A paradigm shift is occurring as researchers figure out how to use deep neural networks as function approximators in Reinforcement learning algorithms; this line of work has yielded remarkable empirical results in recent years. This workshop will bring together researchers working at the intersection of deep learning and Reinforcement learning, and it will help researchers with expertise in one of these fields to learn about the other.

Kinds Of Intelligence: Types, Tests and Meeting The Needs of Society

Beverly Theater

José Hernández-Orallo (U. Of Valencia) Zoubin Ghahramani (Uber, U. Of Cambridge) Tomaso A Poggio (MIT) Adrian Weller (U. Of Cambridge) Matthew Crosby (Imperial College Of London)

Existing research in machine learning and artificial intelligence has been constrained by a focus on specific tasks chosen either for their perceived importance in human intelligence, their expected practical impact, their suitability for testing and comparison, or simply by an accident of research trends. However, the intelligence landscape extends far beyond our current capabilities, with many unexplored dimensions that present themselves as new opportunities for research. This symposium explores this landscape across three main topics: a broader perspective of the possible types of intelligence beyond human intelligence, better measurements providing an improved understanding of research objectives and breakthroughs, and a more purposeful analysis of where progress should be made in this landscape in order to best benefit society.

FRIDAY WORKSHOPS

8:00 AM - 6:30 PM

Room S-4

Machine Learning for Molecules and Materials

Stefan Chmiela, José Miguel Hernández-Lobato, Kristof T. Schütt, Alan Aspuru-Guzik, Alexandre Tkatchenko, Bharath Ramsundar, Anatole von Lilienfeld, Matt Kusner, Koji Tsuda, Brooks Paige, Klaus-Robert Müller

Seaside Ballroom

Advances in Approximate Bayesian Inference

Francisco Ruiz, Stephan Mandt, Cheng Zhang, James McInerney, Dustin Tran, Tamara Broderick, Michalis Titsias, David Blei, Max Welling

Room 204

 Transparent and interpretable Machine Learning in Safety Critical Environments

Alessandra Tosi, Alfredo Vellido, Mauricio A. Álvarez

Room 101-4

Learning in the Presence of Strategic Behavior

Nika Haghtalab, Yishay Mansour, Tim Roughgarden, Vasilis Syrgkanis, Jennifer Wortman Vaughan

Grand Ballroom B

• Conversational AI - Today's Practice & Tomorrow's Potential

Alborz Geramifard, Jason Williams, Larry Heck, James Glass, Antoine Bordes, Steve Young, Gerald Tesauro

Room 102-C

• 6th Workshop on Automated Knowledge Base Construction

Jay Pujara, Danqi Chen, Bhavana Dalvi Mishra, Tim Rocktäschel

Room 102 A+B

 Advances in Modeling and Learning Interactions from Complex Data

Gautam Dasarathy, Mladen Kolar, Richard Baraniuk

Room 101-B

Visually Grounded Interaction and Language

Florian Strub, Harm de Vries, Abhishek Das, Satwik Kottur, Stefan Lee, Mateusz Malinowski, Olivier Pietquin, Devi Parikh, Dhruv Batra, Aaron C Courville, Jeremie Mary

Room S-7

• Machine Learning for the Developing World

Maria De-Arteaga, William Herlands

Grand Ballroom A

NIPS 2017 Time Series Workshop

Vitaly Kuznetsov, Oren Anava, Scott Yang, Azadeh Khaleghi

Hyatt Hotel, Regency Ballroom (A, B & C)

• Extreme Classification: Multi-class & Multi-label Learning in Extremely Large Label Spaces

Manik Varma, Marius Kloft, Krzysztof Dembczynski

Room 201-E

 Nearest Neighbors for Modern Applications with Massive Data: An Age-old Solution with New Challenges

George H Chen, Devavrat Shah, Christina Lee

Room 104-B

 Acting and Interacting in the Real World: Challenges in Robot Learning

Ingmar Posner, Raia Hadsell, Martin Riedmiller, Markus Wulfmeier, Rohan Paul

Room 202

Machine Deception

Ian Goodfellow, Tim Hwang, Bryce Goodman, Mikel Rodriguez

Hall A

OPT 2017: Optimization for Machine Learning

Suvrit Sra, Sashank J. Reddi, Alekh Agarwal, Benjamin Recht

Hyatt Hotel, Regency Ballroom D+E+F+H

• Learning on Distributions, Functions, Graphs and Groups

Florence d'Alché-Buc, Krikamol Muandet, Bharath Sriperumbudur, Zoltán Szabó

Hyatt Hotel, Shoreline

• Machine Learning and Computer Security

Jacob Steinhardt, Nicolas Papernot, Bo Li, Chang Liu, Percy Liang, Dawn Song

Room S-

• Workshop on Worm's Neural Information Processing

Ramin Hasani, Manuel Zimmer, Stephen Larson, Radu Grosu

Room 1 04-C

Deep Learning for Physical Sciences

Atilim Gunes Baydin, Mr. Prabhat, Kyle Cranmer, Frank Wood

Room 104-A

 Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now?

Andrew Beam, Madalina Fiterau, Peter Schulam, Jason Fries, Michael Hughes, Alex Wiltschko, Jasper Snoek, Natalia Antropova, Rajesh Ranganath, Bruno Jedynak, Tristan Naumann, Adrian Dalca, Adrian Dalca, Tim Althoff, SHUBHI ASTHANA, Prateek Tandon, Jaz Kandola, Alexander Ratner, David Kale, Uri Shalit, Marzyeh Ghassemi, Isaac S Kohane

Room 201-A

• A Machine Learning for Audio Signal Processing (ML4)

Hendrik Purwins, Bob L. Sturm, Mark Plumbley

Room 103 A+B

Competition track

Sergio Escalera, Markus Weimer

Room 203

• Discrete Structures in Machine Learning

Yaron Singer, Jeff A Bilmes, Andreas Krause, Stefanie Jegelka, Amin Karbasi

Hyatt Hotel, Seaview Ballroom

• Machine Learning for Creativity and Design

Douglas Eck, David Ha, S. M. Ali Eslami, Sander Dieleman, Rebecca Fiebrink, Luba Elliott

Room S-1

• ML Systems Workshop @ NIPS 2017

Aparna Lakshmiratan, Sarah Bird, Siddhartha Sen, Christopher Ré, Li Erran Li, Joseph Gonzalez, Daniel Crankshaw

Room 103-C

Synergies in Geometric Data Analysis

Marina Meila, Frederic Chazal

Hall C

 From 'What If?' To 'What Next?': Causal Inference and Machine Learning for Intelligent Decision Making

Alexander Volfovsky, Adith Swaminathan, Panagiotis Toulis, Nathan Kallus, Ricardo Silva, John S Shawe-Taylor, Thorsten Joachims, Lihong Li

SATURDAY WORKSHOPS

8:00 AM - 6:30 PM

Room 102 A+B

Machine Learning on the Phone & other Consumer Devices

Hrishikesh Aradhye · Joaquin Quinonero Candela · Rohit Prasad

Room 101-B

Deep Learning at Supercomputer Scale

Erich Elsen · Danijar Hafner · Zak Stone · Brennan Saeta

Seaside Ballroom

• Teaching Machines, Robots, and Humans

 $Maya\ Cakmak \cdot Anna\ Rafferty \cdot Adish\ Singla \cdot Xiaojin\ Zhu \cdot Sandra\ Zilles$

Room 201-A

 2017 NIPS Workshop on Machine Learning for Intelligent Transportation Systems

Li Erran Li · Anca Dragan · Juan Carlos Niebles · Silvio Savarese

Grand Ballroom A

Hierarchical Reinforcement Learning

Andrew G Barto \cdot Doina Precup \cdot Shie Mannor \cdot Tom Schaul \cdot Roy Fox \cdot Carlos Florensa Campo

Hyatt Hotel, Regency Ballroom D+E+F+H

Workshop on Meta-Learning

Roberto Calandra \cdot Frank Hutter \cdot Hugo Larochelle \cdot Sergey Levine

Room 104-B

Machine Learning in Computational Biology

James Zou · Anshul Kundaje · Gerald Quon · Nicolo Fusi · Sara Mostafavi

Room 101-A

(Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights

Benjamin Guedj · Pascal Germain · Francis Bach

Room104-A

 Cognitively Informed Artificial Intelligence: Insights From Natural Intelligence

Michael Mozer · Brenden Lake · Angela J Yu

Room S-7

Bayesian Optimization for Science and Engineering

Ruben Martinez-Cantin · José Miguel Hernández-Lobato · Javier Gonzalez

Room 103-C

Workshop on Prioritising Online Content

 $John \ S \ Shawe-Taylor \cdot Massimiliano \ Pontil \cdot Nicolò \ Cesa-Bianchi \cdot Emine \ Yilmaz \cdot Chris \ Watkins \cdot Sebastian \ Riedel \cdot Marko \ Grobelnik$

Hyatt Hotel, Shoreline

 Collaborate & Communicate: An Exploration and Practical Skills Workshop That Builds On The Experience of AIML Experts Who Are Both Successful Collaborators and Great Communicators

Katherine Gorman

Grand Ballroom B

 Learning with Limited Labeled Data: Weak Supervision and Beyond

Isabelle Augenstein · Stephen Bach · Eugene Belilovsky · Matthew Blaschko · Christoph Lampert · Edouard Oyallon · Emmanouil Antonios Platanios · Alexander Ratner · Christopher Ré Room S-4

Emergent Communication Workshop

 ${\sf Jakob \, Foerster} \cdot {\sf Igor \, Mordatch} \cdot {\sf Angeliki \, Lazaridou} \cdot {\sf Kyunghyun \, Cho} \cdot {\sf Douwe \, Kiela} \cdot {\sf Pieter \, Abbeel}$

Hall A

Deep Learning: Bridging Theory and Practice

Sanjeev Arora · Maithra Raghu · Ruslan Salakhutdinov · Ludwig Schmidt · Oriol Vinyals

Room 203

• Learning Disentangled Features: from Perception to Control

Emily Denton · Siddharth Narayanaswamy · Tejas Kulkarni · Honglak Lee · Diane Bouchacourt · Josh Tenenbaum · David Pfau

Hall C

Bayesian Deep Learning

Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew G Wilson · Diederik P. (Durk) Kingma · Zoubin Ghahramani · Kevin P Murphy · Max Welling

Room 104-C

• The Future of Gradient-Based Machine Learning Software and Techniques

Alex Wiltschko · Bart van Merriënboer · Pascal Lamblin

Hyatt Hotel, Regency Ballroom A+B+C

• Interpreting, Explaining and Visualizing Deep Learning

- Now what?

Klaus-Robert Müller \cdot Andrea Vedaldi \cdot Lars K Hansen \cdot Wojciech Samek \cdot Grégoire Montavon

Hyatt Hotel, Seaview Ballroom

Optimal Transport and Machine Learning

Olivier Bousquet \cdot Marco Cuturi \cdot Gabriel Peyré \cdot Fei Sha \cdot Justin Solomon

Room 204

• BigNeuro 2017: Analyzing brain data from nano to macroscale

Eva Dyer · Gregory Kiar · William Gray Roncal · · Konrad P Koerding · Joshua T Vogelstein

Room 201-B

Aligned Artificial Intelligence

Dylan Hadfield-Menell \cdot Jacob Steinhardt \cdot David Duvenaud \cdot David Krueger \cdot Anca Dragan

Room 102-C

Synergies in Geometric Data Analysis (2nd day)

Marina Meila · Frederic Chazal

RoomS-1

Machine Learning Challenges as a Research Tool

Isabelle Guyon · Evelyne Viegas · Sergio Escalera · Jacob D Abernethy

Room 103 A+B

Medical Imaging meets NIPS

Ben Glocker · Ender Konukoglu · Hervé Lombaert · Kanwal Bhatia

Room 203

 NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks

 $Alexandros\ Dimakis\cdot Nikolaos\ Vasiloglou\cdot Guy\ Van\ den\ Broeck\cdot Alexander$

REVIEWERS

Ellen Vitercik

Elliot Crowley

Emile Richard

Emile Contal

Emilie Morvant

Emiliia Perkovic

Emilio Parisotto

Emma Brunskill

Emmanuel Abbe

Ender Konukoglu

Eran Mukamel

Eric Nalisnick

Eric Moulines

Eric Balkanski

Erik Mcdermott

Ernesto De Vito

Ethan Elenberg

Etienne Roquain

Eugene Belilovsky

Eugenio Culurciello EunJee Lee

Evangelos Theodorou

Evgeny Burnaev

Eyke Hullermeier

Fabian Gieseke Fabian Wauthier

Fabian Sinz

Fabian Theis

Evimaria Terzi

Erik-Jan van Kampen

Eric Cosatto

Erik Kruus

Erik Talvitie

Erik Linstead

Ersin Yumer

Ethan Fang

Eunho Yang

Eva Dver

Eric Xina (SAC)

Emmanuel Bengio

Emily Denton

Emily Pitler

Emanuele Olivetti

A Rupam Mahmood Aaditya Ramdas Aamir Ahmad Aapo Hyvarinen (SAC) Aaron Schein

Aaron Courville (SAC) Aasa Feragen Abbas Kazerouni Abdel-rahman

Aaron Defazio

Mohamed Abdeslam Boularias Abhishek Das Abhishek Kumar Abhradeep Guha

Thakurta

Abir De Abou-Moustafa Karim Abram Friesen Achim Rettinger Adam Lelkes Adam Kalai Adam Pocock Adam Scibior Adam White Adam Charles Adam Lerer Adams Wei Yu Adish Singla Adith Swaminathan Aditya Bhaskara Aditya Menon Aditva Gilra Adji Dieng Adler Perotte Adrian Weller Adriana Romero Afshin Rostamizadeh Agata Lapedriza Aharon Bar-Hillel

Kazmi Ahmed El Alaoui Aika Terada Aishwarya Agrawal Akshay

Ahmad Shahbar

Krishnamurthy Alain Rakotomamonjy Alan Malek Alan Stocker Albert Berahas Alberto Albiol Alberto Bietti Alborz Geramifard Aldo Faisal Alec Radford Aleix Martinez Aleiandra Quiros-

Ramirez Alekh Agarwa Aleksandrs Slivkins Alessandra Tosi Alessandro Rudi Alex Graves Alex Wein Alex Gittens Alex Thiery Alex Alemi Alex Peysakhovich Alex Beutel Alexander Ecker Alexander Schwing Alexander Ihler Alexander Rush Alexander Kirillov Alexandra Carpentier Alexandre Allauzen Alexandre Gramfort Alexandre Passos Alexandre Lacoste Alexandre Defossez Alexandre Proutiere Alexandros Dimakis

Alexandru Niculescu-Mizil Alexey Pozdnukhov Alexey Dosovitskiy Alexis Conneau Alfredo Vellido Ali Cemail Ali Zarezade Alina Beygelzimer (SAC) Alireza Makhzani Allison Chaney Alon Cohen Alon Gonen

Alexandros Kalousis

Alexandros Beskos

Alona Fyshe Alp Kucukelbir Amadou Ba Amar Shah Amaury Habrard Ambedkar Dukkipati Ambui Tewari Ameesh Makadia Ameet Talwalkar Amelia Perry Amir Salavati Amir Globerson Amir Sani Amir Saffari Amir-massoud

Farahmand Amit Sharma Amit Deshpande Amjad Mahayri Amr Ahmed Ananda Suresh Anastasia Pentina Anastasia

Podosinnikova Anastasios Zouzias Anastasios Kvrillidis Anastasis

Georgoulas Andre Altmann Andre Marquand Andre Barreto Andrea Albarelli Andrea Torsello Andrea Locatelli Andrea Vedaldi Andrea Frome Andrea Passerini Andreas Damianou Andreas Lehrmann Andreas Ruttor Andreas Veit Andreas Stuhlmüller Andreas Vlachos Andreas Geiger Andreea Gane Andrei Rusu Andrej Risteski Andrei Gisbrecht

Arrendondo Andres Alvarez Andrew Miller Andrew Lan Andrew Owens Andrew Rabinovich Andrew McCallum Andrew Maas Andrew Saxe Andrew Holbrook Andrew Wilson Andrew Dai Andrew Cotter Andriy Mnih Anelia Angelova Ang Li Angela Yu Angela Schoellig Anh Nguyen Anima Anandkumar Anirban

Andres Munoz

Andres Masegosa

Roychowdhurv Anitha Kannan Ankan Saha Ankit Singh Rawat Ankur Parikh Anna Goldenberg Annalisa Barla Anne Auger Anoop Cherian Anoop Korattikara Angi Liu Anru Zhang Anshul Kundaje Anshumali Shrivastava

Antoine Bordes (SAC) Anton Osokin Antoni Chan Antonio Artes Antonio Torralba Anup Rao Aphinyanaphongs Yindalon Aram Galstyan

Aravindan Vijayaraghavan Ari Pakman Ariadna Quattoni Arjun Jain

Arash Vahdat

Arjun

Chandrasekaran Armand Joulin Arnak Dalalvan Aron Culotta Arthur Mensch Arthur Guez Arthur Tenenhaus Arthur Szlam Arthur Choi Arto Klami Arun Narayanan Arva Mazumdar Aryeh Kontorovich Asaf Weinstein Ashesh Jain Ashia Wilson Ashish Vaswani Ashok Cutkosky Ashwin Kalyan Ashwinkumar Badanidiyuru

Asim Kadav Asia Fischer Asli Celikyilmaz Aswin Sankaranaravanan Ata Kaban Atil Iscen Atilim Gunes Baydin Atsuyoshi Nakamura Audrunas Gruslys Aurelie Lozano Aurelien Lucchi Aurko Rov Aurélien Bellet Austin Benson Aviv Tamar Avrim Blum Awais Athar Ayan Acharya Ayan Chakrabarti Aysegul Dundar Babis Tsourakakis Badrul Sarwar Balaii Krishnapuram Balaji Lakshminarayanar

Balaraman Ravindran Balazs Csaji Balazs Szorenvi Balu Sivan Bamdev Mishra Bang Vu Barbara Engelhardt Barbara Hammer Barbara Plank Barlas Oguz Barna Saha Barnabas Poczos Barret Zoph Bart Selman Basura Fernando Been Kim Behnam Nevshabur Behrooz Ghorbani Behrouz Behmardi Behzad Golshan Ben Calderhead Ben Glocker Ben Poole Benigno Uria Benjamin Rubinstein Benjamin Rosman Benjamin Marlin Benjamin Van Roy

Bernard Ghanem Bernard Ng Bernardino Romera-Paredes Bernardo Pires Bert Huang Bert De Brabandere Bertrand Thirion Beyza Ermis Bharath Hariharan Bharath Sriperumbudur Bhuvana Ramabhadran Bilal Piot

Benjamin Guedi

Bill Triggs Bin Dong Bin Shen Bing Xu Bing Xiang Bingni Brunton Biwei Huang Bjoern Jensen Bjoern Schuller

Bioern Menze Bjoern Andres Bo Chen Bo Liu Bo Dai Bo Li Bo Waggoner Bo Zhao Bo Xie Boaz Nadler Bob Price **Bobby Jaros** Bohvung Han Bojan Pepik Boging Gong Boria Balle Bowei Yan Bowen Xu Bowen Zhou Brahim Chaib-Draa Brandon Malone Branislav Kvetor

Brendan O'Donoghue Brian Patton Brian Milch Brian Ziebart Brian Kingsbury Brian Mcwilliams Brian Mcfee Brian Kulis Brian Roark Brijnesh Jain Brooks Paige

Brunel Victor-Emmanuel Bruno Olshausen Bruno Ribeiro Bryan Tripp Bryan Russell Bryant Chen Byron Wallace Çağlar Gülçehre Caiming Xiong Camille Couprie Can Le Canyi Lu Carl Henrik Ek Carl-Johann Simon-

Gabriel Carlo Ciliberto Carlos Stein Carlos Fernandez-

Granda Carlotta Domeniconi Carmen Vidaurre Cassio De Campos Catalin Ionescu Cecile Capponi Cedric Archambeau Chandrashekar

Lakshm Narayanan Chang Xu Changhe Yuan Changho Suh Changyou Chen Chansoo Lee Chao Chen Chao Qian Chaohui Wang Chaouki Regoui

Charalampos Mavroforakis Charles Bouveyron Charles Blundell Charles-Alban Deledalle Charlie Tang Chelsea Finn Chen Yanover Cheng Tang Cheng Zhang Cheng Soon Ong

Chengtao Li Chenxin Ma Chi Jin Chicheng Zhang Chien-Ju Ho Ching-pei Lee Chinmay Hegde Chiranjib

Chiyuan Zhang Chloé-Agathe Azencott Cho-Jui Hsieh Chong Wang Chongxuan Li Chris Lucas Chris Eliasmith Chris Russell

Chris Oates Chris Pal Chris Williams Chris Junchi Li Christian Szegedy Christian Osendorfer Christian Idel Christian Steinruecken

Christian Gagne Christian Wolf Christian Naesseth Christina Lioma Christof Angermueller Christoph Lippert Christoph Dann Christoph Lampert Christoph Lassner Christophe Giraud-Carrier

Christophe Devleeschouwer Christophe Denis Christopher Frantz Christopher Yau Christopher Musco Christopher Maddison

Christos Boutsidis Christos Dimitrakakis Chuan-Yung Tsai Chun-Nam Yu Chung-chieh Shan Chunhua Shen Cicero Nogueira dos Santos

Claire Vernade Claire Monteleoni (SAC) Claudio Gentile (SAC) Clement Levrard Clément Calauzènes Colin Raffel Constantin Rothkopf Constantine Caramanis Cordelia Schmid

(SAC) Cosmin Paduraru Cristian Sminchisescu Cristina Savin Cristobal Guzmàn Csaba Szepesvari Cuong Nguyen Cvnthia Rudin Cyril Goutte

Corinna Cortes

D. Sculley Daan Christiaens Dacheng Tao Dahua Lin Daichi Mochihashi Dale Schuurmans (SAC) Damian Roqueiro

Dan Rosenbaum

Dan Holtmann-Rice Dan Sheldon Dan Lizotte Dan Feldman Dan Ventura Dan Yamins Dan Goldwasser Dan Stowell Dan Garber Dani Yoqatama Daniel Povey Daniel Hendrycks Daniel Russo Daniel Freeman Daniel Hernandez

Lobato Daniel Rudolf Daniel Vainsencher Daniel Soudry Daniel Hsu Daniel Neil Daniel Cremers Daniel Lowd Daniel Neill Danilo Rezende Danny Tarlow Danqi Chen Daoqiang Zhang Daozheng Chen Dario Garcia-Garcia Dave Moore

David Kale

David Wingate

David Jensen

David Belanger David Knowles David Duverle David Andrzejewski David Carlson David Rosenberg David Ginsbourger David Greenberg David Mimno David Pfau David Krueger David Pal David Silver David Wipf David Balduzzi David Mcallester David Eigen David Gleich David Hofmevi David Duvenaud David Woodruf David Sontag David Salinas David Kelley Davide Chicco Dawen Liang De-Chuan Zhan Dean Bodenham Debadeepta Dey Debarghya Ghoshdastidar Debing Zhang Deepak Venugopal Demian Battaglia Deng Cai Deniz Erdogmus Dennis DeCoste Devon Hjelm Deyu Meng Dhruv Mahajan Dhruv Batra Di He

David Sussillo

David Warde-Farley

David Leslie

David Forsyth

Fabian Pedregosa Fabio A. Gonza Fabio Anselmi Diane Bouchacourt Fabio Cozman Fabio Massimo Diego Marcheggiani Dilan Gorur Zanzotto Dilip Krishnan Fabrizio Costa Dimitri Palaz Fahad Shah Dimitri Yatsenko Fang Zhao Dimitrios Milios Fang Han Dimitris Fangpo Wang Papailiopoulos

Ding-Xuan Zhou

Dinh Phung

Dit-Yan Yeung

Dialel Benbouzid

Diallel Bouneffout

Dmitri Chklovskii

Dmitry Pechyony

Dmitry P. Vetrov

Dmitry Malioutov

Doina Precup

Dominik Janzig

Dominique Chu

Dongryeol Lee Dongwoo Kim

Doug Downey Dougal Sutherland

Douwe Kiela

Dumitru Erhan

Dustin Tran

Dylan Foster

Edith Cohen

Edo Liberty

Dotan Di Castro

Dougal Maclaurin

Dragomir Anguelov

Dzmitry Bahdanau

Edouard Ovallon

Edouard Pauwe

Edward Grefens

Efstratios Gavves

Ehsan Elhamifar

Edwin Bonilla

Ehsan Adeli

Ehsan Variani

Flad Mezuman

Eiii Takimoto

Elad Ganmor

Elad Eban

Flad Hazan

Elena Zheleva

Elias Bareinboim

Eleni Vasilaki

Elias Khalil

Elisa Ricci

Edouard Grave Eduardo F. Morales

Dino Oalic

Farhad Pourkamali-Anaraki Federica Bogo Fei Tian Fei Sha Feiping Nie Felipe Llinares López Felix Biessmann Felix Hieber Felix Reinhart Felix Xinnan Yu Feng Ruan Ferenc Huszar Fernando Perez-Cruz Finale Doshi-Velez Finn Kuusisto Firas Hamze Florence d'Alché-Buc Florent Krzakala Florian Stimberg Florian Metze Florian Yger

Florin Popescu Francesc Moreno-Noguer Francesco Casale Francesco Orabona Francis Bach (SAC) Francisco J. R. Ruiz Franco Pestilli Francois Schnitzler François Laviolette Frank Wood Frank Broz Frank Dondelinger Frank Hutter Frank-Michael Schleif Frans de Ruiter Frans Oliehoek Francois Fleuret Frederic Koriche Fredrik Johansson Furong Huang Fuxin Li Gabriel Synnaeve Gabriel Dulac-Arnold Gael Varoquaux

Gal Chechil

Gal Dalal Gamaleldin Elsaved Gang Niu Gao Huang Gareth Peters Gary Cottrell Gaurav Sharma Gautam Dasarathy Gavin Whitaker Gavin Taylor Gavin C. Cawley Gediminas Luksvs Gemma Roig Geoffrey Roeder Geoffrey Irving Georg Martius George Deligiannidis George Toderici George Azzopardi George Papandreou George Philipp George Chen George Michailidis Georgia Gkioxari Georgios

Theocharous Gerald Tesauro Gerald Quon Gerard Pons-Moll Gergely Neu Gerhard Neumann Gilad Lerman Gilles Blanchard Gilles Louppe Gilles Gasso Giorgio Patrini Giovanni Zappella Giuseppe Jurman Glenn Fung Golan Pundak Gonzalo Martinez-

Munoz Gonzalo Mena Graham Neubig Graham Taylor Greg Shakhnarovich Greg Mori Greg Wayne Gregoire Montavon Gregory Rogez Gregory Kahn Grigory Yaroslavtsev Grzegorz Swirszcz Guang Cheng Guang-Tong Zhou Guangcan Liu Guido Montufar Cuartas

Guillaume Wisniewski

Guillaume Desjardins

Guillaume Alain

Guillaume Bouchard Guillaume Obozinski Gungor Polatkan Gunnar Raetsch (SAC) Guo-Jun Qi Guoguo Chen Gustau Camps-Valls Guy Van den Broeck Gwenaelle Mabon Gvoray Turan Hachem Kadri Hado Van Hasself Hagen Soltau Hai Leong Chieu Haimonti Dutta Haipeng Luo Haiping Lu Haigin Yang Hakan Grahn Hamdi Dibeklioglu Hamed Hassani Hamed Valizadegan Hamid Rabiee Hang Su Hang Li Hanie Sedghi Hanjun Dai Hanli Wang Hannes Nickisch Hans Kersting Hanxiao Liu

Harish Ramaswamy

Harm Van Seijen

Harm De Vries

Hartmut Neven

Hassan Ashtian

Heeyoul Choi

Heiko Strathmann

He He

66

Muli

Mukund Narasimhan

Mykola Pechenizkiy

Nagarajan Natarajan

Murat Kocaoglu Murat Dundar

Myunghwan Kim

Nadav Cohen

Naejin Kong

Nakul Verma

Nan Feng

Nan Jiang

Nan Du

Nan Li

Nan Ye

Nan Ding

Naoki Abe

Narges Razavian

Nate Kushman

Nathan Kallus

Navdeep Jaitly

Nakashole

Negar Kiyavash

Neil Zeghidour

Nelly Pustelnik

Nevena Lazic

Batmangheli

Nematollah (Kavhan)

Neela Sawant

Ndapandula

Natalia Ponomareva Natalia Neverova

Nal Kalchbrenner

Heng Luo Heng Huang Hengshuai Yao Herke van Hoof Herve Lombaert Hesam Sagha Heung-II Suk Hexiang Hu Hideitsu Hino Hidekazu Oiwa Himabindu Lakkaraju Hiroto Saigo Hoang Le Hoda Heidari Holakou Rahmanian Holger Schwenk Honglak Lee Hongseok Yang Hongyang Zhang Hongyi Zhang Hongyu Su Hongyu Guo Hongyuan Wang Honazhou Lin Hossein Azari Hossein Mobahi Hsiang-Fu Yu Hsuan-Tien Lin Huahua Wang Huan Wang Hugh Salimbeni Hugo Jair Escalante Hugo Van hamme Hugo Larochelle (SAC)

Hung Bui Huy Nguyen Hyokun Yun Hyun Oh Song Iain Murray lan Goodfellow Ian Oshand Ian Stevenson Ian En-Hsu Yen Jasonas Kokkinos Ichigaku Takigawa Ichiro Takeuchi laar Melnyk Igor Mordatch Il Park Ilias Diakonikolas Ilja Kuzborskij Ilker Birbil Ilya Shpitser Ilva Loshchilov Inderjit Dhillon (SAC) Inmar Givoni Ioannis Tsamardinos Ioannis Mitliagkas Ion Muslea Irena Koprinska

Irene Rodriguez-Lujan Irene Waldspurger Irina Rish (SAC) Irina Higgins Irwin King Isabel Valera Issei Sato Itamar Katz Ivan Titov Ivo Danihelka Ivor Tsang Izhak Shafran Jaakko Peltonen Jaan Altosaar Jack Poulson Jackie Chi Kit Cheung Jackson Gorham Jacob Abernethy Jacob Steinhardt Jacob Andreas Jacob Eisenstein Jaegul Choo Jaesik Choi Jake Gardner Jakob Macke Jakob Foerster Jakob Verbeek Jakub Marecek Jalal Fadili Jamal Atif James Davidson James Atwood James McInerney James Hays James Bergstra James Cussens James Hensman

James Martens

James Saunderson James Kwok James Wright James Sharpnack Jamie Morgenstern Jamie Kiros Jan Ramon Jan Stühmer Jan Gaethaus Jan Wegner Jan Chorowski Jan-Peter Calliess Jan-Willem van de Meent

Janardhan Rac Doppa Jane Wang Jarvis Haupt Jascha Sohl-Dickstein Jason Pazis Jason Corso Jason Weston Jason Eisner Jason Yosinski Jason Lee Jason Rock Jason Pacheco Jasper Snoek Javad Azimi Javier Romero Javier González Jay Pujara Jayadev Acharya Javashree Kalpathy-Cramer

Jayesh Gupta Jean Honorio Jean-Baptiste Tristan Jean-Marc Odobez Jean-Philippe Vert Jeff Bilmes (SAC) Jeff Donahue Jeff Schneider Jeffrey Regier Jeffrey Pennington Jenna Wiens Jennifer Wortman Vaughan

Jennifer Listgarten Jennifer Dy Jennifer Neville

(SAC) Jennifer Healey Jens Kober Jeremiah Deng Jeremie Mary Jeremy Heng Jeremy Jancsary Jeremy Weiss Jerome Revaud Jerry Zhu (SAC) Jes Frellsen

Jesse Krijthe Jesse Engel Jesse Davis Jessica Hamrick Jessica Hwang Jesus Malo Jesus Cid-Sueiro Ji He Ji Liu Jia Deng Jiajun Wu

Jian Peng Jian Li Jianbo Shi Jianfei Chen Jianhui Chen Jianshu Chen Jianwei Yang Jianxin Wu Jiasen Lu Jiasen Yang Jiashi Feng Jiavu Zhou

Jie Wang Jie Shen Jie Chen Jihun Hamm Jilles Vreeken Jim Huang Jimei Yang Jimeng Sun Jimmy Ba Jimmy Vandel Jinbo Bi

Jing Lei

Jingrui He

Jingdong Wang

Jinau Kim Jingyi Yu Jinwoo Shin Jinyan Guan Jivko Sinapov Jo-Anne Ting Joachim Buhmann Joan Bruna Joao Carreira Joaquin Vanschoren Joe Austerweil Joelle Pineau Joey Tianyi Zhou Johan Suykens Johan Ugander Johanni Brea John Agosta John Wright John Dickerson

John Lee John Platt John Hershey John Schulman John Blitzer John Langford (SAC) John Duchi John Smith John Paisley Johnathan Rosenblatt Jon Shlens Jonas Richiardi Jonathan LeRoux Jonathan Hunt Jonathan Scarlett Jonathan Masci

Jonathan Huggins Jonathan Robert Ullman Jonathan Pillow Jonathan Berant Joni Pajarinen Joost van Amersfoort Jorg Bornschein Joris Pelemans Jorn Jacobsen Josepha Boedecker

Jonathan Huang

Jonathan Mav

Jonathan Tompson

Jose Enrique Munoz De Cot Jose Oramas M. Jose Martin-Guerrero Jose Alvarez

Jose Miguel Hernandez-Lobato Josef Sivic Joseph Salmon Joseph Modayil Joseph Lim Joshua Loftus Joshua Griffin Josiah Hanna Josip Djolonga Joyce Whang Juan Caicedo Juan Carlos Niebles Juergen Schmidhuber Juergen Gall Juho Lee Juhyun Park Julia Voat Julian Ibarz Julian McAuley Julie Nutini Julien Chiquet Julien Mairal Jun Zhu Jun Suzuki Jun Sakuma Jun Xu Jun Liu Jun Zhu Jun-Kun Wang Jun-ichiro Hirayama Junhona Lin Junhyuk Oh Junier Oliva Junpei Komiyama . Junwei Han Junya Honda Junyang Qian Junyoung Chung Junyuan Xie Junzhou Huang Jure Leskovec Jurgen Van Gael

Justin Johnson

Justin Solomon

Justin Bayer

Justin Domke

Justin Thaler Jvotishka Datta Jyrki Kivinen Kacper Chwialkowski Kai Zhang Kai Fan Kai Puolamaki Kai-Wei Chang Kamalika Chaudhuri

Kamyar Azizzadenesheli Kangwook Lee Kannan Achan Karen Sachs Karen Simonyan Karl Stratos Karol Gregor Karsten Borgwardt Karthik Mohan Karthik Sridharan Karthikevan

Ramamurthy Karthikeyan Shanmugam Kashif Javed Kashif Zafar Kate Saenko Kate Jeong Lee Katerina Fragkiadaki Katerina Gkirtzou Katherine Heller

(SAC) Katherine Kinnaird Katia Hofmann Kaushik Sinha Kazuho Watanabe Ke Jiang Ke Sun Kee-Eung Kim Keerthiram

Murugesan Keisuke Yamazaki Keith Hall Kelvin Xu Ken Caluwaerts Kenii Fukumizu Kenneth Latimer Kevin Swersky Kevin Roth Kevin McGuinness Kevin Small Kevin Shih

Kevin Smith Kevin Jamieson Keyan Ghazi-Zahedi Keyon Vafa Kfir Y. Levy Khoat Than Kian Ming Adam Chai Kihvuk Sohn

Kinjal Basu Kirthevasan Kandasamy Kishore Konda Klaus-Robert Muller Koby Crammer Kohei Hayashi Kohei Hatano Koji Tsuda

Kimon Fountoulakis

Konstantinos Rematas Konstantinos Bousmalis Koray Kavukcuoglu Kosta Derpanis Kota Yamaguchi Kriste Krstovski Kristen Grauman

(SAC) Kristiaan Pelckmans Krzysztof Dembczynski

Krzysztof Choromanski Kshipra Bhawalkar Kuang-chih Lee Kui Tang Kun Zhang Kunal Talwar Kush R. Varshnev Kwang In Kim Kwang-Sung Jun Kyle Cranmer Kyunghyun Cho

L.A. Prashanth

Laetitia Chapel

Laiwan Chan

Lam Nguyen

Lamiae Aziz

Laetitia Papaxanthos

Lan Du Lars Buesing Lars Kai Hansen Lars Mescheder Laura Igual Laura Sevilla Laura Dietz Maaten

Laurent Sifre Lavi Shpigelman Le Song Lea Duncker Lei Han Lenka Zdeborova Leo Boytsov Leon Gatys Leon Bottou Leonel Rozo Leonid Sigal Leonid Razoumov Leslie Pack Kaelbling Lester Mackey Li Chena Li Deng Li Wang Li Yao

Liang Huang Liang Zhang Liang Lu Liang-Chieh Chen Liangliang Cao Lihong Li Lijun Zhang Limin Li Ling Chen Lingpeng Kong Lingxi Xie

Linhong Zhu

Linli Xu

Li Zhang

Li-Lun Wang

Liping Liu Liva Ralaivola Liwei Wang Lixin Duan Locatello Francesco Lorenzo Orecchia Lorenzo Rosasco Loris Bazzani Louis Wehenkel Lu Cheng Luca Martino

Luca Rossi Lucas Drumond Ludovic Denoyer Ludovic Arnold Ludwig Schmidt Luigi Malagò Lukas Balles Lukasik Michal Lukasz Kaiser Luke Vilnis Luke Dickens Lyle Muller

M. Pawan Kumar Madalina Fiterau Madeleine I Idell Magnus Rattray Mahdi Fard Mahesan Niranian Mahito Sugivama

Maithra Raghu Maia Rudolph Makoto Yamada Mandar Dixit Maneesh Singh Manohar Paluri Manon Kok Manuel Gomez

Rodriguez Manuel Lopes Manzil Zaheer Manzil Zaher Marc Lanctot Marc Deisenroth Marc Lelarge

Marc'Aurelio Ranzato (SAC) Marcel Van Gerven Marcelo Fiori Marco Lorenzi Marco Loog Marco Pedersoli Marco Cuturi Marco Cristani Marco Baroni Marco Duarte Marco Tulio Ribeiro Marcus Brubaker

Marcus Rohrbach

Marcus Liwicki Marek Petrik Marek Grzes Maren Mahsereci Margareta Ackerman Margarita Kotti Maria Lomeli Maria-Florina Balcan

(SAC) Mariano Rivera Meraz Marina Meila (SAC) Mario Figueiredo Mario Boley Mario Marchand Mario Fritz Marius Leordeanu Mark Schmidt Mark Davenport Mark Kozdoba Mark Herbster Markus Heinonen Martha White Martin Takac Martin Slawski Martin Rengiang Min Martin Jaggi Martin Boldt Martin Ariovsky Martin Zinkevich Maruan Al-Shedivat Marwa El Halabi Maryam Esmaeili Maryam Fazel Marzyeh Ghassemi Masaaki Imaizumi Masayuki

Karasuvama Masrour Zoghi Massih-Reza Amini Massimo Rosa Massimo Piccardi Matan Gavish Matey Neykov Mathias Niepert Mathias Berglund Mathieu Sinn Mathieu Aubry Mathieu Blondel Mathieu Salzmann Mathieu Lerasle Matias Quiroz Matsumoto Yuji Matt Johnson Matt Hoffman Matt Kusner Matthew Hauknecht Matthew Blaschko Matthew Golub Matthew Riemer Matthew Walter Matthias Hein Matthias Seeger Matthieu Cord Matthieu Vignes Matthieu Geist Matthäus

Mingjun Zhong Minamina Gona Mingsheng Long Mingyi Hong Kleindessner Matti Vihola Mingyuan Zhou Mingzhang Yin Mattias Villani Mauricio Villegas Minhua Chen Mauricio Alvarez Minie Kim Maurilio Gutzeit Minjie Xu Maurizio Filippone Minmin Chen Max Jaderberg Miro Dudik Maxim Panov Misha Denil Maxim Raginsky Misha Chertkov Mitesh Khapra Maxime Sangnie Maxime Bouton Moez Draief Maxime Berar Mohamed Amer Maximilliam Igl Mohamed Maximillian Nickel Tamaazousti Mohammad Mahdian Maxwell Libbrecht Maya Gupta Meelis Kull

Meg Mitchell

Mehdi Mirza

Mehmet Gönen

Mehrdad Farajtaba

Meisam Razaviyayn

Mehrdad Mahdavi

Mehreen Saeed

Melanie Schmidt

Melanie Pradier

Melih Kandemir

Melissa Smith

Mengdi Wang

Mengye Ren

Mert Pilanci

Mesrob I

Meghana Kshirsagar

Min Ye

Mohammad Azar Mohammad Rohban Mohammad Emtivaz Khan Mohammad Rastegari Mohammad Ghavamzadeh Mohammad Bahadori Mohammad Saberian Mohammad Norouzi

Mohit lyyer Moritz Hardt Moritz Grosse-Wentrup Motoaki Kawanabe Motonobu Kanagawa Motonobu Kanagawa Moustapha Cisse

Miao Xu Miao Liu

Miaomiao Zhang Micha Andriluka Michael Moller Michael Mathieu Michael Mahoney Michael Houle Michael Cogswell Michael Eickenberg Michael Hirsch Michael Kaisers Michael James Michael Sapienza Michael Wick Michael Stark Michael Zhang Michael Oliver Michael Cohen Michael Hughes Michael Mandel Michael Andersen Michael Hofmann Michael Collins Michael Littman Michael Mahoney Michael Maire Michael Katehakis Michael Kemmler Michael Mozer Michael Brueckner Michal Drozdzal Michal Derezinski Michal Valko Michal Januszewski Michalis K. Titsias Michel Besserve

Ohannessian

Nevin Zhang Ngoc Mai Tran Nhat Ho Niall Twomey Niao He Michele Sebag Nic Mayoraz Miguel Lazaro Nicholas Andrews Nicholas Ruozzi Gredilla Miguel Carreira Nicholas Carlini Perpinan Nicholas Foti Mihaela Rosca Nicolas Ballas Mihajlo Grbovic Nicolas Le Roux Mihalis Nicolaou Nicolas Chanados Mihir Jain Nicolas Flammarion Mijung Park Nicolas Durrande Mikael Henaff Nicolas Courty Mikaela Kelle Nicolas Dobigeon Mike Schuster Nicolas Papernot Nicolas Usunier Mike Hawrylycz Mikhail Yurochkin Nicolas Thome Mikio AOI Miklos Racz Nicole Mücke Nicolo Fusi Min Sun Nicolo Cesa-Bianchi Min Lin Nicolo Colombo Nika Haghtalab Min-Ling Zhang Nikhil Devanur Mina Li Nikhil Rao Ming Yan Niklas Lavesson Ming-Hsuan Yang Ming-Wei Chang Niklas Wahlström Nikos Karampatziakis Ming-Yu Liu Nikunj Oza Nils Kriege Ning Zhang Nir Rosenfeld Niru Nishant Mehta Nitish Srivastava

Maheswaranathan Nitish Shirish Keskar Noah Smith Novi Quadrianto Nuno Vasconcelos Odalric Maillard Ofer Dekel Ofer Meshi Ognjen Rudovic Oleksandr

Zadorozhnyi Oliver Stegle Oliver Obst Olivier Fercoq Olivier Pietauin Olivier Delalleau Olivier Sigaud Olivier Bousquet Omar Besbes Omer Levy Omid Madani Omkar Parkhi Omri Barak Onaiza Maghool Onkar Dalal Onno Zoeter Onur Hamsici Or Zuk Oriol Vinyals Oscar Dalmau Oswin Krause

REVIEWERS

Ozan İrsoy Ozgur Simsek Ozlem Aslan Pablo Sprechmann Pablo G. Moreno Padhraic Smyth (SAC) Pallika Kanar Pan Weike Panagiotis Toulis Pantelis Analytis Paolo Frasconi Parameswaran

Raman Paramveer Dhillon Parikshit Ram Paris Smaragdis Partha Talukdar Pascal Frossard Pascal Germain Pascal Denis Pascal Vincent Pascal Poupart Patrick Haffner Patrick Flaherty Patrick Forré Patrick Loiseau Patrick Jähnichen Patrick Gallinari Paul Smolensky Paul Honeine Paul Rubenstein Paul Weng Paul Mineiro Paul Valiant Paul Vernaza Paul Wohlhart Paul Swoboda Pauline Tan Pavel Tokmakov Pavel Laskov Pawel Swietoianski Pedro Pinheiro Pedro Ortega Pedro Goncalves Peilin Zhao Pekka Parviainen Pekka Marttinen Peng Zhang Peng Sun Perry Groot Peter Gehle Peter Krafft Peter Jacko Peter Orbanz Peter Stone (SAC) Peter Flach Peter Sadowski Peter Richtarik Peter Battaglia Petr Motlicek Philemon Brakel Philip Bachman Philip Thomas . Philipp Kraehenbuehl

Pieter-Jan Kindermans Pin-Yu Chen Pinar Yanardag Ping Liu Ping Li Ping Li Pinghua Gong Piotr Mirowski Piotr Bojanowski Pivush Rai Po-Wei Wang Prajit Ramachandran Pramod Viswanath Pranial Awasthi Prateek Jain Pratik Jawanpuria Preethi Jyothi Prem Gopalan Prithiraj Sen Pulkit Agrawa Purnamrita Sarkar

Philipp Hennig

Philipp Geiger

Philipp Berens

Philippe Preux

Phillip Isola

Pierre Geurts

Pierre Savalle

Pierre Gaillard

Pierre Barbillon

Pierre-Luc Bacon

Pierre Bellec

Pierre Alquier

Phong Le

Philipp Thomann

Qi Mao Qiang Wu Qiang Yang Qiangian Xu Qiaozhu Mei Qibin Zhao Qichao Que Qihang Lin Qin Zhang Qing Sun Qinqing Zheng Qixing Huang Quan Wang Quan Zhang Quan Sun Quana Nauven Quanming Yao Quanquan Gu Quentin Paris Quentin Berthet Quoc Tran-Dinh Quynh Nguyen Rachel Tappenden Radu Timofte Rafael Frongillo Ragesh Jaiswal Raghu Bollapragada Rahul Krishnan Raia Hadsell

Rakesh Ranjan Ramakrishna Vedantam Raman Arora Ramin Raziperchikolaei

Raiat Monga

Rajiv Khanna

Rajesh Ranganath

Raihans Samdani

Ramprasaath Selvaraiu Ramya Vinayal Ran Gilad Bachrach Rana Forsati Raphael Feraud Raquel Urtasun (SAC) Rashish Tandon Rasmus Bonnevie Rasool Fakoor Rasul Tutunov Raul Santos-

Rodriguez Ravi Ganti Raviv Raich Razvan Pascanu Rebecca C. Steorts Rebecca Willett Reinhold Scherer Remi Leblond Remi Munos Remi Bardenet Remi Flamary Remi Gilleron Rene Vidal Renjie Liao Reshad Hosseini Reza Babanezhad Reza Sahraeian Reza Shokri Ricardo Silva Ricardo Henao Richard Wilkinson Richard Nock Richard Combes Richard Socher Ricky Loynd Rina Panigrahy

Rishabh Singh Rita Cucchiara Ritwik Mitra Rob Zinkov Rob Cornish Robert Legenstein Robert Guetig Robert Tillman Robert D. Kleinberg Robert Durrant Robert Gens Robert West Robert Busa-Fekete Robert Vandermeulen Rocky Duan Rodolphe Jenatton Roger Frigola Roger Grosse Rohit Babbar Rohit Prahhavalkar Seunghoon Hong Roi Reichart Roi Weiss Seungil You Roi Livni Seungjin Cho Roland Kwitt Sewoong Oh

Romain Herault Roman Garnett Romaric Gaudel Romer Rosales Ronan Collobert Rong Ge Rongrong Ji Roozbeh Mottaghi Rosanne Liu Ross Goroshin Roy Fox Roy Frostig Roy Adams Ru He Ruben Martinez-

Cantin Rui Ponte Costa Ruichu Cai Ruigi Guo Ruitong Huang Ruiwen Zhand Ruovu Sun Ruslan Salakhutdinov Russ Greiner Ruth Urner Ryan Giordano Ryan Turner Rvan Adams Ryan Rifkin Rvohei Fuiimaki Rvota Tomioka Sadid A. Hasan Saehoon Kim Saeid Haghighatshoar Sahand Negahban Sahil Garg Sainbayar Sukhbaatar Saketha Nath Sally Goldman Sam Livingstone

Sam Gershman Sam Bowman Saman Muthukumarana Sameer Singh Samet Oymak Samira Kahou Samuel Kaski

Samuel Vaiter Samy Bengio Sandeep . Subramanian Sander Bohte Sander Dieleman Sandhya Prabhakaran Sandipan Rov Sandor Szedmak Sanja Fidler Saniiv Kumar Sanjoy Dasgupta Sanmi Koyejo Santosh Vempala Sara Mostafavi Sara Magliacane Sarah Bird Sarath Chanda Satoshi Hara Satwik Kottur Saurabh Gupta

Scott Yang

Scott Reed

Scott Sanner

Sean Gerrish

Se-Young Yun

Scott Linderman

Sebastian Trimpe Sebastian Tschiatschek Sebastian Bubeck Sebastian Nowozin Sebastian Seung Sebastien Giguere Sebastien Bratieres Sebastien Jean Sekhar Tatikonda Sepideh Mahabadi Seppo Virtanen Serena Yeung Sergei Vassilvitskii Sergev loffe Sergey Karayev Sergey Levine Sergey Bartunov Sergio Escalera Sergio Guadarrama Sergios Theodoridis Seth Flaxman Seunghak Lee

Seyoung Kim Shai Ben-David Shakir Mohamed Shalini Ghosh Shan Yang Shandian Zhe Shang-Tse Chen Shankar Vembu Shanshan Wu Shao-Yuan Li Shaobo Han Shaogao Lv Shaojun Wang Shaoting Zhang Sharan Vaswa Sharmodeep

. Bhattacharya Shashank Srivastava Shashank Singh Sheeraz Ahmad Sheng-Jun Huang Shenghua Gao Shengjie Wang Shenlong Wang Sherjil Ozair Shiau Hong Lim Shie Mannor Shihao Ji Shiming Ge Shinichi Nakajima Shinji Watanabe Shipeng Yu Shigi Zhang Shiqian Ma

Kalvanakrishnan Shixiang Gu Shou-de Lin Shuai Li Shuang Li Shuiwang Ji Shusen Wang Si Wu Si Si Siamak Ravanbakhsh

Siamak Dadaneh Sida Wang Siddharth Gopal Siddharth

Naravanaswamy Sigurður Freyr Hafstein Silvia Pintea Silvia Chiappa Silvio Lattanzi Simon Lacoste-Julien Sinan Yildirim Sinead Williamson Sinno Jialin Pan Sira Ferradans Siva Hari Sivan Sabato Siyu Tang Slim Essid Slobodan Vucetic Smita Krishna Snell Jake Sohan Seth Sokol Koco Sona Liu Songbai Yan Sotirios Chatzis Soumen Chakrabarti Soumik Sarkar Soumith Chintala Soumva Ghosh Soumya Ray Souvik Ghosh Sreeram Kannan Sridhar Mahadevan Srinadh Bhoianapalli Srinivas Turaga Srinivasan Sriram Sriraam Natarajan Sriram Sankararaman Stefan Roth Stefan Sommer Stefan Riezler

Stefan Wager

Stefan Schaal

Stefan Depeweg

Stefanie Jegelka

Stefano Ermon

Stefanos Poulis

Stepan Tulvakov

Stephan Zheng

Stephan Gouws

Stephan Mandt

Stefanos Zafeiriou

Steffen Grunewalder

Stephan Clemencon

Stefan Lee

Timo Bolkart

Tin Kam Ho

Tinne Tuytelaars

Tobias Domhan

Toby Hocking Todd Hester

Todd Gureckis

Tolga Bolukbasi

Tom Diethe

Tom Schaul

Tom Finley

Tom Gunter

Tom Claassen

Tom Goldstein

Tom Nickson

Weixin Li

Weivu Xu

Wen Huang

Wenlin Chen

Wenwu Wand

Wenruo Bai

Wenliang Zhong

Wenjie Pei

Timothee Lacroix

Timothy Arthur Mann

Timothy Hospedales

Tobias Glasmachers

Stephane Robin Stephane Canu Stephen Becker Stephen Bach Stephen Tyree Stephen Gould Steven Hoi Steven Rennie Steven Li Stratis Ioannidis Su-In Lee Subhransu Maji Sudheendra Viiavanarasimhan Sudipto Guha Suith Ravi Suman Ravuri Sumio Watanabe Sung ju Hwang Sungjin Ahn Suresh Venkatasubramanian Suriya Gunasekar Surya Ganguli Sushant Sachdeva Suvrit Sra Sven Dähne Svetlana Lazebnik Syama Rangapuram Sylvain Lamprier Sylvain Chevallie SÀren Hauberg Sébastien Loustau Sébastien Destercke Taco Cohen Tae Hyun Kim Taehwan Kim Taiji Suzuki Takafumi Kanamori Takanori Maehara Takashi Takenouchi Takavuki Osogami Tal El-Hay Tamara Broderick Tameem Adel Tamir Hazan Tanguy Urvoy Tanmingkui Tan Tanya Schmah Tao Yang Tao Qin Tara Sainath Tatiana Tommasi Teemu Roos Tejas Kukarni Tena Zhana Tengyu Ma Terrence Chen Tetsu Matsukawa Thang Luong Thang Bui Theofanis Karaletsos Theophane Weber Thierry Artieres Thijs van Ommen Thodoris Rekatsinas Thomas Steinke Thomas Gaertner Thomas Hofmann Thomas Oberlin Thomas Schön Thomas Liebio Thomas Serre Thomas Colthurst Thomas Deselaers Tian Tian Tianbao Yang Tiangi Chen Tianyi Zhou Tiberio Caetano Tieyan Liu Tim Vieira Wan Li Tim Rocktäschel

Tom Erez Tom Rainforth Tomas Kazmar Tomas Mikolov Tomer Koren Tommaso Mannucci Tomoharu Iwata Toon Goedeme Tor Lattimore Toshiyuki Tanaka Trapeznikov Kirill . Travis Dick Trevor Campbell Tristan Mary-Huard Truyen Tran Tuan Anh Le Tuo Zhao Tuomas Virtanen Ulf Brefeld Ulrich Paquet . Umar Syed Umut Simsekli Uri Shalit Urs Koster Urun Dogan Utkarsh Upadhyay Uwe Schmidt Vaishak Belle Valentin Flunkert Vamsi Ithapu Varun Jog Varun Jampani Varun Kanade Vasil Denchev Vasilis Syrgkanis Venkatesh Saligrama Veronika Cheplygina Vianney Perchet Vicenç Gómez Victor Gabillon Vien Ngo Vijay Peddinti Vijay Janakiraman Vijay Mahadevan Vikas Sindhwani Vikas Singh Vikas Garg Viktorija Sharmanska Vinay Jayaram Vinay Namboodiri Vinavak Rao Vincent Lepetit Vincent Guigue Vincent Dumoulin Vineet Chaoji Vinod Nair Viorica Patraucean Viren Jain Virginia de Sa Virginia Smith Visvanathan Ramesh Vitaly Feldman Vitaly Kuznetsov Vittorio Murino Viveck Cadambe Vivek Singh Vivek Srikumar Vlad Mnih Vladan Radosavljevic Vladimir Pavlovic Vladimir Kolmogorov Vladimir Jojic Vladlen Koltun Vojtech Franc Volkan Cevher Volker Roth Volker Tresp . Voot Tangkaratt Vrancx Peter Vu Thang Walid Krichene Wang Ling Wanli Ma Wee Sun Lee Wei Chen Wei Sun Wei Wu Wei Wang Wei Gao Wei Shi Wei Liu Weicong Ding Yichen Wang Weiwei Cheng

Wenxin Zhou Wenzhao Lian Wieland Brendel Wilker Aziz Will Dabney Willem Waegeman William Fithian William Bishop Willie Neiswanger Wittawat Jitkrittum Wojciech Czarnecki Woiciech Kotlowski Wojciech Samek Wray Buntine Wu-Jun Li Xaq Pitkow . Xavier Carreras Xavier Boix Xavier Giro-i-Nieto Xavier Alameda-Pineda

Xi (Peter) Chen Xiana Zhana Xiang Wu Xiang Bai Xiangfeng Wang Xiangju Qin Xiangliang Zhang Xiangnan Kong Xiangyu Wang Xiao Li Xiao He Xiaodan Zhu Xiaodong Cui Xiaodong He Xiaojun Chang Xiaoli Fern Xiaoning Qian Xiaotong Yuan Xiaoxiao Guo Xin Geng Xin Guo Xin Jiang Xinchen Yan Xinggang Wang Xinghao Pan Xingyuan Fang Xinhua Zhang Xinwei Deng Xinxing Xu Xiuvuan Lu Xu Jia Xu Hu Xue-Xin Wei Y-Lan Boureau Yacine Jernite Yair Weiss Yakir Reshef Yale Chang Yali Wang Yan Liu Yan Xu Yanan Sui Yang Wang Yang Yu Yangfeng Ji Yangqing Jia Yangqiu Song Yanina Shkel Yaniv Ovadia Yaniun Qi Yanlong Huang Yann Guermeui Yann Lepoittevin Yann Traonmilin Yann Ollivier Yann Dauphin Yanwei Fu Yanxia Zhano Yanxun Xu Yao Xie Yao-Hung Tsai Yaoliang Yu Yarin Gal Yaron Singer Yaroslav Ğanin Yash Goyal Yasin Abbasi Yadkori Yasuhisa Fujii Yejin Choi Yevgeny Seldin

Yifan Wu

Yifan Sun

Yifeng Li

Yin Zhena

Yin-Tat Lee

Yingzhen Li

Yingyu Liang

Yining Wang

Yin Cheng Ng

xuejun Liao

Yinlam Chow Yishai Shimoni Yishay Mansour Yishu Miao Yisong Yue Yixin Wang Yizhe Zhana Yoav Artzi Yoni Halpern Yoram Singer Yoseph Barash Yoshihiro Yamanishi Yoshikazu Terada Yoshinobu Kawahara Yossi Arjevani Youhei Akimoto Young Hwan Chang Youssef Mroueh Yu Xiang Yu Cheng Yu Zhang Yu-Feng Li Yu-Xiang Wang Yuandong Tian Yuanming Shi Yuanqing Lin Yuchen Zhang Yue Zhu Yuening Hu Yuh-Jye Lee Yuhong Guo Yuhuai Wu Yujia Li Yulai Cond Yun Yang Yung-Kyun Noh Yunlong Feng Yunlong Jiao Yunus Saatci Yunwen Lei Yuri Grinberg Yuta Umezu Yutaka Sasaki Yutian Chen Yuting Zhang Yuval Tassa Yuxin Chen Yuxin Peng Yuvang Wang Yuyi Wang Yves Grandvalet Zachary Lipton Zaid Harchaoui Zbigniew Wojna Zechao Li Zelda Mariet Zeljko Agic Zenglin Xu Zeynep Akata Zeyuan Allen-Zhu Zhang Yu Zhanyu Ma Zhaohan Guo Zhaoran Wang Zhaowei Cai Zhaoxiang Zhang Zhe Hu Zheng Wen Zheng Wang Zhengming Xing Zhenguo Li Zhenije Zhang Zhenwen Dai Zhi Geng Zhi-Hua Zhou Zhiqiang Xu Zhirong Yang Zhitang Chen Zhiwei Deng Zhiwei Steven Wu Zhongang Qi Zhouchen Lin Zhuowen Tu Zichao Yang Zico Kolter Zihang Dai Ziming Zhang Ziyu Wang Ziyu Guan Zoltan Szabo Zuzana Petrickova hirotaka Hachiya krishnakumai Balasubramanian

Abbasi, Yasin: Poster Wed #22 Abbasi, Yasin: Poster Wed #59 Abbe, Emmanuel: Poster Mon #182

Abbeel, Pieter: Workshop Sat in

Abbeel, Pieter: Poster Mon #112, Demo Tue, Invited Talk Wed in Hall A, Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #200, Poster Wed #4, Symposium Thu in Hall A Abernethy, Jacob: Spotlight Tue in Algorithms, Opt., Poster Tue

#164, Workshop Sat in 204 Acerbi, Luigi: Poster Tue #148 Achab, Mastane: Poster Tue #23 Adams, Ryan: Poster Tue #181, Spotlight Wed in Prob. Methods, Apps.. Poster Wed #191

Adi, Yossi: Poster Tue #137 Agarwal, Alekh: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #84, Workshop Fri in Grand Blrm A

Aghasi, Alireza: Spotlight Tue in Theory, Poster Tue #215 Agrawal, Shipra: Spotlight Tue in Algorithms, Poster Tue #1 Agustsson, Eirikur: Poster Mon

Ahmed, Faruk: Poster Wed #106 Ahn, Sung-Soo: Poster Mon #185 Ahuja, Kartik: Poster Wed #90 Aitchison, Laurence: Poster Wed #149, Oral Thu in Neuroscience Al-natsheh, Adam: Demo Tue Alacaoglu, Ahmet: Poster Mon

Alameda-Pineda, Xavier: Poster Mon #92

Alber, Maximilian: Poster Mon

ALIAS PARTH GOYAL, Anirudh Goyal: Poster Mon #111, Poster Wed #126

Alistarh, Dan: Spotlight Tue in Algorithms, Poster Tue #21 ALLASSONNIERE, Stéphanie: Poster Mon #197

Allen-Zhu, Zeyuan: Spotlight Tue in Opt., Poster Tue #167 Alon, Noga: Oral Tue in Theory, Poster Tue #216

Alon, Noga: Spotlight Wed in Theory, Prob. Methods, Poster Wed #209

Althoff, Tim: Workshop Fri in

Altschuler, Jason: Spotlight Tue in Opt., Poster Tue #163 Alvarez, Jose: Poster Tue #139 Álvarez, Mauricio A.: Poster Tue #194, Workshop Fri in 201-A Ambrogioni, Luca: Poster Tue #150

Amin, Kareem: Spotlight Wed in Reinf, Learning, Algorithms, Apps., Poster Wed #199 Amini, Arash: Poster Mon #207 Amini, Massih-Reza: Poster Mon

Amodei, Dario: Poster Wed #1 Amos, Brandon: Poster Mon

Anava, Oren: Workshop Fri in Grand Blrm B

Andersen, Garrett: Poster Wed

Andriushchenko, Maksym: Poster Mon #29

Andrychowicz, Marcin: Poster Mon #112, Poster Tue #199 Ang, Siena: Spotlight Tue in Theory, Poster Tue #74 Anthony, Thomas: Poster Wed

Antropova, Natalia: Workshop Fri in 104-B

Aradhye, Hrishikesh: Workshop Sat in 103 A+B

Arakalgud, Gautam: Poster Mon #66

Araki, Assaf: Workshop Sat in 203

Archer, Evan: Poster Wed #144, Spotlight Thu in Neuroscience Arimura, Hiroki: Poster Tue #187 Arjevani, Yossi: Spotlight Tue in Opt., Poster Tue #173 Arjomand Bigdeli, Siavash: Spotlight Tue in Deep Learning

Spotlight Tue in Deep Learning, Apps., Poster Tue #86 **Arjovsky, Martin**: Poster Wed

#106 Arora, Raman: Poster Tue #52 **Arora, Sanjeev**: Workshop Sat in Grand Blrm A

Ashukha, Arsenii: Poster Mon #140

Aspuru-Guzik, Alan: Workshop Fri in 102-C Assael, Ioannis Alexandros:

Poster Tue #118
ASTHANA, SHUBHI: Workshop
Fri in 104-R

Fri in 104-B **Audiffren, Julien**: Poster Wed

Augenstein, Isabelle: Workshop Sat in Hyatt Regency Blrm A+B+C Avestimehr, Salman: Poster Tue #219

Ba, Jimmy: Spotlight Wed in Reinf. Learning, Poster Wed #140 Babaioff, Moshe: Spotlight Wed in Theory, Prob. Methods, Poster Wed #209

Bach, Francis: Poster Mon #174, Poster Tue #174, Oral Wed in Theory, Prob. Methods, Poster Wed #207, Workshop Sat in 101-B Bach, Stephen: Workshop Sat in Hyatt Regency Blrm A+B+C Backurs, Arturs: Poster Mon #167

Bagnell, J.: Poster Tue #112
Baig, Mohammad Haris: Poster
Tue #122

Bajaj, Payal: Poster Mon #33 Bajaj, Chandrajit: Poster Wed #47, Spotlight Thu in Deep Learning, Algorithms

balasubramanian, krishnakumar: Poster Tue #72 Balcan, Maria-Florina: Poster Mon #214

Balkanski, Eric: Poster Mon #70, Poster Tue #222, Poster Wed #156 Balle, Borja: Poster Mon #49, Poster Mon #50

Ballé, Johannes: Oral Tue in Deep Learning, Apps., Poster Tue

#125 Balseiro, Santiago: Poster Wed

Baltaoglu, M. Sevi: Poster Wed #60

Balu, Aditya: Poster Tue #133 Baluja, Shumeet: Poster Mon

Bambos, Nicholas: Poster Mon #165, Poster Wed #211 Bamler, Robert: Poster Wed #181 Banerjee, Arindam: Poster Tue

#210 Bansal, Mohit: Demo Wed Bansal, Arjun: Poster Mon #75 Bapst, Victor: Poster Wed #138 Baptista, Ricardo: Poster Mon #180

Baraniuk, Richard: Poster Mon #58, Workshop Fri in 103 A+B **Barash, Danny**: Poster Tue #42 **Barber, David**: Poster Tue #107, Poster Wed #5

Barbos, Andrei-Cristian: Poster Mon #196 Bareinboim, Elias: Poster Wed

#184
Barocas, Solon: Tutorials Grand

BIrm

Barreto, Andre: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #6, Poster Wed

Barrett, David: Spotlight Wed in Reinf. Learning, Poster Wed #129 Bartlett, Peter: Poster Tue #45, Spotlight Wed in Theory, Prob. Methods, Poster Wed #59, Poster Wed #206

Barto, Andrew: Workshop Sat in Grand Blrm B

Barzilay, Regina: Poster Tue #135, Spotlight Wed in Prob. Methods, Apps., Poster Wed #94 Bashiri, Mohammad Ali: Poster Mon #28, Poster Wed #168 Bassetto, Giacomo: Poster Mon

Bassily, Raef: Poster Wed #65 Basu, Kinjal: Poster Mon #168 Bateni, Mohammadhossein: Poster Tue #27

Batra, Dhruv: Poster Mon #86 Batra, Dhruv: Workshop Fri in 101-A

Battaglia, Peter: Poster Tue #123, Oral Wed in Reinf. Learning, Spotlight Wed in Reinf. Learning, Poster Wed #129, Poster Wed #139 Batty, Eleanor: Poster Wed #147, Spotlight Thu in Neuroscience Bauer, Stefan: Poster Mon #2, Poster Tue #8

Baydin, Atilim Gunes: Workshop Fri in 202

Beam, Andrew: Workshop Fri in 104-B **Beattie, Charles**: Poster Wed #86

Beckham, Christopher: Poster Wed #97 Behnezhad, Soheil: Poster Tue

Beirami, Ahmad: Poster Tue #18 Belilovsky, Eugene: Workshop Sat in Hyatt Regency Blrm A+B+C Belinkov, Yonatan: Poster Mon

#85 Belkin, Mikhail: Spotlight Tue in Algorithms, Poster Tue #53 Ben Porat, Omer: Poster Tue #221

Ben-Hur, Asa: Poster Mon #130 Benaim, Sagie: Spotlight Tue in Deep Learning, Apps., Poster Tue #92

Bengio, Yoshua: Poster Mon #103, Poster Mon #111, Poster Tue #141, Demo Tue, Poster Wed

Benini, Luca: Poster Mon #133 Benitez, Nico: Demo Tue Berardino, Alexander: Oral Tue in Deep Learning, Apps., Poster Tue #125

Berkenkamp, Felix: Poster Tue #203

Berry, Brent: Poster Tue #177 Berthet, Quentin: Spotlight Tue in Algorithms, Poster Tue #64 Bethge, Matthias: Poster Mon

Bewley, Alex: Poster Tue #120 Bhargava, Aniruddha: Poster Wad #29

Bhatia, Kanwal: Workshop Sat in S-7

Bhatia, Kush: Poster Tue #46 Bhattacharjee, Prateep: Poster Tue #89

Bhattacharya, Sharmodeep: Poster Mon #37 Bhojanapalli, Srinadh: Spotlight Tue in Opt., Poster Tue #142, Poster Tue #162

Bian, An: Poster Mon #162 Bietti, Alberto: Poster Mon #63, Spotlight Wed in Opt., Poster Wed

Bilen, Hakan: Oral Tue in Deep Learning, Apps., Poster Tue #91, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed

Bilmes, Jeff: Workshop Fri in Hyatt Seaview Blrm Bindel, David: Poster Tue #196 Bird, Sarah: Workshop Fri in Room-204

Birodkar, vighnesh: Spotlight Wed in Prob. Methods, Apps., Poster Wed #153

Blanchard, Peva: Poster Tue #22 Blaschko, Matthew: Workshop Sat in Hyatt Regency Blrm A+B+C Blei, David: Poster Mon #186, Poster Mon #20, Poster Tue #103, Poster Wed #179, Workshop Fri in

Blondel, Mathieu: Poster Mon #101, Poster Mon #68 Bloniarz, Adam: Poster Mon

Blott, Michaela: Demo Tue Blum, Avrim: Poster Wed #208 Blundell, Charles: Spotlight Wed in Reinf. Learning, Poster Wed #133

Boahen, Kwabena: Poster Wed #53

Bogunovic, Ilija: Poster Wed

#195
Boley, Mario: Poster Mon #210
Bonald, Thomas: Poster Mon #23
Boney, Rinu: Poster Tue #111
Boo, Yoonho: Poster Mon #99
Boomsma, Wouter: Poster Wed
#131, Spotlight Thu in Deep
Learning, Algorithms
Boots, Byron: Poster Mon #48,
Poster Tue #112, Poster Tue #193
Bordes, Antoine: Poster Mon
#114, Workshop Fri in Hyatt
Regency BIrm A+B+C
Borgs, Christian: Poster Wed #72
Bornschein, Jörg: Poster Tue

#117
Bosch, Sander: Poster Mon #152
Boser, Thomas: Demo Tue
Both, Martin: Poster Tue #71
Bouchacourt, Diane: Workshop
Sat in Hyatt Seaview Blrm

Bouchard, Kristofer: Poster Mon #37 **Bousquet, Olivier**: Workshop Sat in 102 A+B

#222, Spotlight Wed in Deep Learning, Poster Wed #98 Boyd, Stephen: Poster Mon #165

Boyd, Stephen: Poster Mon #165 Bradbury, James: Poster Tue #77 Brand, Matthew: Poster Tue #132

Brandon Harvey, Intramural: Poster Tue #71 Bresson, Xavier: Tutorials Hall A,

Poster Tue #138
Breuel, Thomas: Spotlight Wed

Breuel, Thomas: Spotlight Wed in Deep Learning, Poster Wed #120

Bringmann, Karl: Poster Wed #165

Brinkmann, Benjamin: Poster Tue #177

Briol, François-Xavier: Poster Mon #193 Broderick, Tamara: Spotlight

Wed in Prob. Methods, Apps., Poster Wed #191, Workshop Fri in 104-A

Bronstein, Michael: Tutorials Hall A, Poster Tue #138 Brown, Tom: Poster Wed #1 Brown, Noam: Oral Tue in Theory, Poster Tue #226, Demo Tue

Bruna, Joan: Tutorials Hall A Brunskill, Emma: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #11, Poster Wed #14

Brunskill, Emma: Tutorials Hall C, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #198

Buesing, Lars: Oral Wed in Reinf. Learning, Poster Wed #144, Poster Wed #139, Spotlight Thu in Neuroscience

Buhmann, Joachim: Poster Mon #162, Poster Mon #2, Poster Tue #8

Bui, Thang: Poster Tue #191 **Bujan, Alejandro**: Poster Mon

Bunel, Rudy: Poster Mon #128 Byrd, Jonathon: Poster Mon

Bzdok, Danilo: Poster Tue #151 Cai, Han: Demo Wed Caiafa, Cesar: Poster Wed #151, Spotlight Thu in Neuroscience Cakmak, Maya: Workshop Sat in

Calafiura, Paolo: Demo Tue Calandra, Roberto: Workshop Sat in Seaside Blrm Calandriello, Daniele: Poster

Wed #50
Calmon, Flavio: Poster Wed #76
Canini, Kevin: Poster Mon #135
Cappabianco, Fábio: Poster Tue
#147

Carbonell, Jaime: Poster Mon #3 Carin, Lawrence: Poster Mon #109, Poster Mon #153, Poster Mon #195, Poster Mon #34, Poster Mon #84, Poster Tue #121, Poster Wed #142, Poster Wed #116, Poster Wed #114, Spotlight Thu in Neuroscience Carlson, David: Poster Mon #148, Poster Mon #153, Poster

Wed #142, Spotlight Thu in Neuroscience **Carneiro, Gustavo**: Poster Mon

#36 Caron, Francois: Poster Mon

Carratino, Luigi: Poster Mon #59 Caruana, Rich: Symposium Thu in Hall C Castonguay, Philippe: Poster Wed #149, Oral Thu in

Neuroscience

Cavigelli, Lukas: Poster Mon

Cecchi, Fabio: Poster Wed #34 CECCHI, Antoine: Demo Wed Cesa-Bianchi, Nicolò: Poster Wed #52, Poster Wed #26, Workshop Sat in S-3 Cevher, Volkan: Poster Mon #224, Poster Mon #171, Poster Tue #20, Poster Wed #155 Ceze, Luis: Spotlight Tue in Theory, Poster Tue #74 Chamon, Luiz: Poster Wod #161 Chan, Antoni: Poster Mon #93 Chandar, Sarath: Demo Tue Chandraker, Manmohan: Poster Mon #122

Chang, Shiyu: Poster Mon #104 Chang, Wei-Cheng: Poster Wed #107 Chang, Edward: Poster Mon #37

Chang, Haw-Shiuan: Poster Mon #123

Chatterjee, Shaunak: Poster Mon #168

Chatterji, Niladri: Poster Tue #45 Chaudhuri, Kamalika: Tutorials Grand Blrm, Spotlight Wed in Deep Learning, Poster Wed #68, Poster Wed #98

Chayes, Jennifer: Poster Wed

Chazal, Frederic: Workshop Fri in

Chebotar, Yevgen: Poster Wed

Chen, Jianshu: Poster Mon #19, Poster Mon #192 Chen, Shixiang: Poster Tue #170

Chen, Shixiang: Poster I lue #1/0 Chen, Wen Hao: Poster Mon #14 Chen, Chao: Poster Mon #47 Chen, Lin: Poster Wed #154 Chen, George: Workshop Fri in Hyatt Shoreline

Chen, Guobin: Poster Mon #122 Chen, Yiran: Oral Wed in Deep Learning, Poster Wed #127 Chen, Robert: Oral Tue in Opt., Poster Tue #158

Chen, Changyou: Poster Wed #114

Chen, Jianfei: Poster Mon #141 Chen, Jie: Poster Mon #163 Chen, Hong: Poster Mon #154, Poster Tue #9

Chen, Danqi: Workshop Fri in 103-C

Chen, Wei: Poster Mon #31 Chen, Sheng: Poster Tue #210 Chen, Jianbo: Poster Mon #157, Poster Mon #45 Chen, Wei: Poster Mon #158,

Poster Wed #63 Chen, Yunpeng: Poster Tue #136, Spotlight Wed in Reinf. Learning, Poster Wed #130

Poster Wed #130 **Chen, Liqun**: Poster Mon #109, Poster Wed #116, Poster Wed

Chen, Shangyu: Poster Mon

Cheng, Feng: Poster Tue #171 Cheng, James: Poster Mon #166 Cheng, Hong: Poster Mon #166 Cheng, Ching-An: Poster Tue

#193 Cheng, Yu: Poster Wed #107 Chertkov, Michael: Poster Mon #185

Chevallier, Juliette: Poster Mon #197 Chi, Eric: Spotlight Tue in Algorithms, Opt., Poster Tue #38 Chiang, Chao-Kai: Poster Mon

#74
Chichilnisky, E.J.: Poster Mon
#148, Poster Wed #147, Spotlight
Thu in Neuroscience

Chierichetti, Flavio: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed

#/3 Chklovskii, Dmitri: Poster Tue #146

Chmiela, Stefan: Poster Mon #79, Workshop Fri in 102-C Cho, Minhyung: Poster Tue #130 Cho, Kyunghyun: Poster Mon #129, Workshop Sat in 102-C Choi, Arthur: Poster Wed #190 Choi, Iksoo: Poster Mon #99 Choi, Hyun-Soo: Poster Tue #175 Choi, Wongun: Poster Tue #177 Choromanski, Krzysztof: Poster Tue #54, Poster Wed #162 Choudhury, Sanjiban: Poster

Christiano, Paul: Poster Wed #1
Chu, Stephen: Poster Mon #47
Churchland, Anne: Poster Tue

Ciliberto, Carlo: Poster Mon #5

Cisse, Moustapha: Poster Mon #83, Poster Tue #137 Claici, Sebastian: Poster Tue Clemens, Katerina: Poster Tue

Clémençon, Stéphan: Poster Tue

Co-Reyes, John: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #3 Cohen, Johanne: Poster Wed

Cohen, Joseph Paul: Poster Tue

Cohen, William: Poster Mon #126, Poster Wed #111 Cohen, Jonathan: Oral Tue in Theory, Poster Tue #216

Cohen-Addad, Vincent: Poster

Coley, Connor: Poster Tue #135 Colombo, Nicolò: Poster Mon

Combes, Richard: Poster Mon #23, Spotlight Tue in Algorithms, Poster Tue #4

Conor Heins, Intramural: Poster

Constable, William: Poster Mon

Corley, Courtney: Demo Wed Costa, Rui: Poster Tue #118 Coull, Brent: Poster Mon #62 Courty, Nicolas: Poster Mon #6 Courville, Aaron: Spotlight Tue in Deep Learning, Apps., Poster Tue #141, Poster Tue #79, Poster Wed #106, Workshop Fri in 101-A **Cowley, Benjamin**: Poster Tue

Crammer, Koby: Poster Wed #23 Cranko, Zac: Spotlight Wed in Deep Learning, Poster Wed #100 Crankshaw, Daniel: Workshop Fri in Room-204

Cranmer, Kyle: Poster Wed #105, Workshop Fri in 202 Crawford, Kate: Invited Talk Tue

in Hall A Crosby, Matthew: Symposium Thu in Beverly Theater **Cui, Shaobo**: Spotlight Wed in

Theory, Prob. Methods, Poster Wed #171

Cui, Xiaodong: Poster Mon #104 Cusumano-Towner, Marco: Poster Tue #185

Cutkosky, Ashok: Poster Wed

Cuturi, Marco: Tutorials Grand Blrm, Workshop Sat in 102 A+B Czarnecki, Wojciech: Poster Mon #139, Poster Wed #138 Côté, Marc-Alexandre: Poster

d'Alché-Buc, Florence: Workshop Fri in Seaside Blrm D'Amour, Alexander: Poster Tue

d'Aspremont, Alexandre: Poster Mon #174, Poster Tue #174, Poster Wed #173

Dabkowski, Piotr: Poster Mon

Dabney, Will: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #9

Dahlgaard, Søren: Poster Mon

Dai, Hanjun: Spotlight Wed in Reinf. Learning, Poster Wed #141

Dai, Bo: Spotlight Tue in Deep
Learning, Apps., Poster Tue #129

Dai, Zihang: Poster Wed #111

Dai, Bo: Poster Tue #93

Dai, Zhangang, Poster Tue #104 Dai, Zhenwen: Poster Tue #194 Dai, Zihang: Poster Wed #121 Dalca, Adrian: Workshop Fri in

Dalvi Mishra, Bhavana: Workshop Fri in 103-C Danezis, George: Poster Wed

Daniely, Amit: Poster Mon #209 **Dann, Christoph**: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #198 **Dao, Tri**: Spotlight Tue in Algorithms, Poster Tue #56 Darrell, Trevor: Poster Mon #97 Darwiche, Adnan: Poster Wed

Das, Sukhendu: Poster Tue #89 Das, Abhishek: Workshop Fri in

Dasarathy, Gautam: Workshop Fri in 103 A+B **Dasari, Sudeep**: Demo Tue

Daskalakis, Constantinos: Poster Mon #178

Daulton, Samuel: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #36 Davidow, Matthew: Poster Mon

Davidson, James: Poster Mon

De, Soham: Poster Tue #99 de Brébisson, Alexandre: Demo

de Freitas, Nando: Poster Tue

de Freitas, Nando: Tutorials Hall A, Poster Mon #143 **De Mello, Shalini**: Poster Tue

De Raedt, Luc: Tutorials Hall C De Sa, Christopher: Spotlight Tue in Algorithms, Poster Tue #56 **de Vries, Harm**: Spotlight Tue in Deep Learning, Apps., Poster Tue #79, Workshop Fri in 101-A

De-Arteaga, Maria: Workshop

Dechter, Rina: Poster Mon #181 Deisenroth, Marc: Poster Tue #190, Spotlight Wed in Prob. Methods, Apps., Poster Wed #195 Dekel, Ofer: Poster Wed #56 Dembczynski, Krzysztof: Workshop Fri in Hyatt Beacon Rlrm D+F+F+H

Demers, Steven: Demo Tue Deng, Li: Poster Mon #192 Deng, Jia: Poster Mon #91, Poster Tue #87, Spotlight Wed in Prob. Methods, Apps., Poster Wed #92 Deng, Li: Poster Mon #19 Deng, Zhijjie: Poster Wed #117 DENOYER, Ludovic: Poster Mon

Denton, Emily: Spotlight Wed in Prob. Methods, Apps., Poster Wed #153, Workshop Sat in Hyatt

Seaview Blrm Derakhshan, Mahsa: Poster Tue

Derezinski, Michal: Spotlight Tue in Algorithms, Opt., Poster

Deshmukh, Aniket Anand: Poster Wed # Deshpande, Yash: Poster Mon

Desmaison, Alban: Poster Mon

DeTurck, Filip: Poster Wed #4 Devlin, Jacob: Poster Mon #128 Devraj, Adithya M: Poster Wed

dey, Biswadip: Oral Tue in Theory, Poster Tue #216 **Dhar, Debarun**: Poster Mon #93 Dhillon, Inderjit: Poster Wed #89 Diakonikolas, Ilias: Oral Tue in Algorithms, Poster Tue #61 **Diamond, Mathew**: Poster Wed #148, Oral Thu in Neuroscience Diego, Ferran: Poster Mon #30,

Poster Tue #71 Dieleman, Sander: Workshop Fri

Dieng, Adji Bousso: Poster Mon

Diggavi, Suhas: Spotlight Wed in Opt., Poster Wed #169 Dikkala, Nishanth: Poster Mon

Dilkina, Bistra: Spotlight Wed in Reinf. Learning, Poster Wed #141 Dimakis, Alexandros: Poster Mon #190. Oral Tue in Algorithms. Opt., Poster Tue #155, Workshop Sat in 203

Dimitrakakis, Christos: Poster

Ding, Bolin: Poster Wed #69 Ding, David: Poster Mon #135 Ding, Nan: Poster Tue #109 Ding, Yi: Spotlight Wed in Prob. Methods, Apps., Poster Wed #197 Djolonga, Josip: Spotlight Tue in Algorithms, Opt., Poster Tue #157 Do, Minh: Oral Tue in Deep Learning, Apps., Poster Tue #82 Dobbe, Roel: Poster Wed #222 Dogan, Urun: Poster Wed #25 Dong, Kun: Poster Tue #196 Dong, Wen: Poster Wed #85 **Dong, Xin**: Poster Mon #136 Donti, Priya: Poster Mon #205

Doretto, Gianfranco: Poster Tue

Dorin, Thomas: Spotlight Wed in Opt., Poster Wed #157 **Doshi-Velez, Finale**: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #36 Doucet, Arnaud: Poster Mon #196. Poster Tue #114 Downey, Carlton: Poster Mon

Dragan, Anca: Workshop Sat in

Dragan, Anca: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #200, Workshop Sat in Hyatt Shoreline **Drouin, Alexandre**: Poster Mon

Du, Simon: Poster Mon #221, Spotlight Tue in Opt., Poster Tue #160, Poster Wed #38 Du, Yulun: Poster Wed #121 Du. Alan: Demo Tue du Plessis, Marthinus: Oral Tue in Algorithms, Poster Tue #15 **Duan, Yan**: Poster Mon #112, Symposium Thu in Hall A **Duan, Yan**: Poster Wed #4 Dubrawski, Artur: Poster Mon

Duchi, John: Poster Mon #15, Oral Wed in Theory, Prob. Methods, Poster Wed #212 **Dudik, Miro**: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #84, Poster Wed #224 **Dumoulin, Vincent**: Poster Wed

Dunnmon, Jared: Poster Wed

Dupré la Tour, Tom: Poster Tue

Durstewitz, Daniel: Poster Tue

Dutil, Francis: Poster Mon #103 Dutta, Abhratanu: Poster Tue

Duvenaud, David: Poster Wed #180, Workshop Sat in Hyatt **Dver, Chris**: Poster Tue #126

Dyer, Eva: Workshop Sat in 201-A Dzirasa, Kafui: Poster Mon #153 Dünner, Celestine: Poster Mon

Ebert, Frederik: Demo Tue Eck, Douglas: Demo Wed, Workshop Fri in 102 A+B Ecker, Alexander: Poster Mon #149

Efros, Alexei: Poster Mon #97 Ehrenberg, Henry: Poster Wed

Eickenberg, Michael: Poster Tue

Einevoll, Gaute: Poster Mon

Eisner, Jason: Poster Mon #69 El Housni, Omar: Spotlight Wed in Opt., Poster Wed #160 El Mhamdi, El Mahdi: Poster Tue #22, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #204

El-Yaniv, Ran: Poster Mon #134,

Eldar, Yonina: Poster Tue #161 Eleftheriadis, Stefanos: Poster Tue #190

Elenberg, Ethan: Oral Tue in Algorithms, Opt., Poster Tue #155 Elhamifar, Ehsan: Poster Mon

Elibol, Oguz: Poster Mon #75 Elliott, Luba: Workshop Fri in 102

Elsen, Erich: Workshop Sat in

Emamjomeh-Zadeh, Ehsan: Poster Wed #64

Poster Wed #64
Ene, Alina: Spotlight Tue in
Algorithms, Opt., Poster Tue #156
Engel, Jesse: Demo Wed
Erdogdu, Murat: Poster Mon
#179, Poster Tue #153 Eriksson, David: Poster Tue #196 Ermon, Stefano: Poster Mon #199, Poster Mon #108, Poster

Tue #189 Escalera, Sergio: Workshop Fri in S-7, Workshop Sat in 204 Eskreis-Winkler, Jonathan: Spotlight Wed in Prob. Methods, Apps., Poster Wed #197 Eslami, S. M. Ali: Workshop Fri in

Etesami, Jalal: Poster Wed #49 Euler, Thomas: Poster Mon #149 Exarchakis, Georgios: Poster Tue Falahatgar, Moein: Poster Tue

Falahatgar, Moein: Poster Mon

Falcon, William: Poster Wed #147, Spotlight Thu in Neuroscience

Fan, Yanbo: Poster Tue #213 Fan, Lixin: Poster Mon #227 Fan, Kai: Poster Tue #100 Fang, Cong: Poster Tue #171 Fang, Chen: Poster Mon #81 Fang, Le: Poster Wed #85 Fanti, Giulia: Poster Wed #66 Farahmand, Amir-massoud: Poster Wed #81

Farajtabar, Mehrdad: Poster Mon #106

Farhan, Muhammad: Poster Mon #61

Faria, Fabio: Poster Tue #147 Fatemi, Mehdi: Poster Mon #200 Fathony, Rizal: Poster Mon #28 **Favaro, Paolo**: Spotlight Tue in Deep Learning, Apps., Poster Tue

Fei-Fei, Li: Poster Mon #8 Feizi, Soheil: Poster Tue #33 Feldman, Moran: Oral Tue in Algorithms, Opt., Poster Tue #155
Fellin, Tommaso: Poster Wed
#148, Oral Thu in Neuroscience
Feng, Jiashi: Poster Mon #131, Poster Tue #80, Poster Tue #136, Spotlight Wed in Reinf. Learning, Poster Wed #130

Feragen, Aasa: Poster Mon #219
Fercoq, Olivier: Poster Mon #171
Fernando, Chrisantha:
Symposium Thu in Grand Blrm Fidler, Sanja: Poster Mon #87 Fiebrink, Rebecca: Workshop Fri

in 102 A+B Fiete, Ila: Poster Mon #147 Finn, Chelsea: Demo Tue Fiterau, Madalina: Workshop Fri flajolet, arthur: Poster Wed #62,

Flamary, Rémi: Poster Mon #6 Fletcher, Tom: Poster Wed #110 Fletcher, Alyson: Poster Mon

Fleuret, François: Spotlight Tue in Algorithms, Poster Tue #29 Florensa Campo, Carlos: Workshop Sat in Grand Blrm B Foerster, Jakob: Workshop Sat in

Fong, Rachel: Poster Tue #199 Foote, Davis: Poster Wed #4 Foster, Dylan: Spotlight Tue in Algorithms, Poster Tue #63, Spotlight Wed in Theory, Prob. Methods, Poster Wed #206 Foti, Nick: Poster Tue #181 Fout, Alex: Poster Mon #130 Fox, Roy: Workshop Sat in Grand

Fraccaro, Marco: Spotlight Wed in Theory, Prob. Methods, Poster Wed #176

Fragkiadaki, Katerina: Poster Wed #40, Spotlight Thu in Deep Learning, Algorithms Frazier, Peter: Oral Tue in Opt., Poster Tue #192, Spotlight Wed in Prob. Methods, Apps., Poster Wed

Freeman, Bill: Poster Tue #88, Poster Wed #145, Poster Wed #146, Spotlight Thu in Neuroscience

Frellsen, Jes: Poster Wed #131, Spotlight Thu in Deep Learning, Algorithms

Frey, Brendan: Invited Talk Tue in Hall A, Poster Wed #118, Poster Fridovich-Keil, David: Poster

Wed #222 Friedrich, Johannes: Poster Tue

Fries, Jason: Workshop Fri in 104-

Frosst, Nicholas: Spotlight Tue in Deep Learning, Apps., Poster Tue Fruit, Ronan: Spotlight Wed in

Reinf. Learning, Algorithms, Apps., Poster Wed #14 Fu, Justin: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #3 Fu, Yun: Poster Mon #78

Fua, Pascal: Poster Mon #1 Fujimaki, Ryohei: Poster Mon

Fujiwara, Yasuhiro: Poster Tue

Fukumizu, Kenji: Poster Mon #22, Oral Tue in Algorithms, Poster Tue #57

Fukunaga, Takuro: Poster Tue Fusi, Nicolo: Workshop Sat in

Futami, Futoshi: Poster Mon

Fürnkranz, Johannes: Poster Wed #42, Spotlight Thu in Deep

Gabillon, Victor: Poster Wed #59
Gagrani, Mukul: Poster Wed #16
Gal, Yarin: Poster Mon #117, Spotlight Tue in Deep Learning, Apps., Poster Tue #95, Poster Wed #177, Workshop Sat in Hall C Gallagher, Neil: Poster Mon #153 Gan, Zhe: Poster Mon #84, Poster

Mon #109, Poster Tue #121. Poster Wed #116 **Ganguli, Surya**: Poster Mon #142, Poster Wed #126 Ganin, Yaroslav: Poster Tue #141 Gao, Weihao: Poster Mon #223,

Spotlight Tue in Theory, Poster Tue #220 Gao, Shaobing: Poster Tue #107 Gao, Zhihan: Spotlight Tue in Deep Learning, Apps., Poster Tue

#11Ò Garber, Dan: Poster Wed #57 Garcia Duran, Alberto: Poster

Mon #18 Garg, Siddharth: Poster Mon #67 Garg, Vikas: Poster Wed #43 Garimella, Kiran: Poster Wed #87
Gauci, Melvin: Spotlight Wed in
Deep Learning, Poster Wed #102
Gavish, Matan: Poster Tue #42 Gaïffas, Stéphane: Poster Tue

#12 Ge, Jason: Poster Mon #54 **Ge, Rong**: Oral Tue in Opt., Poster Tue #159

Geifman, Yonatan: Poster Mon

Geiger, Andreas: Spotlight Wed in Deep Learning, Poster Wed #101

Geist, Matthieu: Poster Mon #113, Poster Wed #15 Gelly, Sylvain: Poster Mon #222 Geng, Sinong: Poster Mon #176 Gentile, Claudio: Poster Wed #26 Geramifard, Alborz: Workshop Fri in Hyatt Regency Blrm A+B+C Germain, Pascal: Workshop Sat

in 101-B Germain, Mathieu: Demo Tue Getoor, Lise: Invited Talk Wed in

Geumlek, Joseph: Poster Wed

Ghahramani, Zoubin: Poster Mon #203, Symposium Thu in Beverly Theater, Workshop Sat in Hall C

Ghassami, AmirEmad: Poster Wed #186

Ghassemi, Marzyeh: Workshop Fri in 104-B Ghavamzadeh, Mohammad:

Poster Wed #22 **Ghodsi, Zahra**: Poster Mon #67 Ghoshal, Asish: Poster Mon #216 Giannakis, Georgios: Poster

Gibiansky, Andrew: Spotlight Tue in Deep Learning, Apps., Poster Tue #78

Giesen, Joachim: Demo Wed Giessing, Alexander: Poster Mon

Gilmer, Justin: Poster Mon #11 Gionis, Aristides: Poster Wed

Giovannelli, Jean-François: Poster Mon #196 Giovannucci, Andrea: Poster Tue

Girdhar, Rohit: Poster Mon #102 Girolami, Mark: Poster Mon #193 Giurgica-Tiron, Tudor: Demo

Givoni, Inmar: Poster Wed #175 Glass, James: Poster Mon #85, Workshop Fri in Hyatt Regency Blrm A+B+C

Glass, James: Poster Tue #115 Globerson, Amir: Poster Tue

Glocker, Ben: Workshop Sat in

Glynn, Peter: Poster Mon #165, Poster Wed #211 **Goel, Surbhi**: Poster Tue #212

Goetz, Georges: Poster Mon #148

Goetz, Jack: Poster Tue #11 Goldberg, Yoau: Poster Tue #126 Goldstein, Tom: Poster Tue #99 Gomez, Aidan: Poster Mon #120, Spotlight Wed in Reinf. Learning, Poster Wed #124

Goncalves, Pedro: Poster Mon #146

Gonczarowski, Yannai A.: Spotlight Wed in Theory, Prob. Methods, Poster Wed #209 Gong, Qucheng: Oral Wed in Reinf. Learning, Poster Wed #96 Gong, Chengyue: Poster Tue #186

Gonzalez, Javier: Workshop Sat in S-1

Gonzalez, Joseph: Workshop Fri in Room-204

Goodfellow, lan: Workshop Fri in 203

Goodman, Bryce: Workshop Fri in 203

Goodman, Noah: Poster Mon #184 Gool, Luc: Poster Mon #133

Gool, Luc: Poster Mon #133 Goossens, Bart: Poster Mon #138 Gorbach, Nico: Poster Mon #2, Poster Tue #8

Gordon, Geoffrey: Poster Mon #48, Poster Wed #123 Gori, Marco: Poster Mon #145 Gorman, Katherine: Workshop Sat in S.4

Goyal, Vineet: Spotlight Wed in Opt., Poster Wed #160
Graepel, Thore: Poster Wed #86, Poster Wed #84

Poster Wed #203 **Gramfort, Alexandre**: Poster Tue #154

Grauman, Kristen: Poster Tue #85

Grave, Edouard: Poster Mon #83 Gray Roncal, William: Workshop Sat in 201-A

Greenewald, Kristjan: Poster Mon #35, Poster Wed #21 Greff, Klaus: Poster Mon #12 Gretton, Arthur: Oral Tue in Algorithms, Poster Tue #57 Griffiths, Tom: Oral Tue in Theory, Poster Tue #216

Grigorescu, Elena: Oral Tue in Algorithms, Poster Tue #61 Grobelnik, Marko: Workshop Sat

Gross, Roderich: Spotlight Wed in Deep Learning, Poster Wed

Grosse, Roger: Poster Mon #120, Spotlight Wed in Reinf. Learning, Poster Wed #140

Grosu, Radu: Workshop Fri in S-3 Grover, Pulkit: Poster Mon #225 Grubic, Demjan: Spotlight Tue in Algorithms, Poster Tue #21 Gruslys, Audrunas: Poster Wed

Gu, Jinwei: Poster Tue #127 Gu, Tianyu: Poster Mon #67 Gu, Quanquan: Poster Tue #179 Gu, Ning: Poster Mon #47 Gu, Yue: Spotlight Wed in Deep Learning, Poster Wed #102 Gu, Shixiang: Poster Mon #203 Guan, Tong: Poster Wed #85 Guedj, Benjamin: Workshop Sat in 101-B

#22, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #204

Guez, Arthur: Oral Wed in Reinf. Learning, Poster Wed #139 Guha, Aritra: Poster Wed #189 Guha Thakurta, Abhradeep: Poster Wed #65

Guibas, Leonidas: Poster Mon #13

Gulcehre, Caglar: Poster Mon

Gulrajani, Ishaan: Poster Wed #106

Gummadi, Krishna: Poster Wed #78

Gunasekar, Suriya: Spotlight Tue in Opt., Poster Tue #162 Guo, Yilu: Poster Tue #97 Guo, Xiaoxiao: Poster Mon #104 Guo, Ruiqi: Poster Tue #83 Guo, Han: Demo Wed Guo, Zhaohan: Poster Wed #11 Gupta, Maya: Poster Mon #135 Gupta, Sunil: Spotlight Wed in Opt., Poster Wed #157

Gurbuzbalaban, Mert: Spotlight Tue in Opt., Poster Tue #166 Gureckis, Todd: Poster Mon #144 Gutmann, Michael: Poster Wed #109

Guyon, Isabelle: Workshop Sat in 204

Gärtner, Thomas: Poster Mon

Güçlü, Umut: Poster Mon #152 Güçlütürk, Yağmur: Poster Mon #152

Ha, David: Workshop Fri in 102 A+B

Ha, Jung-Woo: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #37 Habeck, Michael: Poster Tue

Habrard, Amaury: Poster Mon #6

Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #200, Workshop Sat in Hyatt Shoreline

Hadsell, Raia: Poster Wed #138, Workshop Fri in 104-C Hafner, Danijar: Poster Mon #105, Workshop Sat in 101-A Hagen, Espen: Poster Mon #148 Haghtalab, Nika: Poster Wed #208, Poster Wed #56, Workshop Fri in 101-B

Hajiaghayi, MohammadTaghi:

Poster Tue #27 Hall, Stewart: Poster Mon #75 Halloran, John: Spotlight Wed in Prob. Methods, Apps., Poster Wed #93

Hamilton, Linus: Poster Wed #41 Hamilton, Will: Poster Mon #71 Hamprecht, Fred: Poster Mon #30, Poster Tue #71

Han, Tony: Poster Mon #122 Han, Shaobo: Poster Tue #121 Han, Wei: Poster Mon #104 Han, Song: Demo Wed Han, Bohyung: Poster Mon #89, Poster Tue #143

Hancock, Braden: Demo Wed Hannah, Robert: Poster Wed #163

Hansen, Michael Sass: Demo

Hansen, Jonas: Poster Mon #100 Hansen, Lars: Workshop Sat in Hyatt Beacon Blrm D+E+F+H Hao, Tele: Poster Tue #111 Hao, Yi: Poster Mon #40 Harandi, Mehrtash: Poster Tue

Harb, Jean: Poster Wed #205 Hardt, Moritz: Poster Wed #75 Hardt, Moritz: Tutorials Grand

#Indiana Hartmann, Mitra: Poster Wed #143, Oral Thu in Neuroscience Harvey, Christopher: Poster Wed #148, Oral Thu in Neuroscience Hasani, Ramin: Workshop Fri in

Hasegawa-Johnson, Mark: Poster Mon #104

Hashimoto, Tatsunori: Poster Mon #15

Hassani, Hamed: Poster Mon #156, Poster Mon #155 Hassibi, Babak: Spotlight Wed in Theory, Prob. Methods, Poster Wed #218 Hatano, Daisuke: Poster Tue #35

Hatano, Daisuke: Poster Tue #35 Haupt, Jarvis: Poster Mon #54, Poster Tue #207

Hauser, Michael: Poster Mon #52 Hausknecht, Matthew: Poster Mon #128

Hausman, Karol: Poster Wed #2 Hausser, Michael: Poster Wed #149, Oral Thu in Neuroscience Havrylov, Serhii: Poster Wed #95 Hawthorne, Curtis: Demo Wed Hayashi, Kohei: Poster Tue #70, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed

Hayes, Jamie: Poster Wed #70 Hazan, Elad: Spotlight Tue in Opt., Spotlight Tue in Algorithms, Poster Tue #167, Poster Tue #7 Hazan, Tamir: Poster Mon #88 He, Zhen: Poster Tue #107 He, Hao: Poster Wed #48, Oral Thu in Deep Learning, Algorithms He, Xiaodong: Poster Wed #122 He, Ran: Poster Mon #98 He, Ji: Poster Mon #192 He, Di: Poster Tue #76 He, Niao: Poster Wed #49 He, Bryan: Poster Mon #33 Hebert, Martial: Poster Tue #112, Poster Tue #81 Heck, Larry: Workshop Fri in Hyatt Regency BIrm A+B+C Heess, Nicolas: Poster Mon #143, Poster Mon #105, Poster Tue #114, Oral Wed in Reinf. Learning, Poster Wed #138, Poster Wed

Hefny, Ahmed: Poster Mon #48 Hegde, Chinmay: Poster Mon #55, Poster Tue #133 Hegde, Nidhi: Poster Wed #34 Height, Murray: Spotlight Wed in Opt., Poster Wed #157 Heikkilä, Mikko: Poster Mon

Hein, Matthias: Poster Mon #29 Heinonen, Markus: Poster Tue #195

Heliou, Amélie: Poster Wed #221 Heller, Katherine: Poster Tue #100

Henao, Ricardo: Poster Mon #84, Poster Mon #109, Poster Tue #121, Poster Wed #114 Hendrikx, Hadrien: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #204

Hensman, James: Poster Tue #190 Hensman, James: Oral Wed in

Hensman, James: Oral Wed in Prob. Methods, Apps., Poster Wed #196

Herlands, William: Symposium Thu in Hall C, Workshop Fri in S-1 Hernández-Lobato, José Miguel: Workshop Sat in Hall C Hernández-Lobato, José Miguel: Workshop Fri in 102-C, Workshop Sat in S-1 Hernández-Orallo, José: Symposium Thu in Beverly Theater

Ineater
Heusel, Martin: Poster Wed #108
Hilliard, Nathan: Demo Wed
Hinne, Max: Poster Tue #150
Hinton, Geoffrey: Spotlight Tue
in Deep Learning, Apps., Poster
Tue #94

Hue #94 Hirn, Matthew: Poster Tue #73 Hjelm, Devon: Poster Tue #141 Ho Chung, Law: Poster Mon #64 Hochberg, Leigh: Poster Tue

#134, Poster Wed #108, Spotlight Thu in Deep Learning, Algorithms Hocking, Toby: Poster Mon #44 Hodas, Nathan: Demo Wed Hofer, Christoph: Poster Mon

Hoffer, Elad: Oral Wed in Deep Learning, Poster Wed #136 Hoffman, Judy: Poster Mon #8 Hofmann, Thomas: Poster Mon

Holtmann-Rice, Daniel: Poster Tue #83

Honda, Junya: Poster Wed #31 Hong, Yi-Te: Poster Wed #17 Honkela, Antti: Poster Mon #189 Honorio, Jean: Poster Mon #216 Hornof, Luke: Poster Mon #75 Horvitz, Eric: Poster Mon #32 Hoshen, Yedid: Poster Mon #116 Hou, Bo-Jian: Poster Mon #26 Houthooft, Rein: Symposium Thu in Hall A

Thu in Hall A
Houthooft, Rein: Poster Wed #4
Hovy, Eduard: Poster Wed #121
Hoy, Darrell: Poster Tue #225
Hristov, Yordan: Demo Tue
Hron, Jiri: Poster Wed #177
Hsieh, Cho-Jui: Oral Wed in Opt.,
Poster Wed #88, Poster Wed #167,
Poster Wed #89

Hsu, Wei-Ning: Poster Tue #115
Hsu, Chin-Chi: Poster Mon #14
Hsu, David: Poster Tue #135
Hsu, David: Poster Tue #205
Hu, Weihua: Poster Tue #24
Hu, Addison: Poster Tue #48
Hu, Xiaolin: Poster Mon #121
Hu, Baogang: Poster Tue #213
Hu, Yuan-Ting: Poster Tue #84
Hu, Wei: Spotlight Tue in Opt.,
Poster Tue #167

Hu, Zhiqiang: Poster Mon #208 **Huang, Qixing**: Poster Wed #47, Spotlight Thu in Deep Learning, Algorithms

Huang, Xiangru: Poster Wed #47, Spotlight Thu in Deep Learning, Algorithms huang, win-bin: Poster Tue #186

Huang, White Hoo Huang, Zhiao: Poster Mon #91 Huang, Bert: Poster Wed #79 Huang, Wenbing: Poster Tue #96 Huang, Zhengjia: Poster Wed #146, Spotlight Thu in Neuroscience

Huang, Thomas: Poster Mon

#104 **Huang, Jia-Bin**: Poster Mon #90, Poster Tue #84

Huang, Junzhou: Poster Tue #96 Huang, Heng: Poster Mon #154, Poster Mon #42, Poster Tue #9 Hubara, Itay: Oral Wed in Deep Learning, Poster Wed #136 Huggins, Jonathan: Spotlight Wed in Prob. Methods, Apps., Poster Wed #191

Hughes, Michael: Workshop Fri

Hunt, Jonathan: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #9 Hussain, Zeshan: Poster Wed

#119 **Hutter, Frank**: Workshop Sat in Seaside Blrm

Hwang, Tim: Workshop Fri in 203 Hwu, Wen-Mei: Oral Tue in Deep Learning, Apps., Poster Tue #82 Hyttinen, Antti: Poster Wed #45 Häne, Christian: Poster Mon #94 Ide, Jaime: Poster Tue #147 Ihler, Alexander: Poster Mon #181, Workshop Sat in 203 Ilievski, Ilija: Poster Tue #80 Ilin, Alexander: Poster Tue #111 Imaizumi, Masaaki: Poster Tue

Immorlica, Nicole: Poster Mon #70

Inan, Hakan: Poster Tue #153 Indyk, Piotr: Poster Mon #167, Poster Tue #24

loffe, Sergey: Poster Wed #135, Spotlight Thu in Deep Learning, Algorithms

Irpan, Alexander: Poster Mon #105

Isbell, Charles: Poster Wed #8
Ishida, Takashi: Poster Tue #14
Ito, Shinji: Poster Tue #35
Iutzeler, Franck: Poster Mon #27
Iwamura, Sotetsu: Poster Tue

lyer, Ravishankar: Poster Tue

J. Reddi, Sashank: Workshop Fri in Grand Blrm A

in Grand BIrm A **Jaakkola, Tommi**: Poster Tue #135, Spotlight Wed in Prob. Methods, Apps., Poster Wed #43, Poster Wed #94

Jaderberg, Max: Poster Mon

Jagatap, Gauri: Poster Mon #55 Jaggi, Martin: Poster Mon #175, Poster Tue #165, Spotlight Wed in Opt., Poster Wed #172 Jaillet, Patrick: Poster Wed #62, Poster Wed #56

Poster Wed #56

Jain, Rahul: Poster Wed #16

Jain, Lalit: Poster Tue #44

Jain, Prateek: Poster Tue #46,

Poster Wed #213

Jalali, Amin: Poster Tue #32
Jamieson, Kevin: Spotlight Tue
in Algorithms, Poster Tue #2
Jang, Phillip: Poster Mon #198
Jang, Minje: Poster Wed #46
Janner, Michael: Poster Tue #90
Janzing, Dominik: Poster Wed

Jarosiewicz, Beata: Poster Tue #176

Jas, Mainak: Poster Tue #154 Javadi, Hamid: Poster Tue #33 Javdani, Shervin: Poster Wed #35

Jedynak, Bruno: Workshop Fri in 104-B

Jegelka, Stefanie: Poster Mon #160, Poster Tue #184, Workshop Fri in Hyatt Seaview Blrm Jevdjic, Djordje: Spotlight Tue in Theory, Poster Tue #74 Ji, Wei: Poster Tue #148 Ji, Pan: Poster Mon #17 Jia, Randy: Spotlight Tue in Algorithms, Poster Tue #1 Jia, Xu: Poster Mon #95 Jialin Zhang, Institute of Computing: Poster Mon #158 Jiang, Bo: Spotlight Tue in Deep Learning, Apps., Poster Tue #98 Jiang, Yong: Spotlight Wed in Theory, Prob. Methods, Poster Wed #171

Jiang, Nan: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #199 Jiang, Heinrich: Poster Wed #214 Jiang, Zhanhong: Poster Tue #133

Jiao, Licheng: Poster Mon #166 Jidling, Carl: Poster Tue #198 Jie, Zequn: Poster Tue #136 Jimenez Rezende, Danilo: Poster Tue #117, Oral Wed in Reinf. Learning, Poster Wed #139 Jin, Long: Poster Mon #24 Jin, Chi: Spotlight Tue in Opt., Poster Tue #160 Jin, Rong: Poster Tue #62

Jin, Rong: Poster Tue #62 Jin, Xiaojie: Poster Tue #136, Spotlight Wed in Reinf. Learning, Poster Wed #130

Jin, Meiguang: Spotlight Tue in Deep Learning, Apps., Poster Tue #86

Jin, Wengong: Poster Tue #135 Jitkrittum, Wittawat: Oral Tue in Algorithms, Poster Tue #57 Joachims, Thorsten: Workshop Fri in Hall C

Johnson, Ian: Demo Tue Jonathan Ho, OpenAI: Poster Mon #112

Joncas, Dominique: Poster Mon #46

Jones, Quinn: Poster Tue #128 Jones, Llion: Spotlight Wed in Reinf. Learning, Poster Wed #124 Jordan, Michael: Poster Mon #45, Poster Mon #157, Spotlight Tue in Opt., Poster Tue #160, Oral Wed in Theory, Prob. Methods, Spotlight Wed in Theory, Prob. Methods, Poster Wed #220, Poster Wed #182

Jose, Damien: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #84 Joshi, Bikash: Poster Mon #27

Joshi, Bikash: Poster Mon #27 Joulin, Armand: Poster Mon #83 Ju, Cheng: Poster Mon #157 Jun, Kwang-Sung: Poster Wed #29

Jun, Jaehyun: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #37 Jung, Young Hun: Poster Tue #11 Järvisalo, Matti: Poster Wed #45 Kagan, Michael: Poster Wed

Kahembwe, Emmanuel: Demo

Kaifosh, Patrick: Demo Tue Kaiser, Łukasz: Spotlight Wed in Reinf. Learning, Poster Wed #124 Kakade, Sham: Poster Mon #202, Poster Tue #40 Kakimura. Naonori: Poster Tue

#35 **Kale, David**: Workshop Fri in 104-

B **Kale, Satyen**: Spotlight Tue in Algorithms, Poster Tue #63 **Kallus, Nathan**: Workshop Fri in

Hall C **Kamath, Gautam**: Poster Mon #178

Kamp, Michael: Poster Mon #210 Kamronn, Simon: Spotlight Wed in Theory, Prob. Methods, Poster Wed #176

Wed #176 **Kanade, Varun**: Poster Mon #217, Poster Tue #214 **Kanai, Sekitoshi**: Poster Tue

#106 **Kandola, Jaz**: Workshop Fri in

104-B **Kang, Soong Moon**: Poster Mon #77

Kang, Di: Poster Mon #93
Kanitscheider, Ingmar: Poster
Mon #147

Kannan, Anitha: Poster Mon #86 Kannan, Sreeram: Poster Mon #223, Spotlight Tue in Theory, Poster Tue #220 Kannan, Ashwin: Poster Mon

#66 **Kar, Abhishek**: Poster Mon #94

Kar, Purushottam: Poster Tue Kar. Soummva: Poster Mon #225 **Karakus, Can**: Spotlight Wed in Opt., Poster Wed #169 Karami, Mahdi: Poster Wed #80 Karbasi, Amin: Poster Mon #156. Oral Tue in Algorithms, Opt., Poster Tue #155, Poster Wed

Karimi, Mohammad: Poster Mon

#154, Workshop Fri in Hyatt

Seaview Blrm

Karkus, Peter: Poster Tue #113 Karlekar Jayashree, Panasonic: Poster Mon #131

Kaski, Samuel: Poster Mon #189,

Poster Tue #195 **Kaufman, Matt**: Poster Tue #146

Kaufmann, Emilie: Spotlight Tue in Algorithms, Poster Tue #3 Kautz, Jan. Poster Tue #127 Spotlight Wed in Deep Learning, Poster Wed #120

kavukcuoglu, koray: Poster Tue

Kawahara, Yoshinobu: Poster

Kawarabayashi, Ken-Ichi: Poster

Kayser, Christoph: Poster Wed #148, Oral Thu in Neuroscience **Kazemitabar, Jalil**: Poster Mon

Kazerouni, Abbas: Poster Wed

Kazmar, Tomas: Workshop Fri in

Ke, Nan: Poster Mon #111, Demo Tue, Poster Wed #126 Ke, Guolin: Poster Mon #31 Keeley, Stephen: Poster Mon

Kempe, David: Poster Wed #64 Kendall, Alex: Spotlight Tue in Deep Learning, Apps., Poster Tue #95, Poster Wed #177

Kersting, Kristian: Tutorials Hall

Keshet, Joseph: Poster Tue #137 Khaleghi, Azadeh: Workshop Fri

in Grand Blrm B

Khalil, Elias: Spotlight Wed in
Reinf. Learning, Poster Wed #141
Khan, Imdad Ullah: Poster Mon

#61 **Khandwala, Nishith**: Poster Mon

Khardon, Roni: Poster Wed #183 Khetan, Ashish: Spotlight Tue in Algorithms, Poster Tue #41 Khosrowshahi, Amir: Poster Mon #75

Kiar, Gregory: Workshop Sat in

Kida, Takuya: Poster Tue #187 **Kiela, Douwe**: Spotlight Tue in Deep Learning, Apps., Poster Tue #104, Workshop Sat in 102-C **Kilbertus, Niki**: Poster Wed #75 **Killian, Taylor**: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #36

Kim, Taesup: Demo Tue Kim, Jin: Poster Tue #134 Kim, Hyunwoo: Poster Wed #42, Spotlight Thu in Deep Learning, Algorithms

Kim, Samuel: Demo Tue Kim, Jaehong: Poster Tue #119 Kim, Jin-Hwa: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #37 Kim, Jiwon: Poster Tue #119

Kim, Hyeji: Poster Mon #223 Kim, Sunghyun: Poster Wed #46 Kim, Kee-Eung: Poster Mon #51 Kindermans, Pieter-Jan: Poster Mon #79, Poster Mon #65

Kingma, Diederik P. (Durk): Workshop Sat in Hall C Kirkpatrick, James: Poster Wed

Kirschbaum, Elke: Poster Tue

Kiryo, Ryuichi: Oral Tue in Algorithms, Poster Tue #15 **Kitani, Kris**: Poster Tue #112 Kiveris, Raimondas: Poster Tue

Kiyavash, Negar: Poster Wed #186, Poster Wed #49 Klabjan, Diego: Poster Wed #27 **Klambauer, Günter**: Poster Wed #134, Spotlight Thu in Deep Learning, Algorithms

Klasnja, Predag: Poster Wed #21 Kleinberg, Jon: Poster Wed #74 Kleindessner, Matthäus: Poster

Klindt, David: Poster Mon #149 Klivans, Adam: Poster Tue #212 Kloft, Marius: Workshop Fri in Hvatt Beacon Blrm D+E+F+H Kloss, Carey: Poster Mon #75 Knudsen, Mathias: Poster Mon

Kocaoglu, Murat: Poster Wed

Koehler, Frederic: Poster Wed Koerding, Konrad: Workshop Sat

Koh, Pang Wei: Poster Tue #68 Kohane, Isaac: Workshop Fri in

Kohli, Pushmeet: Poster Mon

Kohli, Pushmeet: Poster Mon #128, Poster Wed #145, Spotlight Thu in Neuroscience

Kolar, Mladen: Poster Tue #180. Workshop Fri in 103 A+B **Kolev, Pavel**: Poster Wed #165 Kolter, J. Zico: Poster Mon #205, Oral Wed in Deep Learning, Poster Wed #99

Koltun, Vladlen: Poster Tue #122 Komiyama, Junpei: Poster Wed

Kondor, Risi: Spotlight Wed in Prob. Methods, Apps., Poster Wed #197

Kong, Weihao: Poster Tue #60 Konidaris, George: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #7, Poster Wed #36

Kontorovich, Aryeh: Poster Mon

Konukoglu, Ender: Workshop

Konyushkova, Ksenia: Poster

Koolen, Wouter: Spotlight Tue in Algorithms, Poster Tue #3, Poster Wed #58

Koren, Tomer: Poster Tue #66. Poster Wed #54
Kosiorek, Adam: Poster Tue #120

Kotlowski, Wojciech: Poster Wed

Kottur, Satwik: Poster Wed #132, Oral Thu in Deep Learning, Algorithms, Workshop Fri in 101-

Koushik, Jayanth: Poster Wed

Kraaijenzank, Sebastian Brandes: Demo Tue Krause, Andreas: Poster Mon

#155, Poster Mon #162, Spotlight Tue in Algorithms, Opt., Poster Tue #157, Poster Tue #203, Poster Wed #154, Workshop Fri in Hyatt

Seaview Blrm

Krichene, Walid: Spotlight Tue in
Opt., Poster Tue #175 Krishnamurthy, Akshay: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed

Krishnamurthy, Vikram: Poster Tue #202

Krishnawamy, Ravishankar: Poster Wed #213 Krueger, David: Workshop Sat in

Hyatt Shoreline Kuang, Zhaobin: Poster Mon

Kubilius, Jonas: Poster Wed #143, Oral Thu in Neuroscience Kuleshov, Volodymyr: Poster

Kulkarni, Sanjeev: Poster Mon

Kulkarni, Janardhan: Poster Wed

Kulkarni, Tejas: Poster Tue #90, Workshop Sat in Hyatt Seaview

Kumagai, Wataru: Spotlight Tue in Algorithms, Poster Tue #5 Kumar, Ravi: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #73 Kumar, Abhishek: Poster Wed

Kumar, Akshat: Poster Wed #202 Kumar, Sanjiv: Poster Tue #83 Kundaje, Anshul: Workshop Sat

Kusner, Matt: Poster Mon #191, Oral Wed in Prob. Methods, Apps. Poster Wed #187, Workshop Fri in

Kuzborskij, Ilja: Poster Wed #52 Kuznetsov, Vitaly: Poster Wed #210, Workshop Fri in Grand Blrm

Kveton, Branislav: Poster Wed

Kwitt, Roland: Poster Mon #38 Köster, Urs: Poster Mon #75 Lacoste-Julien, Simon: Oral Wed in Theory, Prob. Methods, Spotlight Wed in Opt., Poster Wed #159, Poster Wed #207

Ladicky, Lubor: Poster Mon #9 Lagerspetz, Eemil: Poster Mon Lahaie, Sebastien: Poster Wed

Lai, Wei-Sheng: Poster Mon #90 Lai, Yi-An: Poster Mon #14 Lake, Brenden: Poster Mon #144,

Workshop Sat in 104-B Lakshminarayanan, Balaji: Spotlight Wed in Reinf. Learning, Poster Wed #133

Lakshmiratan, Aparna: Workshop Fri in Room-204 Lam, Remi: Poster Mon #161 Lamb. Alex: Poster Tue #141 Lamblin, Pascal: Workshop Sat in

Lampert, Christoph: Workshop Sat in Hyatt Regency Blrm A+B+C **Lample, Guillaume**: Poster Mon

Lanchantin, Jack: Poster Mon

Lanctot, Marc: Poster Wed #203 Lange, Kenneth: Spotlight Tue in Algorithms, Opt., Poster Tue #38 Langford, John: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #84 **Laparra, Valero**: Oral Tue in Deep Learning, Apps., Poster Tue #125

Laroche, Romain: Poster Mon Larochelle, Hugo: Workshop Sat

in Seaside Blrm Larochelle, Hugo: Poster Mon #72, Spotlight Tue in Deep Learning, Apps., Poster Tue #79 Larson, Stephen: Workshop Fri

Lattanzi, Silvio: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #73 **Lattanzi, Silvio**: Poster Tue #27 Lattimore, Tor: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #33, Poster Wed #198

Lau, Hoong Chuin: Poster Wed #202

Laue, Soeren: Demo Wed Lausen, Leonard: Spotlight Tue in Deep Learning, Apps., Poster Tue #110

Laviolette, Francois: Poster Mon

Lawrence, Neil: Tutorials Hall A Lawrence, Neil: Poster Tue #194 Lawson, John: Poster Tue #114, Oral Wed in Theory, Prob. Methods, Poster Wed #178 **Lazaric, Alessandro**: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #14. Poster Wed #50 Lazaridou, Angeliki: Poster Wed #203, Workshop Sat in 102-C Lazarow, Justin: Poster Mon #24 Lazebnik, Svetlana: Poster Mon

Le, Trung: Spotlight Wed in Deep Learning, Poster Wed #113 Le, Quoc: Symposium Thu in Grand Blrm

Learned-Miller, Erik: Poster Mon Leblond, Rémi: Spotlight Wed in

Opt., Poster Wed #159

LeCun, Yann: Tutorials Hall A **Lee, Sang-Woo**: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #37 Lee, Jason: Spotlight Tue in Opt., Poster Tue #160
Lee, Jaehyung: Poster Tue #130

Lee, Jin Hyung: Poster Mon #148 Lee, Minjae: Poster Mon #99 Lee, Honglak: Poster Mon #206, Workshop Sat in Hyatt Seaview

Lee, Daniel: Poster Mon #51 Lee, Su-In: Oral Tue in Algorithms, Opt., Poster Tue #34 **Lee, Wonkyum**: Demo Tue **Lee, Jung Kwon**: Poster Tue #119 Lee, Stefan: Workshop Fri in 101-

Lee, Wee Sun: Poster Tue #113 Lee, Christina: Poster Wed #72, Workshop Fri in Hyatt Shoreline **Lee, Angela**: Poster Mon #193 Lee, Eun Jee: Poster Mon #182 Lee Campbell, Intramural: Poster Tue #71 Legg, Shane: Poster Wed #1 Lehrmann, Andreas: Poster Mon

#89, Poster Tue #140 **Lei, Tao**: Spotlight Wed in Prob. Methods, Apps., Poster Wed #94 **Lei, Lihua**: Poster Mon #157 Lei. Oi: Poster Wed #89 Leibo, Joel: Poster Wed #86 Leike, Jan: Poster Wed #1 Leme, Renato: Poster Wed #225 Leskovec, Jure: Poster Mon #71 Levine, Nir: Poster Mon #201,

Levine, Nir: Poster Mon #201, Poster Wed #23 Levine, Sergey: Poster Mon #203, Demo Tue, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #3, Workshop Sat in Seaside Blrm Levy, Kfir: Poster Mon #162, Poster Wed #51 Li, Yao: Poster Wed #88

Li, Lihong: Poster Mon #192, Workshop Fri in Hall C **Li, Bo**: Workshop Fri in S-4 Li. Yiiun: Poster Mon #81 Li, Pan: Spotlight Tue in Algorithms, Poster Tue #31 LI, Chongxuan: Poster Mon #141, Poster Wed #115 Li, Cheng: Poster Mon #217

Li, Ping: Poster Tue #47, Poster Li, Wei: Spotlight Wed in Deep Learning, Poster Wed #102 Li, Hao: Poster Tue #99

Li, Chris Junchi: Oral Tue in Algorithms, Poster Tue #49 **Li, Hai**: Oral Wed in Deep Learning, Poster Wed #127 Li, Qiuia: Poster Wed #146. Spotlight Thu in Neuroscience

Li, Yuanzhi: Spotlight Tue in Opt.,
Poster Tue #167, Poster Wed #166

Li, Jerry: Spotlight Tue in Algorithms, Oral Tue in Algorithms, Poster Tue #21, Poster Tue #61 Li, Dongsheng: Poster Mon #47 **Li, Xingguo**: Poster Mon #54, Spotlight Tue in Deep Learning, Apps., Poster Tue #207, Poster Tue

Li, Qiang: Poster Mon #158 Li, Yunzhu: Poster Mon #199 Li. Li Erran: Workshop Fri in Room-204, Workshop Sat in 201-

Li, Yitong: Poster Wed #142, Spotlight Thu in Neuroscience **Li, Qi**: Poster Mon #98 Li, Boyue: Poster Mon #48 Li, Yujia: Oral Wed in Reinf. Learning, Poster Wed #139 Li, Dangna: Poster Tue #58 Li, Yujia: Spotlight Wed in Deep Learning, Poster Wed #103 Li, Jianan: Spotlight Wed in Reinf. Learning, Poster Wed #130 Li, Jianshu: Poster Mon #131 Li, Chiang-shan: Poster Tue #147 Li, Chunyuan: Poster Mon #109, Poster Tue #121, Poster Wed #114 Li, Tianxi: Poster Mon #21 Li, Dianqi: Poster Wed #122 Li, Sheng: Poster Mon #78 Li, Chengtao: Poster Mon #160 Li, Hongdong: Poster Mon #17 Li, Chun-Liang: Poster Wed #107 Lian, Xiangru: Oral Wed in Opt., Poster Wed #167 Liang, Percy: Poster Mon #15, Poster Tue #40, Poster Tue #68, Demo Wed

Liang, Xiaodan: Poster Wed #117 Liang, Aladuain Foster Wed #17, Liang, Zhenxiao: Poster Wed #47, Spotlight Thu in Deep Learning, Algorithms Liang, Percy: Workshop Fri in S-4 Liao, xuejun: Poster Mon #195 Liao, Shun: Spotlight Wed in Reinf. Learning, Poster Wed #140

Ligett, Katrina: Poster Wed #67

Lillicrap, Tim: Poster Mon #203, Spotlight Wed in Reinf. Learning, Poster Wed #129 Lim, Joseph: Poster Wed #2 Lim, Cong Han: Poster Mon #56

Lin, Kevin: Poster Wed #122 Lin, Zhouhan: Demo Tue Lin, Zhouchen: Poster Tue #171 Lin. Dahua: Poster Tue #93 **Lin, Xiaofan**: Spotlight Tue in Deep Learning, Apps., Poster Tue

Lin, Qihang: Poster Tue #169, Poster Wed #170 Lin, Max: Poster Wed #225 Lin, Ji: Poster Tue #102 Lin, Jianxin: Poster Mon #127 Lin, Lizhen: Poster Mon #220 Lin, Kevin: Poster Wed #216 Lin, Shou-De: Poster Mon #14 ling, huan: Poster Mon #87 **Liu, Weiyang**: Spotlight Tue in Deep Learning, Apps., Poster Tue

Liu, Qingshan: Poster Tue #43 **Liu, Ji**: Oral Wed in Opt., Poster Wed #167

Liu, Qiang: Poster Tue #183 Liu, Jeremiah: Poster Mon #62 Liu, Han: Poster Mon #57, Poster

Liu, Tieyan: Poster Tue #76 Liu, Mingrui: Poster Tue #168, Poster Wed #170

Liu, Hao: Poster Wed #114 Liu, Chang: Workshop Fri in S-4 Liu, Yuanyuan: Poster Mon #166 Liu, Liping: Poster Mon #20 **Liu, Tie-Yan**: Poster Mon #127, Poster Mon #31

Liu, Song: Poster Mon #22 Liu, Yu: Poster Mon #19 Liu, Sifei: Poster Tue #127 Liu, Linxi: Poster Tue #58 Liu, Shuang: Spotlight Wed in Deep Learning, Poster Wed #98 Liu, Ming-Yu: Spotlight Wed in Deep Learning, Poster Wed #120 Liu, Zhenming: Poster Mon #217 Liu, Guangcan: Poster Tue #43 Liu, Wei: Poster Mon #47, Poster

Tue #170 Liu, Weiwei: Poster Tue #28 Livni, Roi: Poster Tue #66, Poster

Locatello, Francesco: Poster Tue

Loeb, Andrew: Poster Mon #198 Loftus, Joshua: Poster Mon #191. Oral Wed in Prob. Methods, Apps., Poster Wed #187

Loghmani, Mohammad Reza: Poster Mon #113 Lombaert, Hervé: Workshop Sat

London, Ben: Poster Mon #212 **Long, Mingsheng**: Poster Mon #115, Poster Mon #7

Lopez-Paz, David: Poster Mon

Lou, Qi: Poster Mon #181 Louizos, Christos: Poster Mon #137, Poster Wed #188, Workshop Sat in Hall C

Louppe, Gilles: Poster Wed #105 Lowe, Ryan: Poster Wed #205 Lowrey, Kendall: Poster Mon

Loza Mencía, Eneldo: Poster Wed #42, Spotlight Thu in Deep Learning, Algorithms **Lu, Erika**: Poster Wed #145, Spotlight Thu in Neuroscience Lu, Zhou: Poster Mon #208 Lu, Yue: Spotlight Wed in Theory, Prob. Methods, Poster Wed #217 Lu, Xin: Poster Mon #81 Lu, Jiwen: Poster Tue #102 Lu. Tun: Poster Mon #47 Lu, Chi-Jen: Poster Wed #17 Lu, Jiasen: Poster Mon #86 Lu, Xiuyuan: Poster Wed #20 Lu, Hanqing: Poster Tue #76 Lucchi, Aurelien: Poster Mon

Lucic, Mario: Poster Mon #155 Lucier, Brendan: Oral Tue in Opt., Poster Tue #158

Lueckmann, Jan-Matthis: Poster Mon #146

Lugosi, Gabor: Poster Wed #26 **Lundberg, Scott**: Oral Tue in Algorithms, Opt., Poster Tue #34 Luo. Zelun: Poster Mon #8 Luo, Bin: Spotlight Tue in Deep Learning, Apps., Poster Tue #98 Lyu, Siwei: Poster Tue #213

M. Alaa, Ahmed: Poster Mon #76, Spotlight Wed in Prob. Methods, Apps., Poster Wed #91 Ma, Liqian: Poster Mon #95 MA, SIYUAN: Spotlight Tue in Algorithms, Poster Tue #53

Ma, Jian: Poster Tue #179 Ma, Tengyu: Oral Tue in Opt., Poster Tue #159

Ma, Shiqian: Poster Tue #170 Ma, Weidong: Poster Mon #31 Macke, Jakob: Poster Mon #146, Poster Tue #144, Poster Wed #144, Spotlight Thu in

Neuroscience Maddah-Ali, Mohammad: Poster Tue #219 Maddison, Chris: Poster Tue

Maddison, Chris: Oral Wed in Theory, Prob. Methods, Poster Wed #178

Maehara, Takanori: Poster Tue

Magureanu, Stefan: Spotlight Tue in Algorithms, Poster Tue #4 Maharaj, Tegan: Poster Wed #97 Mahoney, Michael: Poster Mon

Mairal, Julien: Poster Mon #63 Poster Tue #151, Spotlight Wed in Opt., Poster Wed #174 Makarychev, Konstantin: Spotlight Tue in Theory, Poster

Tue #74 Makhzani, Alireza: Poster Wed #118

Malach, Eran: Poster Mon #124 Malek, Alan: Poster Wed #58 Malik, Jitendra: Poster Mon #94 **Malinowski, Mateusz**: Spotlight Wed in Reinf. Learning, Poster Wed #129, Workshop Fri in 101-A Mallasto, Anton: Poster Mon

Mallat, Stephane: Poster Tue #73 Mallmann-Trenn, Frederik: Poster Tue #214

Mandt, Stephan: Poster Wed #181, Workshop Fri in 104-A Mankoff, Bob: Poster Wed #28 Mankowitz, Daniel: Poster Mon

Mannor, Shie: Poster Mon #201,

Poster Wed #23 Mannor, Shie: Workshop Sat in Grand Blrm B

Mansimov, Elman: Spotlight Wed in Reinf. Learning, Poster Wed #140

Mansinghka, Vikash: Tutorials Hall C, Poster Tue #185 Mansour, Yishay: Poster Tue #66, Spotlight Wed in Theory, Prob. Methods, Poster Wed #209. Workshop Fri in 101-B

Mantiuk, Rafal: Poster Mon #125 Mao, Jian-Hua: Poster Mon #37 Mariet, Zelda: Poster Tue #6 Marinov, Teodor Vanislavov: Poster Tue #52 Maris, Eric: Poster Tue #150

Martic, Miljan: Poster Wed #1 Martinez-Cantin, Ruben: Workshop Sat in S-1

Mary, Jeremie: Spotlight Tue in Deep Learning, Apps., Poster Tue #79, Workshop Fri in 101-A Marzouk, Youssef: Poster Mon #180

Mason, Blake: Poster Tue #44 Matas, Jiri: Poster Mon #96 Mattila, Robert: Poster Tue #202 Maurer, Alexandre: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed

Maximov, Yury: Poster Mon #27 Mayr, Andreas: Poster Wed #134, Spotlight Thu in Deep Learning, Algorithms

Mazumdar, Arya: Poster Mon #226, Spotlight Tue in Algorithms, Poster Tue #16, Poster Wed #164 McAllister, Rowan: Poster Tue

McAuliffe, Jon: Spotlight Wed in Theory, Prob. Methods, Poster Wed #182

McCallum, Andrew: Poster Mon

McCann. Brvan: Poster Tue #77 McGrew, Bob: Poster Tue #199 McInerney, James: Workshop Fri

McInerney, James: Spotlight Wed in Prob. Methods, Apps., Poster Wed #44, Workshop Fri in 104-Δ

McQueen, James: Poster Mon

Mehta, Prashant: Poster Tue

Mei, Hongyuan: Poster Mon #69 Meier, Florian: Poster Tue #108 Meila, Marina: Poster Mon #46, Workshop Fri in S-5

Meng, Qi: Poster Mon #31 Menon, Aditya: Spotlight Wed in Deep Learning, Poster Wed #100 Mensch, Arthur: Poster Tue #151 Mentzer, Fabian: Poster Mon #133

Merdivan, Erinc: Poster Mon #113

Merel, Josh: Poster Mon #143 Mertikopoulos, Panayotis: Poster Mon #165, Poster Wed #211. Poster Wed #221 Mescheder, Lars: Spotlight Wed in Deep Learning, Poster Wed

Meshi, Ofer: Poster Tue #178 Messias, Joao: Poster Wed #201 Metelli, Alberto Maria: Poster Wed #12

Metzler, Chris: Poster Mon #58 Mevn, Sean: Poster Wed #19 Mianjy, Poorya: Poster Tue #52 Michalski, Vincent: Demo Tue Miikkulainen, Risto: Symposium Thu in Grand Blrm

Miladinovic, Djordje: Poster Tue

Milenkovic, Olgica: Spotlight Tue in Algorithms, Poster Tue #31 Miller, Kyle: Poster Mon #211 Miller, Andrew: Poster Tue #181 Milli, Smitha: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #200

Milstein, Daniel: Poster Tue #176 Min, Seonwoo: Poster Tue #75 Mingda Qiao, IIIS: Poster Wed

Minsker, Stanislav: Poster Tue

Mirrokni, Vahab: Poster Tue #27, Poster Wed #225 Mishchuk, Anastasiia: Poster

Mishkin, Dmytro: Poster Mon

Missura, Olana: Poster Mon #210

Mitchell, Tom: Poster Mon #32 Mitrovic, Slobodan: Poster Wed

Mitterreiter, Matthias: Demo

Mnih, Andriv: Poster Tue #117. Poster Tue #114, Oral Wed in Theory, Prob. Methods, Poster Wed #178

Modayil, Joseph: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #6 Mohri, Mehryar: Spotlight Tue in

Algorithms, Poster Tue #65, Poster Tue #63, Poster Wed #210 Moitra, Ankur: Poster Wed #41 Mokhtari, Aryan: Poster Mon

Molchanov, Dmitry: Poster Mon

Montanari, Andrea: Poster Mon

Montavon, Grégoire: Workshop Sat in Hvatt Beacon Blrm

Monti, Federico: Poster Tue #138 Mooij, Joris: Poster Wed #188 Moran, Shay: Spotlight Wed in Theory, Prob. Methods, Poster Wed #209

Mordatch, Igor: Poster Wed #205, Workshop Sat in 102-C **Moriya, Takumi**: Demo Wed Morrison, Rebecca: Poster Mon

Moseley, Benjamin: Oral Tue in Algorithms, Poster Tue #30 Mostafavi, Sara: Workshop Sat in

Motiian, Saeid: Poster Tue #128 Mourtada, Jaouad: Poster Tue

Mousavi, Ali: Poster Mon #58 Mozer, Michael: Workshop Sat in

Mroueh, Youssef: Poster Wed

Muandet, Krikamol: Workshop Fri in Seaside Blrm Mudumba, Sai Rajeswar: Demo

Mujika, Asier: Poster Tue #108 Mukherjee, Soumendu Sundar: Poster Mon #220

Mun, Jonghwan: Poster Tue #143 **Munos, Remi**: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #9 Munoz, Andres: Poster Wed #223

Muraoka, Yusuke: Poster Mon

Murata, Tomoya: Poster Tue Murphy, Kevin: Workshop Sat in

Murphy, Susan: Poster Wed #21 Murray, lain: Poster Wed #125, Oral Thu in Deep Learning, Algorithms

Murugesan, Keerthiram: Poster Musco, Christopher: Poster Mon

Musco, Cameron: Poster Mon #60, Poster Tue #208 Musslick, Sebastian: Oral Tue in Theory, Poster Tue #216

Müller, Klaus-Robert: Poster Mon #79, Poster Mon #65, Workshop Fri in 102-C, Workshop Sat in Hyatt Beacon Blrm D+E+F+H

Müller, Klaus-Robert: Workshop Fri in 102-C

Nabeel, Arshed: Poster Tue #152 Nachum, Ofir: Poster Wed #10 Nadler, Boaz: Poster Mon #30 Nagarajan, Vaishnavh: Oral Wed in Deep Learning, Poster Wed #99 Nam, Jinseok: Poster Wed #42, Spotlight Thu in Deep Learning, Algorithms

Namkoong, Hongseok: Oral Wed in Theory, Prob. Methods, Poster Wed #212

Nan, Feng: Poster Mon #25 Narayanaswamy, Siddharth: Poster Mon #184, Workshop Sat in Hyatt Seaview Blrm Nassar, Marcel: Poster Mon #75

Natarajan, Sriraam: Tutorials Natarajan, Abhiram: Oral Tue in

Algorithms, Poster Tue #61 Natesan Ramamurthy, Karthikeyan: Poster Wed #76 Naumann, Tristan: Workshop Fri in 104-B

Nayyar, Ashutosh: Poster Wed

Neel, Seth: Poster Wed #67 Neely, Michael: Poster Wed #55 Negahban, Sahand: Poster Tue

Negishi, Michiro: Demo Tue Nekipelov, Denis: Poster Tue

Neklyudov, Kirill: Poster Mon Nessler, Bernhard: Poster Wed

Neu, Gergely: Poster Wed #26 **Neubig, Graham**: Poster Tue #126, Poster Wed #121

Neverova, Natalia: Poster Tue Newell, Alejandro: Poster Mon

#91. Poster Tue #87 **Newling, James**: Spotlight Tue in Algorithms, Poster Tue #29 Neyshabur, Behnam: Spotlight Tue in Opt., Poster Tue #142, Poster Tue #162

Nguyen, Duc Thien: Poster Wed

Nguyen, Nam: Spotlight Tue in Theory, Poster Tue #215 Nguyen, Cuong: Poster Tue #191
Nguyen, Tu: Spotlight Wed in
Deep Learning, Poster Wed #113
Nguyen, Huy: Spotlight Tue in Algorithms, Opt., Poster Tue #156 Nguyen, XuanLong: Poster Mon #43, Poster Wed #189 Nicholson, Tom: Poster Tue #190

Nickel, Maximillian: Spotlight Tue in Deep Learning, Apps., Poster Tue #104 Nickisch, Hannes: Poster Tue

Niculae, Vlad: Poster Mon #101, Poster Mon #68 Nie, Feiping: Poster Mon #42

Niebles, Juan Carlos: Workshop Niederer, Steven: Poster Mon

Niepert, Mathias: Poster Mon

Niethammer, Marc: Poster Mon

Nikovski, Daniel: Poster Wed #81 nissim, kobbi: Poster Wed #65 **Niu, Gang**: Oral Tue in Algorithms, Poster Tue #15, Poster Tue #14

Niv, Yael: Invited Talk Thu in Hall

Nock, Richard: Spotlight Wed in Deep Learning, Poster Wed #100 **Noh, Hyeonwoo**: Poster Tue

Noh, Yung-Kyun: Poster Mon

Nonnenmacher, Marcel: Poster

Nonnenmacher, Marcel: Poster

Norouzi, Mohammad: Poster Tue #114, Poster Wed #10 Norouzi-Fard, Ashkan: Poster

Nowak, Robert: Poster Tue #44, Poster Wed #29, Poster Wed #28 Nowozin, Sebastian: Poster Mon #107, Spotlight Wed in Deep Learning, Poster Wed #101

Oates, Chris: Poster Mon #193 Oecal, Kaan: Poster Mon #146 **Oh, Sewoong**: Poster Mon #223, Spotlight Tue in Algorithms, Spotlight Tue in Theory, Poster Tue #220, Poster Tue #41, Poster Wed #46

Oh, Junhyuk: Poster Mon #206, Symposium Thu in Hall A Ohama, Iku: Poster Tue #187 Ohannessian, Mesrob: Poster

Onak, Krzysztof: Oral Tue in Algorithms, Poster Tue #61 Opper, Manfred: Poster Wed

Orabona, Francesco: Poster Tue

Orlitsky, Alon: Poster Mon #40, Poster Tue #59
Osindero, Simon: Poster Mon

Osokin, Anton: Oral Wed in Theory, Prob. Methods, Poster Wed #207

Ospici, Matthieu: Demo Wed Otsuka, Takuma: Poster Mon #68 Ouyang, Yi: Poster Wed #16 Ouyang, Wanli: Poster Mon #92 Oyallon, Edouard: Workshop Sat in Hyatt Regency Blrm A+B+C **Ozcimder, Kayhan**: Oral Tue in Theory, Poster Tue #216
Ozdaglar, Asuman: Spotlight Tue in Opt., Poster Tue #166

Pacheco, Jason: Poster Tue #176 Packer, Adam: Poster Wed #149, Oral Thu in Neuroscience Page, David: Poster Mon #176 Pai, Ruby: Poster Mon #75 Paige, Brooks: Workshop Fri in

Paige, T. Brooks: Poster Mon

Paisley, John: Poster Mon #186 Pal, Chris: Poster Wed #97 Pal, Dipan: Poster Mon #66 Pal, Soumyabrata: Spotlight Tue in Algorithms, Poster Tue #16 Palaiopanos, Gerasimos: Spotlight Tue in Theory, Poster Tue #224 **Palmer, Lyle**: Poster Mon #36

Pan, Chao: Poster Tue #39 Pan, Jiangwei: Poster Mon #187 Pan, Sinno: Poster Mon #136 Pan, Wei: Spotlight Tue in Deep Learning, Apps., Poster Tue #101 Panageas, Ioannis: Spotlight Tue in Theory, Poster Tue #224 Panahi, Ashkan: Spotlight Wed in Theory, Prob. Methods, Poster Wed #218

Pang, Haotian: Poster Mon #57 Paninski, Liam: Poster Mon #148, Poster Tue #146, Poster Wed #147, Spotlight Thu in Neuroscience

Panzeri, Stefano: Poster Wed #148, Oral Thu in Neuroscience **Papamakarios, George**: Poster Wed #125, Oral Thu in Deep Learning, Algorithms

Papernot, Nicolas: Workshop Fri

Papini, Matteo: Poster Wed #13 Paquet, Ulrich: Spotlight Wed in Theory, Prob. Methods, Poster Wed #176

Parascandolo, Giambattista:

Poster Wed #75

Parikh, Devi: Poster Mon #86 Parikh, Devi: Workshop Fri in 101-A

Park, Frank: Poster Mon #51 Park, Seyoung: Poster Mon #35 Park, Seunghyun: Poster Tue #75 Parkes, David: Poster Wed #226 Parmar, Niki: Spotlight Wed in Reinf. Learning, Poster Wed #124 Parnell, Thomas: Poster Mon

Parotsidis, Nikos: Poster Wed

Parra, Gabriel: Poster Tue #197 Partalas, Ioannis: Poster Mon

Parthasarathy, Srinivasan:

Poster Wed #192

Parthasarathy, Nikhil: Poster Wed #147, Spotlight Thu in Neuroscience

Pascanu, Razvan: Poster Mon #139. Poster Tue #123. Oral Wed in Reinf. Learning, Spotlight Wed in Reinf. Learning, Poster Wed #129, Poster Wed #138, Poster Wed #139

Pasunuru, Ramakanth: Demo Wed

Pathak, Deepak: Poster Mon #97 Paul, Rohan: Workshop Fri in

Pavlakou, Theo: Poster Wed #125, Oral Thu in Deep Learning,

Algorithms

Peck, Jonathan: Poster Mon

Pedregosa, Fabian: Spotlight Wed in Opt., Poster Wed #159 pelletier, benoit: Demo Wed Pennington, Jeffrey: Poster Mon #142, Poster Wed #137, Spotlight Thu in Deep Learning, Algorithms **Perchet, Vianney**: Spotlight Tue in Algorithms, Poster Tue #64 Perolat, Julien: Poster Wed #203 Pestilli, Franco: Poster Wed #151. Spotlight Thu in Neuroscience **Peter, Sven**: Poster Mon #30,

Peyré, Gabriel: Workshop Sat in

Pfau, David: Workshop Sat in Hyatt Seaview Blrm
Pfeifer, Jan: Poster Mon #135 Pham, Trung: Poster Mon #36 **Phung, Dinh**: Spotlight Wed in Deep Learning, Poster Wed #113 Piasini, Eugenio: Poster Wed #148, Oral Thu in Neuroscience **Pica, Giuseppe**: Poster Wed #148, Oral Thu in Neuroscience Pichapati, Venkatadheeraj: Poster Mon #40 Pichapati, Venkatadheeraj:

Pieper, Michael: Demo Tue Pieter Abbeel, OpenAl: Poster Tue #199, Poster Wed #205 Pietquin, Olivier: Workshop Fri

Poster Tue #59

Pietquin, Olivier: Spotlight Tue in Deep Learning, Apps., Poster Tue #79, Poster Wed #15 Piliouras, Georgios: Spotlight Tue in Theory, Poster Tue #224 Pillow, Jonathan: Poster Mon

Pineau, Joelle: Poster Mon #50, Demo Tue

Ping, Li: Poster Tue #136 Pinto, Lerrel: Poster Tue #112 Piot, Bilal: Poster Wed #15
Pirotta, Matteo: Spotlight Wed
in Reinf. Learning, Algorithms,
Apps., Poster Wed #12, Poster Wed #14, Poster Wed #13 Pirrung, Megan: Demo Wed

Platanios, Emmanouil Antonios: Workshop Sat in Hyatt Regency Blrm A+B+C
Platanios, Emmanouil: Poster

Mon #32 Platt, John: Invited Talk (Posner Lecture) Mon in Hall A Pleiss, Geoff: Poster Wed #74 Plumbley, Mark: Workshop Fri in

Pnevmatikakis, Eftychios Poster Tue #146

Poczos, Barnabas: Spotlight Tue in Opt., Poster Tue #160, Poster Wed #38, Poster Wed #107, Poster Wed #132, Oral Thu in Deep Learning, Algorithms Poggio, Tomaso: Poster Mon

Poggio, Tomaso: Symposium Thu in Beverly Theater **Pokutta, Sebastian**: Poster Wed

Pollefeys, Marc: Poster Mon #9
Poloczek, Matthias: Oral Tue in Opt., Poster Tue #192, Spotlight Wed in Prob. Methods, Apps., Poster Wed #194

Pontil, Massimiliano: Poster Mon #5, Workshop Sat in S-3 **Poole, David**: Tutorials Hall C Poon, Hoifung: Poster Mon #32 Posner, Ingmar: Poster Tue #120, Workshop Fri in 104-C Pourazarm, Sepideh: Poster Wed #81

Poutanen, Tomi: Poster Mon

Prabhat, Mr.: Poster Mon #37, Poster Wed #97, Workshop Fri in

Prasad, Rohit: Workshop Sat in 103 A+B

Prasad, Adarsh: Spotlight Tue in Algorithms, Opt., Poster Tue

Precup, Doina: Workshop Sat in Grand Blrm B

Pritzel, Alexander: Spotlight

Wed in Reinf. Learning, Poster Wed #133

Procaccia, Ariel: Poster Wed #208

Proutiere, Alexandre: Spotlight Tue in Algorithms, Poster Tue #4
Prémont-Schwarz, Isabeau: Poster Tue #111

Pu, Hongming: Poster Mon

Pu, Yuchen: Poster Mon #109, Poster Tue #121, Poster Wed #116, Poster Wed #114 Puigdomènech Badia, Adrià: Oral Wed in Reinf. Learning, Poster Wed #139 Pujara, Jay: Workshop Fri in

Purwins, Hendrik: Workshop Fri in 201-B

Pérolat, Julien: Poster Wed #86 Qi, Charles Ruizhongtai: Poster Mon #13

Qi, Yanjun: Poster Mon #82 Qian, Chao: Poster Mon #159 Qiao, Chunming: Poster Wed #85 Qin, Chao: Poster Wed #27

Qin, Tao: Poster Mon #127, Poster Tue #76

Qu, Qing: Poster Tue #161 Qu, Lizhen: Spotlight Wed in Deep Learning, Poster Wed #100 Quadrianto, Novi: Poster Wed

Quan, John: Poster Wed #138 Quinonero Candela, Joaquin: Workshop Sat in 103 A+B **Quon, Gerald**: Workshop Sat in

Rabusseau, Guillaume: Poster Mon #49, Poster Mon #50 Racah, Evan: Poster Wed #97 Racanière, Sébastien: Oral Wed in Reinf. Learning, Poster Wed

Racz, Miklos: Spotlight Tue in Theory, Poster Tue #74 Radanovic, Goran: Poster Wed

Radenovic, Filip: Poster Mon

Raetsch, Gunnar: Poster Tue

Rafferty, Anna: Workshop Sat

Raghavan, Manish: Poster Wed

Raghu, Maithra: Poster Mon #11, Workshop Sat in Grand

Raghunathan, Aditi: Poster Raginsky, Maxim: Spotlight Tue in Theory, Poster Tue #217 Rahmanian, Holakou: Poster

Raichel, Ben: Poster Tue #69 Raj, Anant: Spotlight Wed in Opt., Poster Wed #172 Rajeswaran, Aravind: Poster

Raipal, Mohit: Poster Wed #147, Spotlight Thu in Neuroscience Rakotomamonjy, Alain: Poster

Ralaivola, Liva: Poster Wed #30 Ramamoorthy, Subramanian: Demo Tue

Ramanan, Deva: Poster Mon #102, Poster Tue #81 Ramdas, Aaditya: Spotlight Tue in Algorithms, Poster Tue #2, Oral Wed in Theory, Prob. Methods, Poster Wed #220 Ramsauer, Hubert: Poster Wed

Ramsundar, Bharath: Workshop Fri in 102-C Rana, Santu: Spotlight Wed in Opt., Poster Wed #157 Rangan, Sundeep: Poster Mon

Ranganath, Rajesh: Poster Mon #186, Poster Wed #179, Workshop Fri in 104-B Rantanen, Kari: Poster Wed #45 Ranzato, Marc'Aurelio: Poster Mon #114, Poster Mon #4 Rao, Yongming: Poster Tue

Rao, Vinayak: Poster Mon #187 Rao, Naveen: Poster Mon #75 Raposo, David: Spotlight Wed in Reinf. Learning, Poster Wed

Rashtchian, Cyrus: Spotlight Tue in Theory, Poster Tue #74
Rasmus, Antti: Poster Tue #111 Rasmussen, Carl Edward: Poster Tue #204, Oral Wed in Prob. Methods, Apps., Poster Wed #196

Ratner, Alexander: Poster Wed #119, Workshop Fri in 104-B, Workshop Sat in Hyatt Regency

Ravanbakhsh. Siamak: Poster Wed #132, Poster Wed #175, Oral Thu in Deep Learning, Algorithms

Ravikumar, Pradeep: Spotlight Tue in Algorithms, Opt., Poster Tue #180, Poster Tue #37

Ravindrakumar, Vaishakh: Poster Mon #40 Ray, Alex: Poster Tue #199

Ray, Asok: Poster Mon #52 Razaviyayn, Meisam: Poster

Razenshteyn, Ilya: Poster Tue

Rebeschini, Patrick: Poster Rebuffi, Sylvestre-Alvise:

Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #39

Recht, Benjamin: Oral Wed in Opt., Poster Wed #158. Workshop Fri in Grand Blrm A **Reed, Scott**: Tutorials Hall A,

Poster Mon #143
Regier, Jeffrey: Spotlight Wed in Therapy, Prob. Methods, Poster Wed #182

Reichert, David: Oral Wed in Reinf. Learning, Poster Wed

Reichman, Daniel: Oral Tue in Theory, Poster Tue #216 Reid, Ian: Poster Mon #17, Poster Mon #36

Remes, Sami: Poster Tue #195 Ren, Mengye: Poster Mon #120 Restelli, Marcello: Poster Wed #12. Poster Wed #13

Rhinehart, Nicholas: Poster Tue Ribeiro, Alejandro: Poster Mon

#172, Poster Wed #161 Ricci, Elisa: Poster Mon #92 **Riedel, Sebastian**: Oral Wed in Deep Learning, Poster Wed #128, Workshop Sat in S-3 Riedmiller, Martin: Workshop

Fri in 104-C
Rigollet, Philippe: Spotlight Tue in Opt., Poster Tue #163
Rinaldo, Alessandro: Poster

Roberts, Adam: Demo Wed Rocke, David: Spotlight Wed in Prob. Methods, Apps., Poster Rockova, Veronika: Poster Mon Rocktäschel, Tim: Oral Wed in

Deep Learning, Poster Wed #128, Workshop Fri in 103-C **Rodriguez, Mikel**: Workshop Fri

Rodriguez, Manuel: Poster Wed

Roeder, Geoffrey: Poster Wed

Roelofs, Rebecca: Oral Wed in Opt., Poster Wed #158 Roels, Joris: Poster Mon #138 Rogers, Ryan: Poster Wed #224 Roig, Gemma: Poster Mon #10 Rojas, Cristian: Poster Tue #202 Rojas Carulla, Mateo: Poster

Romberg, Justin: Spotlight Tue in Theory, Poster Tue #215 Romoff, Joshua: Poster Mon

Roosta-Khorasani, Farbod:

Poster Mon #37 Rosasco, Lorenzo: Poster Mon #5, Poster Mon #59, Oral Tue in Algorithms, Poster Tue #55 Roth, Aaron: Poster Wed #67 Roth, Kevin: Poster Mon #107 Rothe, Anselm: Poster Mon

Roughgarden, Tim: Poster Wed #61, Workshop Fri in 101-B Roulet, Vincent: Poster Mon #174, Poster Wed #173 Rowland, Mark: Poster Mon #177, Poster Tue #54
Roy, Nicholas: Poster Mon #151 Roy, Aurko: Poster Wed #18 Roychowdhury, Anirban: Poster Wed #192
Royer, Martin: Poster Tue #211

Ru, Yizhong: Poster Mon #141 Rubin, David: Spotlight Wed in Opt., Poster Wed #157

Rudi, Alessandro: Poster Mon

Rudi, Alessandro: Poster Mon #59, Oral Tue in Algorithms, Poster Tue #55
Rudolph, Maja: Poster Tue #103

Ruffini, Matteo: Poster Mon #49 Ruiz, Francisco: Poster Mon #20, Poster Tue #103 Ruiz, Francisco: Workshop Fri in

Runyan, Caroline: Poster Wed #148, Oral Thu in Neuroscience Ruozzi, Nicholas: Poster Tue

Russell, Chris: Poster Mon #191, Oral Wed in Prob. Methods, Apps., Poster Wed #109, Poster Wed #187

Russell, Lloyd: Poster Wed #149, Oral Thu in Neuroscience Russell, Stuart: Oral Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #200

Russo, Daniel: Poster Wed #27 Rutten, Thomas: Poster Wed #147, Spotlight Thu in Neuroscience

Ryabko, Daniil: Poster Tue #218 RYU, HEE JUNG: Demo Wed Ré, Christopher: Poster Mon #33, Spotlight Tue in Algorithms, Poster Tue #56, Poster Wed #119, Demo Wed, Workshop Fri in Room-204, Workshop Sat in Hyatt Regency Blrm A+B+C Saad, Yousef: Poster Mon #163

Saatci, Yunus: Spotlight Wed in Deep Learning, Poster Wed #112 Sabato, Sivan: Poster Mon #215 Saboo, Krishnakant: Poster Tue

Sabour, Sara: Spotlight Tue in Deep Learning, Apps., Poster

Sadhanala, Veeranjaneyulu: Poster Tue #209

Saeta, Brennan: Workshop Sat in 101-A **Saeys, Yvan**: Poster Mon #138

Safaai, Houman: Poster Wed #148, Oral Thu in Neuroscience Saha, Ankan: Poster Mon #168 Saha, Barna: Poster Mon #226, Poster Wed #164 Sahraee-Ardakan, Mojtaba:

Poster Mon #183 Saito, Kazuyuki: Demo Wed Salakhutdinov, Ruslan: Poster Wed #132, Poster Wed #111, Oral Thu in Deep Learning, Algorithms

Salakhutdinov, Ruslan: Workshop Sat in Grand Blrm A Salehkaleybar, Saber: Poster

Saligrama, Venkatesh: Poster

Salimbeni, Hugh: Spotlight Wed in Prob. Methods, Apps., Poster Wed #195

Salzmann, Mathieu: Poster Mon #17, Poster Tue #139 Samek, Wojciech: Workshop Sat in Hyatt Beacon Blrm D+F+F+H

Samet, Hanan: Poster Tue #99 **Sanders, Paul**: Spotlight Wed in Opt., Poster Wed #157 Sandholm, Tuomas: Oral Tue in Theory, Poster Tue #226, Demo

Sanjabi, Maziar: Poster Mon Sankar, Chinnadhurai: Demo

Sanner, Scott: Poster Mon #204 Santoro, Adam: Spotlight Wed

in Reinf. Learning, Poster Wed

Saria, Suchi: Oral Wed in Prob. Methods, Apps., Poster Wed Sarkar, Purnamrita: Poster

Mon #220, Poster Wed #219 Sarkar, Soumik: Poster Tue Sarwate, Anand: Tutorials

Grand Blrm
Sato, Issei: Poster Mon #194,

Poster Tue #187 Sattigeri, Prasanna: Poster

Sauceda Felix, Huziel Enoc: Poster Mon #79 Savarese, Silvio: Workshop Sat

Savinov, Nikolay: Poster Mon

Savvides, Marios: Poster Mon

Say, Buser: Poster Mon #204 **Saykin, Andrew**: Poster Wed #151, Spotlight Thu in Neuroscience

Scarlett, Jonathan: Poster Mon #224

Schaal, Stefan: Poster Wed #2 Schaul, Tom: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #6, Poster Wed #9, Workshop Sat in Grand

Scherer, Sebastian: Poster Wed

#35 Schiele, Bernt: Poster Mon #95 Schmidhuber, Jürgen: Poster

Schmidt, Ludwig: Poster Mon #167, Oral Tue in Algorithms, Poster Tue #61, Workshop Sat in Grand Blrm A

Schneider, Jonas: Poster Mon #112, Poster Tue #199 Schniter, Philip: Poster Mon

#183 Schnitzer, Mark: Poster Tue

Schoellig, Angela: Poster Tue Schoenholz, Samuel: Poster

Schrijvers, Okke: Poster Wed

Schroecker, Yannick: Poster Wed #8 Schroff, Florian: Demo Wed

Schulam, Peter: Workshop Fri

Schulam, Peter: Oral Wed in Prob. Methods, Apps., Poster Wed #193 Schuurmans, Dale: Poster Wed

#10. Poster Wed #80 Schwartz, Idan: Poster Mon #88 **Schwing, Alexander**: Poster Mon #88, Poster Mon #110, Oral Tue in Deep Learning, Apps., Poster Tue #84, Poster Tue #82, Poster Tue #178, Spotlight Wed in Deep Learning, Poster Wed

#103 Schölkopf, Bernhard: Poster Mon #203, Poster Mon #222, Poster Wed #75 Schön, Thomas: Poster Tue Schütt, Kristof: Poster Mon #79,

Poster Mon #65

Schütt, Kristof: Workshop Fri in

Scieur, Damien: Poster Mon #174, Poster Tue #174 Scodary, Anthony: Demo Tue Scornet, Erwan: Poster Tue #12 Scott, Clay: Poster Wed #25 Sebe, Nicu: Poster Mon #92 Seeliger, Katja: Poster Mon #152

Seely, Jeffrey: Demo Tue Sejdinovic, Dino: Poster Mon Sen, Siddhartha: Workshop Fri

in Room-204 **Sen, Rajat**: Poster Mon #190 Seo, Paul Hongsuck: Poster

Mon #89 Serban, Iulian Vlad: Demo Tue Sercu, Tom: Poster Wed #104 Sha, Fei: Poster Mon #65, Workshop Sat in 102 A+B Shabbir, Mudassir: Poster Mon

Shah, Devayrat: Poster Wed #72, Workshop Fri in Hyatt Shoreline

Shahrampour, Shahin: Poster

Tue #18 Shakkottai, Sanjay: Poster Mon

Shalev-Shwartz, Shai: Poster Mon #124 **Shalit, Uri**: Poster Wed #188

Shalit, Uri: Workshop Fri in 104-

Shan, Yi: Demo Wed Shang, Fanhua: Poster Mon

Shang, Wenling: Oral Wed in Reinf. Learning, Poster Wed #96 Shanmugam, Karthikeyan: Poster Mon #190, Poster Wed #184

Sharan, Vatsal: Poster Tue #40 Shariat, Basir: Poster Mon #130 Sharmanska, Viktoriia: Poster Wed #77

Sharpnack, James: Poster Tue Snarpnack, James: Poster Iue #209, Poster Wed #216 Shawe-Taylor, John: Workshop Fri in Hall C, Workshop Sat in S-3 Shazeer, Noam: Spotlight Wed in Reinf. Learning, Poster Wed #124

Shechtman, Eli: Poster Mon #97 Shen, Yujia: Poster Wed #190 Shen, Tianxiao: Spotlight Wed in Prob. Methods, Apps., Poster Wed #94

Shen, Xiaohui: Poster Tue #136 Shen, Dinggang: Poster Mon

Shen, Dinghan: Poster Mon #84 Shen, Jie: Poster Tue #47 Shen, Wei: Poster Tue #97 Shen, Xiaobo: Poster Tue #28 Shengmei Shen, Panasonic: Poster Mon #131 Sheth, Rishit: Poster Wed #183

Shi, Jing-Cheng: Poster Mon **Shi, Zhan**: Spotlight Tue in Algorithms, Poster Tue #10 **Shi, Kevin**: Poster Tue #205 Shi, Xingjian: Spotlight Tue in Deep Learning, Apps., Poster

Shillingford, Brendan: Poster

Shim, Kyuhong: Poster Mon

Shimizu, Kana: Poster Mon

Shin, Jinwoo: Poster Mon #185 Shin, Hanul: Poster Tue #119 **Shinkar, Igor**: Oral Tue in Theory, Poster Tue #216 Shokri Razaghi, Hooshmand: Poster Mon #148

Shroff, Ness: Poster Mon #169 Sigal, Leonid: Poster Mon #89, Poster Tue #140 Silva, Ricardo: Poster Mon #77,

Oral Wed in Prob. Methods, Apps., Poster Wed #187, Workshop Fri in Hall C Silva, Ricardo: Poster Mon #191 Silver, David: Oral Wed in Reinf.

Reinf. Learning, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #203, Poster Wed #139, Poster Wed #6, Poster Wed #9, Symposium Thu in Hall

Simard, Patrice: Symposium Thu in Hall C

Wed #152

Simeral, John: Poster Tue #176 Simon, Ian: Demo Wed SIMON-GABRIEL, Carl-Johann:

Simoncelli, Eero: Oral Tue in Deep Learning, Apps., Poster Tue

Simsekli, Umut: Poster Tue #154 Sindhwani, Vikas: Poster Wed #162

Singer, Yaron: Poster Mon #70, Oral Tue in Opt., Poster Tue #158, Poster Wed #156, Workshop Fri in Hvatt Seaview Blrm

Singh, Aarti: Poster Mon #211 **Singh, Karan**: Spotlight Tue in Algorithms, Poster Tue #7 Singh, Rishabh: Poster Mon

Singh, Satinder: Poster Mon #206, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #199, Symposium Thu

Singh, Ritambhara: Poster Mon

Singh, Aarti: Poster Mon #221. Spotlight Tue in Opt., Poster Tue #160, Poster Wed #38

Singla, Adish: Workshop Sat in 104-A

Slawski, Martin: Poster Tue #25 Smilkov, Daniel: Demo Wed Smith, Virginia: Poster Mon #74 Smith, Matthew: Poster Tue #145 Smola, Alexander: Poster Wed #132, Oral Thu in Deep Learning, Algorithms

Snell, Jake: Poster Mon #118 Snijders, Antoine: Poster Mon

Snoek, Jasper: Workshop Fri in

Socher, Richard: Poster Tue #77 Sohl-Dickstein, Jascha: Poster Mon #11, Oral Wed in Theory, Prob. Methods, Poster Wed #178 Solomon, Justin: Workshop Sat in 102 A+B

Solomon, Justin: Tutorials Grand Blrm. Poster Tue #184 Soltanolkotabi, Mahdi: Poster Mon #164, Poster Mon #156 Solus, Liam: Spotlight Wed in Prob. Methods, Apps., Poster Wed

Song, Dawn: Workshop Fri in S-4 Song, Chaobing: Spotlight Wed in Theory, Prob. Methods, Poster Wed #171

Song, Zhao: Poster Mon #34 Song, Shuang: Poster Wed #68 Song, Jiaming: Poster Mon #199, Poster Tue #189

Song, Le: Poster Mon #106, Spotlight Tue in Theory, Spotlight Tue in Deep Learning, Apps., Poster Tue #129, Poster Tue #206, Spotlight Wed in Reinf. Learning, Poster Wed #141, Poster Wed #83 Song Zuo, IIIS: Poster Wed #225 Sontag, David: Poster Wed #188 Sordoni, Alessandro: Poster

Soricut, Radu: Poster Tue #109 Sotelo, Jose: Demo Tue Soudry, Daniel: Oral Wed in Deep Learning, Poster Wed #136 Speiser, Artur: Poster Wed #144, Spotlight Thu in Neuroscience Sporns, Olaf: Poster Wed #151, Spotlight Thu in Neuroscience Sra, Suvrit: Workshop Fri in Grand Blrm A

Sra, Suvrit: Poster Mon #160, Poster Tue #6

Srebro, Nati: Spotlight Tue in Opt., Poster Tue #142, Poster Tue #162, Oral Wed in Opt., Poster Wed #158

Sridharan, Karthik: Spotlight Tue in Algorithms, Poster Tue #63 Sridharan, Devarajan: Poster Tue #152

Srinivasa, Christopher: Poster Wed #175

Srinivasa, Siddhartha: Poster Wed #35

Sriperumbudur, Bharath: Workshop Fri in Seaside Blrm Srivastava, Nisheeth: Poster Mon #150

Srivastava, Akash: Poster Wed

Stadie, Bradly: Poster Mon #112

Staib, Matthew: Poster Tue #184 Stainer, Julien: Poster Tue #22 Stanley, Kenneth: Symposium Thu in Grand Blrm

Steger, Angelika: Poster Tue

Steinhardt, Jacob: Poster Tue

Steinhardt, Jacob: Workshop Fri in S-4, Workshop Sat in Hyatt Shoreline

Stemmer, Uri: Poster Wed #65 Stern, Mitchell: Poster Mon #45, Oral Wed in Opt., Poster Wed #158

Stich, Sebastian: Spotlight Wed in Opt., Poster Wed #172 **Stone, Zak**: Workshop Sat in 101-

Stooke, Adam: Poster Wed #4 **Strauss, Karin**: Spotlight Tue in Theory, Poster Tue #74 Strub, Florian: Workshop Fri in

Strub, Florian: Spotlight Tue in Deep Learning, Apps., Poster Tue

Studer, Christoph: Poster Tue

Sturm, Bob: Workshop Fri in 201-

Su, Qinliang: Poster Mon #195 Su, Yu-Chuan: Poster Tue #85 Su. Hao: Poster Mon #13 Suarez, Joseph: Poster Tue #105 Subramanian, Sandeep: Demo

Sudderth, Erik: Poster Tue #176 Suggala, Arun: Poster Tue #180 Sugiri Pranata, Panasonic: Poster Mon #131

Sugiyama, Masashi: Poster Mon #194. Poster Mon #51. Oral Tue in Algorithms, Poster Tue #15, Poster Tue #14

Suh, Changho: Poster Wed #46 Suhubdy, Dendi: Demo Tue Sukhatme, Gaurav: Poster Wed

Sumita, Hanna: Poster Tue #35 Sun, Zhenan: Poster Mon #98 Sun, Qianru: Poster Mon #95 Sun, Fuchun: Poster Tue #96 Sun. Wen: Poster Tue #112 Sun, Xiaorui: Poster Tue #205 Sun, Xingyuan: Poster Tue #88 Sun, Ming-ting: Poster Wed #122 Sun, Tao: Poster Wed #163 Sun, Yifan: Spotlight Wed in Opt., Poster Wed #169

Sundaresan, Mali: Poster Tue #152

Sung, Wonyong: Poster Mon #99 Suresh, Ananda Theertha: Poster Mon #190, Poster Tue #83 Sutskever, Ilya: Poster Mon #112 Sutti, Alessandra: Spotlight Wed in Opt., Poster Wed #157 Sutton, Charles: Poster Wed

Suzuki, Taiji: Poster Mon #22, Poster Tue #172

Swaminathan, Adith: Workshop Swaminathan, Adith: Oral Wed

in Reinf. Learning, Algorithms, Apps., Poster Wed #84 Swersky, Kevin: Poster Mon #118 Swirszcz, Grzegorz: Poster Mon #139

Syed, Umar: Poster Tue #222 Syrgkanis, Vasilis: Oral Tue in Opt., Poster Tue #225, Poster Tue #158, Poster Tue #223, Workshop Fri in 101-B

Szabo, Zoltan: Oral Tue in Algorithms, Poster Tue #57 **Szabó, Zoltán**: Workshop Fri in Seaside Blrm

Szepesvari, Csaba: Poster Wed #80

szlam, arthur: Tutorials Hall A Sznitman, Raphael: Poster Mon

Tacchetti, Andrea: Poster Tue

Taghvaei, Amirhossein: Poster **Takeda, Akiko**: Poster Mon #22, Poster Wed #31

Takeishi, Naoya: Poster Tue #51
Talbot, Austin: Poster Mon #153
Talwalkar, Ameet: Poster Mon #207, Poster Mon #74

Tamar, Aviv: Poster Mon #201 Tamar, Aviv: Poster Wed #205

Tan. Wei: Poster Mon #104 Tan, Tieniu: Poster Mon #98 Tanczos, Ervin: Poster Wed #28 Tandon, Prateek: Workshop Fri

Tang, Jin: Spotlight Tue in Deep Learning, Apps., Poster Tue #98 Tang, Haoran: Poster Wed #4 **Tang, Ke**: Poster Mon #159, Poster Tue #200

Tang, Yihe: Spotlight Wed in Prob. Methods, Apps., Poster Wed

Tarig. Juvaria: Poster Mon #61 Tarkoma, Sasu: Poster Mon #189 Tarnawski, Jakub: Poster Wed

Tarokh, Vahid: Poster Tue #18 Tartavull, Ignacio: Poster Tue

Tarvainen, Antti: Spotlight Tue in Algorithms, Poster Tue #13

Tatikonda, Sekhar: Poster Mon

Tatti, Nikolai: Poster Wed #87 **Teh, Yee**: Poster Tue #114, Poster Wed #138

Teh, Yee Whye: Invited Talk (Breiman Lecture) Thu in Hall A **Telgarsky, Matus**: Spotlight Wed in Theory, Prob. Methods, Poster Wed #206

Tenenbaum, Josh: Tutorials Hall C, Poster Tue #88, Poster Tue #90, Poster Wed #146, Poster Wed #145, Spotlight Thu in Neuroscience, Workshop Sat in Hvatt Seaview Blrm

Tennenholtz, Moshe: Poster Tue #221

Tesauro, Gerald: Workshop Fri in Hyatt Regency Blrm A+B+C **Tewari, Ambuj**: Poster Tue #11, Poster Wed #21

Thewlis, James: Oral Tue in Deep Learning, Apps., Poster Tue #91 Thiagarajan, Arvind: Poster Mon

Thirion, Bertrand: Poster Tue

Thomas, Philip: Poster Wed #11 Thorat, Nikhil: Demo Wed Thorup, Mikkel: Poster Mon #39 **Tian, Fei**: Poster Mon #127 Tian, Zheng: Poster Wed #5 Tian, Kevin: Poster Tue #60 **Tian, Yuandong**: Oral Wed in Reinf. Learning, Poster Wed #96 Tibshirani, Ryan: Poster Wed

Tibshirani, Ryan: Poster Mon #170. Poster Tue #209 Timofte, Radu: Poster Mon #133 Tito Svenstrup, Dan: Poster Mon

Titov, Ivan: Poster Wed #95 Titsias, Michalis: Workshop Fri in

Tkatchenko, Alexandre: Poster Mon #79

Tkatchenko, Alexandre: Workshop Fri in 102-C Tobar, Felipe: Poster Tue #197 Tobin, Josh: Poster Tue #199 Todorov, Emanuel: Poster Mon

Tolstikhin, Ilya: Poster Mon #222 Tomioka, Ryota: Spotlight Tue in Algorithms, Poster Tue #21 Tomlin, Claire: Poster Wed #222, Poster Wed #211

Tommasi, Tatiana: Poster Tue

Tong, Lang: Poster Wed #60 Torr, Philip: Poster Mon #184 Torresani, Lorenzo: Poster Tue

Tosi, Alessandra: Workshop Fri in Toulis, Panagiotis: Workshop Fri

Tran. Toan: Poster Mon #36 Tran, Dustin: Poster Mon #186, Poster Wed #179, Workshop Fri in

Tran, Dustin: Workshop Fri in Tran Dinh, Quoc: Poster Mon

Triantafillou, Eleni: Poster Mon

Trischler, Adam: Poster Mon #103 Tropp, Joel: Poster Tue #20

Tsang, Ivor: Poster Tue #28 Tschannen, Michael: Poster Mon #133, Poster Tue #165

Tse, David: Poster Tue #33, Poster

Tsuda, Koji: Workshop Fri in 102-

Tu, Zhuowen: Poster Mon #24 **Tucker, George**: Poster Tue #114, Oral Wed in Theory, Prob. Methods, Poster Wed #178 Tung, Hsiao-Wei: Poster Wed #40, Spotlight Thu in Deep Learning, Algorithms Tung, Hsiao-Yu: Poster Wed #40, Spotlight Thu in Deep Learning,

Turaga, Srinivas: Poster Tue Poster Wed #149, Poster

Wed #144 Oral Thu in Neuroscience, Spotlight Thu in Neuroscience

Turchetta, Matteo: Poster Tue

Turner, Richard: Poster Mon #203, Poster Tue #191 Tuyls, karl: Poster Wed #203 Tuyls, Karl: Poster Wed #86 Tuytelaars, Tinne: Poster Mon

Tvlkin, Paul: Poster Wed #226 Ubaru, Shashanka: Poster Mon

Udell, Madeleine: Poster Tue #20 **Ueda, Naonori**: Poster Mon #68 **Uhl, Andreas**: Poster Mon #38 **Uhler, Caroline**: Spotlight Wed in Prob. Methods, Apps., Poster Wed

Ullrich, Karen: Poster Mon #137 Ulrich, Kyle: Poster Mon #153 Unterthiner, Thomas: Poster Wed #134, Poster Wed #108, Spotlight Thu in Deep Learning,

Urtasun, Raquel: Poster Mon #120, Poster Mon #119 Usunier, Nicolas: Poster Mon

Uszkoreit, Jakob: Spotlight Wed in Reinf. Learning, Poster Wed

Uziel, Guy: Poster Tue #19 Vahdat, Arash: Poster Mon #132 Valera, Isabel: Poster Wed #78 Valiant, Gregory: Poster Tue #40, Poster Tue #60

Valko, Michal: Poster Wed #32, Poster Wed #50

Valkoz, Lazar: Poster Wed #109 **Valpola, Harri**: Spotlight Tue in Algorithms, Poster Tue #13,

Poster Tue #111 Van Buskirk, Greg: Poster Tue

van de Meent, Jan-Willem: Poster Mon #184 Van den Broeck, Guy: Workshop

van den Oord, Aaron: Poster Tue

van der Pas, Stéphanie: Poster

van der Schaar, Mihaela: Poster Mon #76, Spotlight Wed in Prob. Methods, Apps., Poster Wed #90, Poster Wed #91

van der Wilk, Mark: Oral Wed in Prob. Methods, Apps., Poster Wed

van Gerven, Marcel: Poster Mon

Van Gerven, Marcel: Poster Tue

Van Gool, Luc: Poster Mon #95 van Hasselt, Hado: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #6, Poster Wed #9

van Lier, Rob: Poster Mon #152 van Merriënboer, Bart: Workshop Sat in 202

Van Roy, Benjamin: Poster Wed #20. Poster Wed #22 Van Seijen, Harm: Poster Mon #200

van Steenkiste, Sjoerd: Poster Vanderbei, Robert: Poster Mon

Vanli, Nuri: Spotlight Tue in Opt., Poster Tue #166

Varatharajah, Yogatheesan: Poster Tue #177 Varma, Manik: Workshop Fri in Hyatt Beacon Blrm D+E+F+H Varma, Paroma: Poster Mon #33,

Varoquaux, Gael: Poster Tue

Varshney, Kush: Poster Wed #88,

Varshney, Lav: Poster Mon #21 Vartak, Manasi: Poster Mon #72 Vasiloglou, Nikolaos: Workshop

Vasiloglou, nikolaos: Poster

Vassilvitskii, Sergei: Poster Tue #222, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #223, Poster Wed #73 Vaswani, Sharan: Poster Wed

Vaswani, Ashish: Spotlight Wed in Reinf. Learning, Poster Wed

Vedaldi, Andrea: Oral Tue in vedaidi, Andrea: Oral Iue in Deep Learning, Apps, Poster Tue #91, Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #39, Workshop Sat in Hyatt Beacon Birm D+E+F+H Vellanki, Pratibha: Spotlight Wed in Opt., Poster Wed #157 **Vellido, Alfredo**: Workshop Fri in 201-A

Vempala, Santosh: Spotlight Tue venhate, Januari Tue #206
Venkatesh, Svetha: Spotlight
Wed in Opt., Poster Wed #157
Venkatraman, Arun: Poster Tue

Verma, Saurabh: Poster Mon #16 Vetrov, Dmitry: Poster Mon #140 Viegas, Evelyne: Workshop Sat in 204

Vijayaraghavan, Aravindan:

Poster Tue #26
Vinvals, Oriol: Tutorials Hall A. Poster Tue #116, Oral Wed in Reinf. Learning, Poster Wed #139, Workshop Sat in Grand Blrm A Vinzamuri, Bhanukiran: Poster

Viswanath, Pramod: Poster Mon #223, Spotlight Tue in Theory, Poster Tue #220, Poster Wed #66 **Vogels, Tim**: Poster Tue #118 Vogelstein, Joshua: Workshop

Sat in 201-A Vojnovic, Milan: Spotlight Tue in Algorithms, Poster Tue #21 Volfovsky, Alexander: Workshop Fri in Hall (

Volkovs, Maksims: Poster Mon

Volokitin, Anna: Poster Mon #10 von Lilienfeld, Anatole: Workshop Fri in 102-C von Lilienfeld, Anatole Workshop Fri in 102-0 von Luxburg, Ulrike: Poster Mon

Vu, Hung: Spotlight Wed in Deep Learning, Poster Wed #113 Vul, Edward: Poster Mon #150 **Végh, László**: Spotlight Tue in Algorithms, Opt., Poster Tue #156 Waggoner, Bo: Poster Wed #67 **Wagner, Tal**: Oral Tue in Theory, Poster Tue #216, Poster Tue #24 **Wahlberg, Bo**: Poster Tue #202

Wahlström, Niklas: Poster Tue Wainwright, Martin: Poster Mon

Wainwright, Martin: Spotlight Tue in Algorithms, Poster Tue #2, Oral Wed in Theory, Prob. Methods, Spotlight Wed in Theory, Prob. Methods, Poster Wed #220, Poster Wed #215 Wald, Yoav: Poster Tue #182 Wang, Zhecan: Poster Mon #131 Wang, Alex: Poster Tue #26 Wang, Xiaogang: Poster Mon

Wang, Jialei: Spotlight Wed in Prob. Methods, Apps., Poster Wed

Wang, Yichen: Poster Wed #83 Wang, Yuhao: Spotlight Wed in Prob. Methods, Apps., Poster Wed

Wang, Yifan: Poster Wed #24 Wang, Feicheng: Poster Mon

Wang, Jianfeng: Poster Mon

Wang, Stephanie: Demo Wed Wang, Zhaowen: Poster Mon #81 Wang, Guoyin: Poster Mon #84 Wang, Yining: Poster Mon #221 Wang, Hao: Spotlight Tue in Deep Learning, Apps., Poster Tue

Wang, Xin: Poster Mon #75 Wang, Oliver: Poster Mon #97 Wang, Weiyao: Poster Mon

#109, Poster Wed #116
Wang, Taifeng: Poster Mon #31
Wang, Liwei: Poster Mon #208, Poster Tue #76

Wang, Kuan-Chieh: Spotlight Wed in Deep Learning, Poster Wed #103

Wang, Jun-Kun: Spotlight Tue in Algorithms, Opt., Poster Tue #164

Wang, Chuang: Spotlight Wed in Theory, Prob. Methods, Poster Wed #217

weu #21/ Wang, Chong: Poster Mon #192 Wang, Xiaoqian: Poster Mon #154, Poster Mon #42, Poster Tue #9

Wang, Yu-Xiang: Poster Tue

Wang, Yifan: Poster Tue #88 Wang, Gang: Poster Mon #163 Wang, Chi: Poster Wed #24 Wang, Yu-Xiong: Poster Tue #81 Wang, Jianmin: Poster Mon #115, Poster Mon #7

Wang, Qinshi: Poster Wed #63 Wang, Joshua: Oral Tue in Algorithms, Poster Tue #30 Wang, Liwei: Poster Mon #110 Wang, Yunbo: Poster Mon #115

Wang, Yun Demo Wed
Wang, Yu: Demo Wed
Wang, Ziyu: Poster Mon #143
Wang, Mengdi: Oral Tue in
Algorithms, Poster Tue #49
Wang, Di: Poster Tue #67 Wang, Sinong: Poster Mon #169

Wang, Jian: Spotlight Wed in Prob. Methods, Apps., Poster Wed #92

Wang, Yue: Poster Tue #201 Wang, Mingzhe: Spotlight Wed in Prob. Methods, Apps., Poster

Wang, Jun: Demo Wed Wang, Yandan: Oral Wed in Deep Learning, Poster Wed #127 Warmuth, Manfred: Spotlight Tue in Algorithms, Opt., Poster Tue #36, Poster Wed #152 Watkins, Chris: Workshop Sat in

Watters, Nicholas: Poster Tue

Wayne, Gregory: Poster Mon

Webb, Tristan: Poster Mon #75 **Weber, Theophane**: Poster Tue #123, Oral Wed in Reinf. Learning, Poster Wed #139 Weed, Jonathan: Spotlight Tue in Opt., Poster Tue #163 Wei, Qi: Poster Tue #100 **Wei, Yuting**: Spotlight Wed in Theory, Prob. Methods, Poster

Wed #215 **Wei, Dennis**: Poster Wed #76 Wei, Chen-Yu: Poster Wed #17 Wei, Xiaohan: Poster Tue #50, Poster Wed #55

Weimer, Markus: Workshop Fri

Weinberger, Kilian: Poster Wed Weiss, Roi: Poster Mon #215

Welinder, Peter: Poster Tue

Welleck, Sean: Poster Mon

Weller, Adrian: Poster Mon #177, Poster Tue #54, Poster Wed #78, Symposium Thu in

wed #78, Symposium inu in Beverly Theater **Welling, Max:** Workshop Fri in 104-A, Workshop Sat in Hall C **Welling, Max:** Poster Mon #137, Postor Wed #198 Poster Wed #188

Wen, Zheng: Poster Wed #32 Wen, Wei: Oral Wed in Deep Learning, Poster Wed #127
White, Martha: Poster Wed #80 Whiteson, Shimon: Poster Wed

Wierstra, Daan: Oral Wed in Reinf. Learning, Poster Wed

#139 **Willcox, Karen**: Poster Mon

Willett, Rebecca: Poster Tue #32, Poster Wed #29 Williams, Jason: Workshop Fri in Hyatt Regency Blrm A+B+C

Williamson, Robert: Spotlight Wed in Deep Learning, Poster Wed #100

Williamson, Ryan: Poster Tue

Wills, Adrian: Poster Tue #198 **Wilmes, John**: Spotlight Tue in Theory, Poster Tue #206 **Wilson, Andrew**: Symposium Thu in Hall C, Workshop Sat in

Wilson, Andrew: Poster Mon #198, Oral Tue in Opt., Poster Tue #192, Poster Tue #196, Spotlight Wed in Deep Learning, Poster Wed #112, Workshop Sat

in Hall C
Wilson, Ashia: Oral Wed in Opt., Poster Wed #158
Wiltschko, Alex: Workshop Fri

in 104-B, Workshop Sat in 202 Winther, Ole: Poster Mon #100. Spotlight Wed in Theory, Prob. Methods, Poster Wed #176 Wipf, David: Poster Wed #48, Oral Thu in Deep Learning, Algorithms

Witbrock, Michael: Poster Mon

Wolf, Lior: Spotlight Tue in Deep Learning, Apps., Poster Tue #92

Wolski, Filip: Poster Tue #199 Wong, Felix: Poster Mon #217 Wong, Wai-kin: Spotlight Tue in Deep Learning, Apps., Poster Tue #110

Wong, Wing Hung: Poster Tue

WOO, Wang-chun: Spotlight Tue in Deep Learning, Apps., Poster Tue #110

Wood, Frank: Poster Mon #184, Workshop Fri in 202 Woodruff, David: Poster Tue #207, Poster Tue #208, Poster

Woodworth, Blake: Spotlight Tue in Opt., Poster Tue #162 Worah, Pratik: Poster Wed #137, Spotlight Thu in Deep

Learning, Algorithms

Worrell, Gregory: Poster Tue

#177 Wortman Vaughan, Jennifer: Poster Wed #224, Workshop Fri in 101-B

Wright, Stephen: Poster Mon

Wright, John: Poster Tue #161 WU, YI: Poster Wed #205 Wu, Yuhuai: Spotlight Wed in Reinf. Learning, Poster Wed #140, Poster Wed #180 Wu, Yuanbin: Poster Tue #17 Wu, Jiajun: Poster Tue #88, Poster Tue #90, Poster Wed #145, Poster Wed #146, Spotlight Thu in Neuroscience **Wu, Felix**: Poster Wed #74

Wu, Xiang: Poster Tue #83 Wu, Anqi: Poster Mon #151 Wu, Jian: Oral Tue in Opt., Poster Tue #192

Wu, Yuxin: Oral Wed in Reinf. Learning, Poster Wed #96 **Wu, Steven**: Poster Wed #67 Wu, Ga: Poster Mon #204 Wu, Lijun: Poster Mon #127 **Wu, Chunpeng**: Oral Wed in Deep Learning, Poster Wed #127 Wulfmeier, Markus: Workshop Fri in 104-C

Xi Chen, OpenAI: Poster Wed

Xia, Fei: Poster Tue #124

Xia, Yingce: Poster Mon #127, Poster Tue #76 Xia, Shu-Tao: Spotlight Wed in Theory, Prob. Methods, Poster Wed #171

Xiao, Lin: Poster Mon #192 **Xiao, Huaxin**: Poster Tue #136, Spotlight Wed in Reinf. Learning, Poster Wed #130 Xiao, Liang: Poster Tue #107

XIAO, SHUAI: Poster Mon #106 Xiaoming Sun, Institute of Computing: Poster Mon #158 Xie, Bo: Spotlight Tue in Theory, Poster Tue #206

Xie, Qizhe: Poster Wed #121 Xie, Annie: Demo Tue Xin, Bo: Poster Wed #48, Oral Thu in Deep Learning, Algorithms

Xing, Eric: Poster Wed #117 Xiong, Lin: Poster Mon #131 Xiong, Jinjun: Oral Tue in Deep Learning, Apps., Poster Tue #82 Xiong, Caiming: Poster Tue #87 Xu, Jason: Spotlight Tue in Algorithms, Opt., Poster Tue #38 Xu, Dan: Poster Mon #92 Xu, Zhon: Poster Mon #92 Xu, Zhongwen: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #6 Xu, Jinhui: Poster Tue #67 Xu, Hongteng: Poster Wed #82 Xu, Pan: Poster Tue #179 Xu, Zheng: Poster Tue #99 Xu, Aolin: Spotlight Tue in Theory, Poster Tue #217 Xu, Cong: Oral Wed in Deep Learning, Poster Wed #127 Xu, Huan: Poster Wed #18 Xu, Kun: Poster Wed #115 Xu, Kelvin: Poster Wed #10 Xu, Yichong: Poster Mon #211 Xu, Wenkai: Oral Tue in Algorithms, Poster Tue #57

Xu, Yi: Poster Tue #169, Poster Wed #170 Xue, Tianfan: Poster Tue #88 Yabe, Akihiro: Poster Tue #35 Yairi, Takehisa: Poster Tue #51 Yamins, Daniel: Poster Wed #143, Oral Thu in Neuroscience Yan, Feng: Oral Wed in Deep Learning, Poster Wed #127 Yan, Songbai: Poster Mon #213 Yan, Bowei: Poster Wed #219 Yan, Jinyao: Poster Wed #149, Poster Wed #144, Oral Thu in

Neuroscience Yan, Junchi: Poster Mon #106 Yan, Shuicheng: Poster Tue #136, Spotlight Wed in Reinf. Learning, Poster Wed #130 Yang, Zhilin: Poster Mon #126,

Neuroscience, Spotlight Thu in

Poster Wed #111 Yang, Scott: Spotlight Tue in Algorithms, Poster Tue #65, Workshop Fri in Grand Blrm B Yang, Ming-Hsuan: Poster Mon #90, Poster Mon #81, Poster Tue

Yang, Jianwei: Poster Mon #86 Yang, Jianwei: Poster Mon #54
Yang, Lin: Poster Mon #54
Yang, Yiming: Poster Wed #107
Yang, Jiacheng: Demo Wed
Yang, Tianbao: Poster Tue #62,
Poster Tue #168, Poster Tue
#169, Poster Wed #170 Yang, Zhuoran: Poster Tue #72 Yang, Yingxiang: Poster Wed

Yang, Fanny: Spotlight Tue in Algorithms, Poster Tue #2, Oral Wed in Theory, Prob. Methods, Spotlight Wed in Theory, Prob. Methods, Poster Wed #220, Poster Wed #215

Yang, Jimei: Poster Mon #81, Poster Tue #136 Yang, Fan: Poster Mon #126, Poster Wed #111 Yang, Yaoqing: Poster Mon

Yang, Karren: Spotlight Wed in Prob. Methods, Apps., Poster Wed #185

Yang, Fan: Poster Wed #85 Yang, Ge: Poster Mon #218 Yankov, Artem: Demo Wed Yao, Weichi: Poster Mon #148 Yao, Xin: Poster Tue #200 Yao, Sirui: Poster Wed #79 Yao, Song: Demo Wed Yau, Christopher: Poster Mon

Ye, Xiaojing: Poster Mon #106, Poster Wed #83

Ye, Nanyang: Poster Mon #125 Ye, Minwei: Poster Tue #67 Yeh, Raymond: Oral Tue in Deep Learning, Apps., Poster

Yeh, Mi-Yen: Poster Mon #14 **Yehudayoff, Amir**: Spotlight Wed in Theory, Prob. Methods, Poster Wed #209 Yekhanin, Sergey: Spotlight Tue in Theory, Poster Tue #74, Poster Wed #69 Yeung, Dit-Yan: Spotlight Tue in Deep Learning, Apps., Poster Tue #110

Yi, Li: Poster Mon #13 Yi, Jinfeng: Poster Tue #62, Poster Wed #88 Yildirim, Ilker: Poster Tue #90 Yilmaz, Emine: Workshop Sat in

Yin, Mingzhang: Poster Wed

Yin, Wotao: Spotlight Wed in Opt., Poster Wed #169, Poster Wed #163

Ying, Yiming: Poster Tue #213 Ying, Zhitao: Poster Mon #71 Yoon, Sungroh: Poster Tue #75 Yoshida, Yuichi: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed #71 **Yosinski, Jason**: Poster Mon

Yosinski, Jason: Symposium Thu in Hall C

You, Seungil: Poster Mon #135 You, Tackgeun: Poster Holl #133 Young, Steve: Workshop Fri in Hyatt Regency Blrm A+B+C Yousefnezhad, Muhammad: Poster Wed #150, Spotlight Thu in Neuroscience

Yu, Haizi: Poster Mon #21 Yu, Yang: Poster Mon #159 Yu, Philip: Poster Mon #115, Poster Mon #7

Yu, Guangwei: Poster Mon #73 Yu, Yaoliang: Spotlight Tue in Algorithms, Poster Tue #10 Yu, Qian: Poster Tue #219 Yu, Mo: Poster Mon #104 Yu, Xiang: Poster Mon #122 Yu, Byron: Poster Tue #145 Yu, Hsiang-Fu: Poster Wed #89 Yu, Tianhe: Demo Tue Yu, Yong: Demo Wed Yu, Felix: Poster Tue #83 Yu, Zhiding: Spotlight Tue in Deep Learning, Apps., Poster Tue #129

Yu, Angela: Workshop Sat in

Yu, Hao: Poster Wed #55 Yuan, Xiaotong: Poster Tue #43 Yuan, Yang: Poster Wed #166 Yuille, Alan: Poster Tue #97 Yumer, Ersin: Poster Wed #40, Spotlight Thu in Deep Learning,

Algorithms
Yurochkin, Mikhail: Poster Mon
#43, Poster Wed #189
Yurtsever, Alp: Poster Tue #20
Zafar, Muhammad Bilal: Poster Wed #78

Zahavy, Tom: Poster Mon #201 Zaheer, Manzil: Poster Wed #132, Oral Thu in Deep Learning, Algorithms

Zaman, Arif: Poster Mon #61

Zambaldi, Vinicius: Poster Wed #86. Poster Wed #203 Zame, William: Poster Wed #90 Zanca, Dario: Poster Mon #145 Zaremba, Wojciech: Poster Mon #112, Poster Tue #199 Zeghidour, Neil: Poster Mon

Zemel, Richard: Poster Mon #119, Poster Mon #118, Spotlight Wed in Deep Learning, Poster Wed #103, Poster Wed #188

Zha, Hongyuan: Poster Mon #106, Poster Wed #82, Poster

Zhang, Hongyang: Poster Mon #211, Poster Mon #214 Zhang, Huan: Oral Wed in Opt., Poster Wed #167 Zhang, Yuyu: Spotlight Wed in Reinf. Learning, Poster Wed

Zhang, Tong: Poster Mon #54, Oral Tue in Algorithms, Poster Tue #49

Zhang, Zheng: Poster Mon

#129

Zhang, Ziming: Poster Tue #132 **zhang, zhoutong**: Poster Wed #146, Spotlight Thu in Neuroscience

Zhang, Lijun: Poster Mon #26, Poster Tue #62, Poster Wed #88

Zhang, Xinhua: Spotlight Tue in
Algorithms, Poster Tue #10,
Poster Wed #168

Zhang, Yu: Poster Tue #115 Zhang, Zhengyou: Poster Wed

Zhang, Yang: Poster Mon #104 Zhang, Ce: Oral Wed in Opt., Poster Wed #167

Zhang, Cheng: Poster Wed

Zhang, Yizhe: Poster Mon #84 Zhang, Wei: Oral Wed in Opt., Poster Wed #167

Zhang, Yan-Ming: Spotlight Tue in Deep Learning, Apps., Poster

Zhang, Yizhe: Poster Wed #116 Zhang, Liangpeng: Poster Tue

#200 Zhang, Saizheng: Demo Tue Zhang, Byoung-Tak: Spotlight Wed in Reinf. Learning, Algorithms, Apps., Poster Wed

Zhang, Chicheng: Poster Mon

Zhang, Yuqian: Poster Tue #161 Zhang, Richard: Poster Mon

Zhang, Cheng: Workshop Fri in

Zhang, Daoqiang: Poster Wed #150, Spotlight Thu in Neuroscience

Zhang, Cyril: Spotlight Tue in Algorithms, Poster Tue #7 **Zhang, Weinan**: Demo Wed Zhang, Boqian: Poster Mon

Zhang, Hao: Poster Wed #117 Zhang, Tong: Poster Mon #17, Poster Tue #96

Zhang, Kun: Poster Wed #186 Zhang, Zhi-Li: Poster Mon #16 Zhang, Martin: Poster Tue #124 Zhang, Bo: Poster Wed #115 Zhao, Qing: Poster Wed #60 Zhao, Jian: Poster Mon #131 **Zhao, Cong**: Spotlight Tue in Deep Learning, Apps., Poster Tue #101

Zhao, Han: Poster Wed #123 Zhao, Fang: Poster Mon #131 ZHAO, KAI: Poster Tue #97 Zhao, Tuo: Poster Mon #57, Poster Mon #54, Spotlight Tue in Deep Learning, Apps., Poster Tue #129

Zhao, Shengjia: Poster Tue #189

Zhaoran Wang, Princeton: Poster Tue #72

Zheng, Lianmin: Demo Wed Zhong, Guangyu: Poster Tue

Zhou, Zhi-Hua: Poster Mon #26, Poster Mon #159, Poster Tue #62 Zhou, Shuheng: Poster Mon

Zhou, Zhengyuan: Poster Mon #165. Poster Wed #211 **Zhu, Jun**: Poster Mon #141, Poster Wed #115 **Zhu, Jun-Yan**: Poster Mon #97

Zhu, Xiaojin: Workshop Sat in 104-A Zhu, Jun: Poster Wed #117 Zhu, Michael: Poster Tue #39 Zhu, Zhanxing: Poster Mon

Zhuang, Honglei: Poster Wed

Zhuang, Chengxu: Poster Wed #143, Oral Thu in Neuroscience Ziebart, Brian: Poster Mon #28 Zilles, Sandra: Workshop Sat in 104-A

Zimmer, Manuel: Workshop Fri

Zitnick, C. Lawrence: Oral Wed in Reinforcement Learning. Poster Wed #96 **Zitouni, Imed**: Oral Wed in

Reinforcement Learning, Algorithms, Applications, Poster

Zoran, Daniel: Poster Tue #117, Poster Tue #123 Zou, James: Poster Tue #124, Workshop Sat in 104-C Zou, Yuliang: Poster Mon #8 Zung, Jonathan: Poster Tue

Zwicker, Matthias: Spotlight Tue in Deep Learning, Applications, Poster Tue #86