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Abstract— Many cognitive tasks require the ability to main-
tain and manipulate simultaneously several chunks of infor-
mation. Numerous neurobiological observations have reported
that this ability, known as the working memory, is strongly
associated with the activity of the prefrontal cortex. Fur-
thermore, during resting state, the spontaneous activity of
the cortex exhibits exquisite spatiotemporal patterns sharing
similar features with the ones observed during specific memory
tasks.

Here, we propose a computational model of the prefrontal
cortex within the framework of the cell assembly theory. In that
framework, ‘a chunk of information’ refers to an associative
memory and consists of an ensemble of neurons which activates
coherently due to their strong interconnections. Our model
consists of a recurrent network of cells whose dynamics results
from the interplay between the membrane potential and the
theta local field potential.

I. INTRODUCTION

In recent years, different groups have reported that in

absence of any tasks or stimuli, the resting brain is not silent,

but spontaneously active, and that this spontaneous activity

exhibits exquisite spatiotemporal patterns of activity [1], [2],

[3]. Their data suggests that during spontaneous activity, the

brain activity itinerates through previously learned ’memo-

ries’ or ’thoughts’, in a way similar to chaotic itinerancy [4]

or frustrated dynamics [5].

More than fifty years ago, Hebb proposed the cell assem-

bly theory of cortical associative memory [6]. In this theory,

each memory is defined by a cell assembly, i.e. a set of cells

having strong synaptic weights between each other due to

the well-known Hebbian rule of synaptic plasticity. The func-

tional principles underlying that theory of memory has been

formalized mathematically as attractor neural networks and

is still a working concept in the neuroscience community for

the understanding of how the brain works. In the mammalian

brain, evidence suggests that memories are first formed in the

hippocampus and then are transferred for long time storage

in the cortex, and more specifically in the prefrontal cortex

(pfc). Following that view, we assume here that the prefrontal

cortex is characterized by the presence of multiple ’stored

memories’ in term of cell assemblies; each cell assembly

being defined by a set of cells having strong interconnections.

Within this framework, we expect that during spontaneous

activity, i.e. in absence of any external stimulation, the

different cell assemblies will be selectively reactivated in an

unpredictable way.
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The working memory appears as a fundamental component

in the realization of higher cognitive functions, and defines

the ability to hold and manipulate a limited amount of

information during short time periods [7]. The neural basis

of the working memory has been widely investigated in

primates by using delay to matching tasks. In these tasks,

the primate has to retain specific information during a short

period of time to guide a forthcoming response. Single cell

recordings has shown that during this delay period, some

cells located in specific brain areas had increased firing

rates [8], [9], [10]. By using neuro-imaging tools, the same

brain areas were observed to have increased activity [11].

Among the different areas which are believed to take part

in the working memory, we count the prefrontal cortex, the

posterior parietal cortex and parts of the basal ganglia and

of the thalamus [12].

This paper focuses on one of the defining features of

the working memory: the ability to actively hold a limited

amount of information in memory for a short time, which

is also called the short term memory. Following diverse

biological evidence [13], we suppose here that the short

term memory is an intrinsic feature of the prefrontal cortex.

In that view, the manipulation of the sustained informa-

tion (the second defining feature of the working memory)

would result from the interplay between different brain areas.

The numerous observations concerning the neural basis of

the working memory have inspired many neurobiologically

based computational models (e.g. [14], [15]). However, here,

for the first time, we propose a model of working memory

where each information is held by a specific cell assembly.

Ten years ago, Lisman and Idiart proposed a single cell

model of working memory where a fundamental role was

attributed to the rapid oscillations observed in the local field

potential (LFP) [16] (oscillations are commonly observed in

most brain areas, in association with specific brain states;

e.g. the hippocampal theta (4-8Hz) observed during REM

sleep). In their model, the subthreshold oscillations provided

by the theta LFP combined with the after-depolarization of

the membrane potential occurring after emission of an action

potential can sustain the repeated firing activity of the cell

at each cycle. Recently, converging evidence highlights the

important role played by the theta local field potential in

higher cognitive functions and more specifically in working

memory [17]. Following this view, the authors introduced

in a previous paper an oscillator model for a single cell

characterized by two variables: the membrane potential and

its phase relative to the theta LFP [18]. It was demonstrated

that a large range of different dynamics resulted from the
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interplay between these two variables and it was proposed

that specific dynamics could serve as the basis for a working

memory.

In this paper we investigate the dynamics of these cells

when bundled in large networks where cell assemblies were

previously stored in the synaptic weights. After reproducing

the classical paradigm of associative memory, i.e. that the

partial stimulation of a cell assembly entails its entire acti-

vation, we will investigate how a cell assembly can sustain

its activity when the stimulation is over. Furthermore, we

will investigate the possibility to maintain simultaneously

the activity of multiple cell assemblies (which can overlap)

without mixing their information.

II. METHODS AND MODEL

In our model, the prefrontal cortex is represented by a set

of N excitatory cells, each cell having excitatory connections

to the other cells (i.e. positive weights). To maintain sparse

activity in this excitatory network, global inhibition is further

simulated. The connectivity of the network is defined by

the presence of cell assemblies. A cell assembly aims to

store a piece of information in the form of an associative

memory and is here defined by a subset of cells having large

connecting weights. To link our study to neurophysiological

considerations, a single cell model motivated by biological

observations and based on oscillatory dynamics is introduced.

In previous studies, we demonstrated that the dynamics of

this system is characterized by the presence of a Milnor at-

tractor. To escape from it, random noise is further simulated.

This system enables to analyze the reactivation of pre-

viously stored patterns during spontaneous activity. During

working memory tasks, one or multiple cell assemblies are

first reactivated during a short period of time. Then, these

cell assemblies are supposed to be hold in memory; i.e.

to be selectively reactivated. To facilitate their reactivation,

short time plasticity is phenomenologically simulated during

periods of external stimulation.

A. Creation of cell assemblies

We phenomenologically assume the presence of M cell

assemblies. It implies first the identification of the cells

composing each cell assembly, then the specification of the

synaptic weights between cells lying in same or in different

cell assemblies.

1) Identifications of the cell assemblies: To define cell

assemblies in a straightforward and reproducible way, the

following parameters were introduced.

• r, number of cells composing a cell assembly;

• p, proportion of cells in a cell assembly having overlap

with other cell assemblies;

• q, the proportion of cells lying in two cell assemblies;

• the proportion of cells lying in more than two cell

assemblies. Since in our experiments, the network size,

and the number of cell assemblies were maintained

small, no cells were allowed to participate to more than

two cell assemblies.

For this paper, the following values were used for the

parameters: r = 10, p = 70% and q = 20%. It means that

a cell assembly is composed of 10 cells and that 7 of them

are shared with other cell assemblies. However, no more

than two cells can be common to two cell assemblies.

2) Specifications of the weights: The connectivity of

the network followed a bimodal distribution. Each synaptic

weight between cells lying in a same cell assembly was

assigned to a value obtained from a first normal distribution

(parameters: μ = 0.8, σ = 0.15) while other synaptic

weights were assigned to a value from a second normal

distribution (parameters: μ = 0.2, σ = 0.1). Then, the

total amount of synaptic weights impinging each cell was

normalized to unity.

B. Definition of PFC excitatory cells

To characterize pfc cells, two phenomenological models

are combined. First, following the attractor neural network

theory, each cell i is characterized by its membrane potential

Si, which is modulated by the activity of the other cells

through recurrent connections (Eq.1-up). Second, following

the tradition of oscillator networks, each cell i is character-

ized by a phase φi which is driven by the intracellular mem-

brane potential and modulated by additional inputs (Eq.1-

down). As a result, each cell’s dynamics results from the

non linear coupling between two simpler dynamics having

different time constant, in a reminiscent way of the working

memory cell proposed by Lisman and Idiart [16]. The state

of each cell is defined by {Si, φi} ∈ �× [0, 2π[ (i ∈ [1, N ])
and evolves according to the following equations:⎧⎨

⎩
dSi

dt
= −Si +

∑N

j=1
wijR(Sj) + Γi

dφi

dt
= ω + (β − Λi) sin φi

(1)

with wij , the synaptic weight between cells i and j, R(Sj),
the spike density of the cell j, and Γi, the sum of all

inputs to the cell. In the second equation, ω and β are

respectively the frequency and the stabilization coefficient

of the internal oscillation. Λi represents the variation of the

membrane potential according to impinging inputs.

The spike density is defined by a sigmoid function:

R(x) =
1

2
(tanh (g(x − 0.5)) + 1) , (2)

Following the oscillator dynamics theory, the cosine of the

phase stands for the oscillation current. Here, this current will

modulate the dynamics of the membrane potential S, and the

couplings between the two equations appear as follows:

Γi = σ(cos φi − cos φ0) + Ii (3)

Λi = ρSi (4)

where ρ and σ modulates the coupling between the in-

ternal oscillation and the membrane potential, and φ0 is
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the equilibrium phase obtained when all cells are silent

(Si = 0); i.e. φ0 = arcsin(−ω/β). Ii represents the driving

stimulus which enables to selectively activate a cell. In our

simulations, to observe how the information is sustained in

the network, stimuli will be applied during very short time

periods.

For this paper, the following values were used for the

parameters: ω = 1, β = 1.2, with g = 10, ρ = 1 and

σ = .96.

C. Inhibition and noise

The dynamics of a one-cell network can be fully theoret-

ically characterized, and the dynamics of two coupled cells

can be characterized in limit cases [18]. However, for a grow-

ing number of cells, mathematics becomes intractable and it

appears difficult to tune the different parameters to avoid

the saturation of this excitatory network. Here, to provide

robust dynamics in a wider range of the parameter space,

one inhibitory cell is introduced which prevents saturation

and provides sparse coding.

The inhibitory cell receives synaptic connections from all

pfc cells, summates them linearly and, according to some

threshold, inhibits all pfc cells. The following additional term

is added to Eq.3:

Γi → Γi − Δ

(
γ

(
N∑

i=1

R(Si) − κN

))
(5)

where Δ(x) = x for x > 0 and 0 elsewhere; κ (in %)

defines a threshold triggering the inhibition and γ defines

the strength of the inhibitory cell. Here we have κ = 0.03
and γ = 0.1

In Eq.1, it appears that the system is in a stable state when

Si = 0 and φi = φ0. To avoid global stabilization, random

noise continuously excites the network and Eq.3 becomes:

Γi → Γi + Υi (6)

Noise is obtained from a gaussian distribution (μ = 0.02
and σ = 0.01) and is applied only to a small subset of the

network (6% of cells). Every 200 computational steps new

noise values are assigned to a new subset of cells chosen

randomly.

D. Working memory tasks

It has been demonstrated in previous papers that these cells

could serve as the neural correlate for working memory in

small network and in the absence of cell assemblies [18].

We experienced that the story becomes more complex when

facing large networks containing multiple cell assemblies.

Here, we observed that if the transient stimulation of part

of a cell assembly can sustain the activity of the entire

cell assembly, it can also propagate to other cell assemblies

having overlapping cells. While this could be an acceptable

and viable choice, here, our goal was different: We wanted

specific stimuli to drive only the sustained activity of their

associated cell assemblies.

To this aim, the presentation of the input was associated

with a period of Hebbian short term plasticity. Since the

stimulus forces the activation of specific cell assemblies and

since inhibition tends to prevent the simultaneous activa-

tion of multiple cell assemblies, that period of short term

plasticity resulted in increasing the weights between cells of

the stimulated cell assembly. We believe that the proposed

mechanism can be related with growing evidence showing

that attention-like processes are associated with period of

short term plasticity [19], [20]. In that view, the period of

external stimulation should be associated with a state of

attention.

E. Experiments

This paper aimed to observe the activity of the cells,

and more specifically of the cell assemblies, following two

different scenario. First, the spontaneous activity of the

network was observed in absence of external stimuli. Second,

to analyze if our network can work as a working memory,

selective inputs Ii were transiently applied to a subset of one

or several cell assemblies. In this latter case, first we spec-

ified the number of cell assemblies to externally stimulate,

then each cell assembly was sequentially stimulated during

10 computational time steps. However, in agreement with

the cell assembly theory, only a small proportion of cells

composing the cell assemblies were stimulated (only 40% of

cells).

At each computational time step the activity of all cells

was monitored and we computed the proportion of reactiva-

tion of the different cell assemblies.

III. SIMULATION RESULTS

Before focusing on the main topic of this paper, i.e. the

analysis of the activity of cell assemblies during spontaneous

activity and during working memory tasks, we first discuss

briefly the dynamics characterizing the activity of one single

cell (see also [18]).

A. One cell dynamics and the Milnor attractor

In absence of external stimuli (I = 0 in Eq.3), the

dynamics stabilizes to the resting state M0 = (S0 = 0, φ0)
(with β > w, such that φ0 = arcsin(−w/β)). The linear

stability of that resting state is obtained by analyzing the

Jacobian of the system:{
0 = −S + σ(cos φ − cos φ0)
0 = ω + (β − ρS) sin φ

(7)

at the resting point M0:

DF |M0
=

(
−1 −σ sin φ0

−ρ sin φ0 β cos φ0

)
(8)

The stability of the system depends of the product μ = σρ.

Below a critical value μ < μc ( μc = β cos φ0/ sin2 φ0 ≈
0.96), M0 is stable. Above the critical value, M0 becomes

unstable. Further analyses show that the system has a second

fixed point M1 = (S1, φ1) which is unstable when M0 is

stable (with S1 > 0), and which becomes stable when M0

2008 International Joint Conference on Neural Networks (IJCNN 2008) 3071
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Fig. 2. Spontaneous activity in a 80 units network containing 8 overlapped cell assemblies of 10 cells each. The upper figure shows the membrane
potential of each individual cell (80 cells, each cell one color). The middle figure shows a rasterplot of the activity of each individual cell. The cell has
activity if its spike density is larger than 0.5. The lower figure shows the reactivation of the different cell assemblies (each assembly has its own color and
letter). It appears that periods of no-activity alternates with periods of activity during which specific cell assemblies are preferentially activated.

is unstable (with S1 < 0). At the critical value, the stability

of the two fixed points switches which defines a transcritical

bifurcation.

0 2000 4000 6000 8000

−
0.

5
0.

0
0.

5
1.

0
1.

5

M
em

br
an

e 
po

te
nt

ia
l S

(t
)

Fig. 1. Evolution of the membrane potential of one cell at the Milnor
attractor. The parameters are tuned such that the dynamics lies exactly at the
Milnor attractor, at the bifurcation point between two fixed point dynamics.

Since the stable and the unstable fixed points merge at

the critical point, the topology of the attractor no longer

defines a closed set: orbits can escape from the resting state.

Accordingly, most of initial conditions are attracted by the

resting state but then they can be kicked away from it by

infinitesimal perturbation. At that point, a complete cycle of

the phase occurs and the state is attracted again by the resting

state. It means that the unstable orbits cross the attractive

set. This particular dynamics defines a Milnor attractor, i.e.

an attractor according to the extended definition proposed by

Milnor [21] (see also [22], [23]).

Figure 1 shows the evolution of the membrane potential

of one single unit when μ = μc (here, 0.96). As explained,

the dynamics is successively attracted to the Milnor attractor

(S = 0), then escapes from it because of infinitesimal

perturbation, to fall again in the basin of attraction of the

resting state. In the simulation, a tiny perturbation (I =
0.0001) is constantly applied to the cell, to force the escape

of the resting state.

B. Spontaneous activity

In the previous section, we have shown that the single

cell dynamics is characterized by a Milnor attractor. In this

section, a network of N = 80 cells is simulated. We suppose

that this network contains M = 8 cell assemblies, each

cell assembly containing r = 10 cells. Cell assemblies are

overlapping in such a way that p = 70% of their cells belong

to other cell assemblies, with no more than q = 20% of cells

in common between two cell assemblies (see Section II-A for

more details).

Figure 2 shows the spontaneous activity of the network,

i.e. in absence of any external stimuli. The upper part of

the figure shows the evolution of the membrane potential for

the 80 cells (each cell is represented by a different color).

From comparisons with Figure 1, it appears that the Milnor

attractor is still playing an important role here: while global

inhibition tends to stabilize the network, the presence of

diverging orbits at the resting state is such that any tiny

perturbation is likely to kick out one cell out of the attractor,

and an oscillation occurs.

The middle part in Fig. 2 shows cells activity. Each period

of reactivation is associated with the activation of a specific

subset of cells. Lower part in Fig. 2 quantifies the proportion

of each cell assembly which is activated at each time step. It

appears that individual cell assemblies (characterized in the
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figure by a different color and letter) are likely to be activated

separately. During the observed period, all cell assemblies

are reactivated. It has to be noted that since cell assemblies

are overlapping, the total reactivation of a cell assembly is

necessarily associated with the partial reactivation of other

cell assemblies.

The activity of the network could be explained in the

following way: when one cell is activated, it tends to activate

the cells belonging to the same cell assembly. The simulta-

neous activation of multiple cell assemblies is prevented by

the global inhibition. The activated cells will undergo one

oscillation before going back to the resting state, nearby to

the Milnor attractor. At that time, any cell can be kicked

out of the attractor leading to the activation of a different

or the same cell assembly. As a result, the spontaneous

activity of our system is characterized by the Milnor attractor

which provides a kind of reset of our network, enabling

the activation of the different stored memories. However,

since cell assemblies are overlapping, the reactivation of

one specific cell assembly will tend to reactivate the cell

assemblies sharing common cells and a visible sequential

structure is visible. Still, the pathway followed along the

different memories defines a chaotic itinerancy [24], [25],

[26].

C. Working memory

In this section, after applying external stimulus during a

short time period to part of one or several cell assemblies

embedded in the network, we observe the network’s ability

to sustain the activity of these cell assemblies in agreement

with the theory of working memory. Figure3 shows the

activity of the 80 cells and the level of activity of the 8 cell

assemblies, after applying an external stimulation during a

few (10) computational steps. In Fig.3a, part (40%) of one

cell assembly was stimulated. In Fig.3b, part (40%) of three

cell assemblies were sequentially stimulated.

In agreement with the theory of associative memories, in

both scenario, rasterplot figures indicate that the stimulation

of 40% of a cell assembly results in its complete reactivation.

During the first activation, the cells composing the cell

assembly are activated at slightly different phases. However,

in their subsequent activations, all cells are activated at same

phases. Again, global inhibition prevents the simultaneous

activity of a large number of cells (here, the simultaneous

activity of 3 cells (κN = 0.03 ∗ 80) triggers inhibition).

As a result, we observe that only one cell assembly can be

activated at a given time step.

Figure 3a shows the sustain activity of one cell assembly.

After the external stimulation, a cycle of oscillation occurs

and the network is attracted again to its resting state. When

reaching the resting state, some cells are kicked away to

diverging orbits, attracting with them their associated cell

assembly. As explained Section II-D, during the stimulation

period, short time plasticity was simulated, and the weights

of the activated cells (i.e. of the selected cell assembly) were

slightly increased. As a result, the cell assembly having the

largest weights is activated and our model successfully leads

to the sustained activity of the desired memory.

Figure 3b shows the sustain activity of three cell as-

semblies (noted by the letters a, d, g). After the external

stimulation, the network is attracted to its resting state,

and again, we can observe the dynamics generated by the

presence of diverging orbits crossing attracting orbits. The

balance between excitation and inhibition results in the com-

petition of these 3 cell assemblies which leads to complex

patterns of activity. As a result, the three cell assemblies

show clear sustained activity, and these reactivations occur

at different times. This result appears important since their

simultaneous reactivation would mix them and would prevent

any possibility to decode the utile information embedded

in the network. Together, these results confirm that our

model satisfies one important defining feature of the working

memory: The ability to maintain short term memory.

IV. DISCUSSION

Converging evidence are suggesting that the prefrontal

cortex plays an important role both in the storing of long

term memories, and in the short-term maintenance and

manipulation of information in goal-directed tasks, i.e. in

working memory. Here, a computational theory of the pfc is

proposed focusing only on the ability to maintain information

during short periods after stimulation.

In a previous study [18], we developed the equations of

a biologically motivated cell characterized by two variables,

the cell’s membrane potential and the cell’s phase of firing

activity relatively to the theta local field potential. Theoretical

analyzes of the one-cell and two-cell networks revealed the

presence of numerous dynamics, one of them being the

presence of a Milnor attractor. When the cell is in the resting

state, a simple perturbation activates an oscillation of the

membrane potential followed by its attraction to the resting

state. As a result, in presence of tiny noise, this leads to

successive cycle of reactivation, i.e. to the maintenance of

the information (Figure 1). This leaded us to propose that a

simple unit could serve as the basis for a working memory.

Still, the complex dynamics provided by a single cell is

not enough to have a working memory. Here, we developed

the previous model to a more realistic application. In agree-

ment with the cell assembly theory of cortical associative

memories [6], we hypothesize that each memory, or chunk

of information, is represented by an ensemble of cells in-

terconnected with large synaptic weights [29]. As a result,

multiple overlapping cell assemblies were phenomenologi-

cally embedded in the network.

First simulations showed that the spontaneous activity of

the network is dynamically switching between the different

cell assemblies previously stored (Figure 2). This is sup-

ported by recent biological reports; for example, the spa-

tiotemporal pattern of activity of cortical neurons observed

during thalamically triggered events are similar to the ones

observed during spontaneous events [2]. In our model, the

Milnor attractor plays a crucial role: First, the diverging

orbits prevent the network from stabilizing to fixed point
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Fig. 3. Working memory in a 80 units network containing 8 overlapped cell assemblies of 10 cells each. In both figures a and b, the upper figures shows
the membrane potential of each individual cell (80 cells, each cell one color). Middle figures show the rasterplots of individual cells activity (a cell is said
to be in an active state if its spike density is larger than 0.5 (R(Si) > 0.5) . The lower figures show the reactivation of the different cell assemblies (each
assembly has its own color and letter). (a) An external stimulus was impinging part (40%) of one cell assembly during a short transient (10 computational
time steps). As a result, this cell assembly is continuously activated as a short term memory. (b) External stimuli are successively applied to part (40%)
of 3 cell assemblies (each CA is stimulated during 10 computational time steps). After stimulation, we observe that these 3 cell assemblies have sustained
activity.

dynamics. Second, the attracting orbits force the network

to go back to the quasi-stable state where it is receptive to

second order dynamics of the internal state and to external

stimuli. During that “receptive” or “attention-like” state, a

different information can be reactivated, which prevents the

network to be “occulted” by one information. As a result

chaotic dynamics is observed, in agreement with numerous

observations reporting that the brain is better characterized

by complex dynamics than by fixed point attractors [30],

[31], and with computational studies reporting that chaotic

dynamics plays important role in improving the formation

of memories [32], [28] and is necessary to itinerate through

them during spontaneous activity [4], [33].

Second simulations tested the capacity of the network

to transiently hold specific memories triggered by external

stimuli. To reliably and robustly enforce the activity of the

triggered cell assemblies, a short period of synaptic plasticity

was simulated, reproducing attention-like processes [19],

[20]. Results indicate first that the stimulation of part of the

cell assembly leads to its entire activation, as predicted by the
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theory of associative memory. Second, we confirmed that the

activity of one or multiple cell assemblies can selectively be

maintained in agreement with the working memory feature

observed in biological networks (Figure 3).

Following previous studies [34], [35], information in our

model is stored in the recurrent connections of the net-

work and is reactivated through spatio-temporal patterns of

activity. In our model, cells from a same cell assembly

are synchronously reactivated while different cell assemblies

are reactivated at different phases. This is a requisite of

information processing for decoding information and for

solving the famous binding problem. For example, let us

imagine that we have to remember two objects, a red triangle

and a green square. If all cells representing these two objects

were reactivated simultaneously, the components and features

would be mixed up and it would become impossible to know

if we had a red triangle, a red square or a complex image rep-

resented by all these cells (see also [36] for a formalization

of the binding problem) . Accordingly, our model solves the

binding problem by reactivating the different cell assemblies

at different phases.

Dynamics in our model is tightly related to the presence

of the different cell assemblies. To optimize the network, it is

important to understand how these cell assemblies are created

in brains. As suggested by numerous biological reports (e.g.

[27]), we believe that the formation of these cell assemblies

results from the transfer of hippocampal information. In that

view, during behavioral and/or attentional tasks, information

is first acquired and stored as cell assemblies in the CA3

recurrent connections (the CA3 is part of the hippocampus

and is characterized by massive recurrent connections). Then,

during sharp waves events occurring during sleep or immo-

bility, these cell assemblies are reactivated and are pushed

to the prefrontal cortex for long term storage. Future work

should link our hippocampal computational model already

described in a previous paper [28] to the cortical model

proposed here.

To summarize, we are proposing a compact, effective, and

powerful dynamical system of working memory which may

be a great platform for further conceptual extensions and

abstractions of information processing. The main features

of our computational model are the following. First, we

are simulating networks of interconnected cells, where cells

representing specific “objects”, memories or “chunks of

information” are bound together using synaptic plasticity

and where global inhibition prevents the saturation of the

network. Second, the dynamics is characterized by a Milnor

attractor which enforces chaotic itinerancy between the dif-

ferent remembered representations. As a result, our network

can act as a working memory, and the information conveyed

during spontaneous activity and working memory tasks ap-

pears similar. As the famous Colombian neurophysiologist

Rodolfo Llinas uses to say: “A persons waking life is a dream

modulated by the senses”[37].

REFERENCES

[1] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli.
Spontaneously emerging cortical representations of visual attributes.
Nature, 425:954–956, 2003.

[2] J.N. MacLean, B.O. Watson, G.B. Aaron, and R. Yuste. Internal
dynamics determine the cortical response to thalamic stimulation.
Neuron, 48:811823, 2005.

[3] Vincent JL. Buckner RL. Unrest at rest: default activity and sponta-
neous network correlations. Neuroimage, 37(4):1091–6, 2007.

[4] I. Tsuda. Towards an interpretation of dynamic neural activity in terms
of chaotic dynamical systems. Behavioral and Brain Sciences, 24,
2001.

[5] C. Molter, U. Salihoglu, and H. Bersini. The road to chaos by time
asymmetric hebbian learning in recurrent neural networks. Neural

Computation, 19(1):100, 2007.

[6] D. O. Hebb. The Organization of Behavior; a Neuropsychological

Theory. Wiley, New York, 1949.

[7] A.D. Baddeley. Working memory. Oxford University Press, New York,
1986.

[8] JM. Fuster and GE. Alexander. Neuron activity related to short-term
memory. Science, 173(997):652–4, 1971.

[9] JM. Fuster. Unit activity in prefrontal cortex during delayed-response
performance: neuronal correlates of transient memory. J Neurophysi-

ology, 36(1):61–78, 1973.

[10] G. Rainer, W.F. Asaad, and E.K. Miller. Selective representation
of relevant information by neurons in the primate prefrontal cortex.
Nature, 393:577–579, 1998.

[11] J. D. Cohen, W.M. Perlstein, T.S. Braver, L.E. Nystrom, D.C. Noll,
Jonides J, and E.E. Smith. Temporal dynamics of brain activation
during a working memory task. Nature, 386:604–608, 1997.

[12] P.S. Goldman-Rakic. Models of Information Processing in the Basal

Ganglia, pages 131–148. MIT Press, Cambridge, Massachusetts, 1995.

[13] Desimone R. Miller EK, Erickson CA. Neural mechanisms of visual
working memory in prefrontal cortex of the macaque. J Neurosci.,
16(16):5154–67, 1996.

[14] D. Durstewitz, J.K. Seamans, and T.J. Sejnowski. Neurocomputational
models of working memory. Nature Neuroscience, 3:1184–1191, 2000.

[15] F.G. Ashby, S.W. Ell, V.V. Valentin, and M.B. Casale. Frost: A dis-
tributed neurocomputational model of working memory maintenance.
J. Cog. Neurosc., 17(11):1728–1743, 2005.

[16] J.E. Lisman and M.A. Idiart. Storage of 7±2 short-term memories in
oscillatory subcycles. Science, 267:1512–1516, 1995.

[17] X. Wu, X. Chen, Z. Li, S. Han, and D.Zhang. Binding of verbal and
spatial information in human working memory involves large-scale
neural synchronization at theta frequency. NeuroImage, 35(4):1654–
1662, 2007.

[18] D. Colliaux, Y. Yamaguchi, C. Molter, and H. Wagatsuma. Working
memory dynamics in a flip-flop oscillations network model with milnor
attractor. Proceedings of ICONIP, Kyoto, Japan, 2007.

[19] Bruno van Swinderen. Attention-like processes in drosophila require
short-term memory genes. Science, 315(5818):1590–1593, 2007.

[20] IP. Jaaskelainen, J. Ahveninen, JW. Belliveau, T. Raij, and M. Sams.
Short-term plasticity in auditory cognition. Trends in Neuroscience,
30(12):653–661, 2007.

[21] J. Milnor. On the concept of attractor. Commun. Math. Phys.,
99(102):177–195, 1985.

[22] K. Kaneko. Dominance of milnor attractors in globally coupled
dynamical systems with more than 7±2 degrees of freedom. Physical

Review E, 66:055201, 2002.

[23] H. Wei, J. Zhang, F. Cousseau, T. Ozeki, and S. Amari. Dynamics of
learning near singularities in layered networks. Neural Computation,
20:813–843, 2008.

[24] I. Tsuda. Dynamic link of memorychaotic memory map in nonequi-
librium neural networks. Neural Networks, 5:313326, 1992.

[25] K. Kaneko. Pattern dynamics in spatiotemporal chaos. Physica D,
34:141, 1992.

[26] K. Kaneko and I. Tsuda. Chaotic itinerancy. Chaos: Focus Issue on

Chaotic Itinerancy, 13(3):926–936, 2003.
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