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Abstract

Complex real-time computations on multi-modal time-varying input streams are
carried out by generic cortical microcircuits. Obstacles for the development of ade-
quate theoretical models that could explain the seemingly universal power of corti-
cal microcircuits for real-time computing are the complexity and diversity of their
computational units (neurons and synapses), as well as the traditional emphasis on
offline computing in almost all theoretical approaches towards neural computation.
In this article we initiate a rigorous mathematical analysis of the real-time com-
puting capabilities of a new generation of models for neural computation, liquid
state machines, that can be implemented with – in fact benefit from – diverse com-
putational units. Hence realistic models for cortical microcircuits represent special
instances of such liquid state machines, without any need to simplify or homoge-
nize their diverse computational units. We present proofs of two theorems about
the potential computational power of such models for real-time computing, both on
analog input streams and for spike trains as inputs.

1 Introduction

We propose a new conceptual and theoretical framework for the analysis of
the power of cortical microcircuits for real-time computing. It has frequently
been conjectured, and there also exists empirical evidence to support this
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conjecture [1], that these neural microcircuits are not built individually for
each computational task arising in the cortex, but rather that the same basic
circuit architecture is used for diverse computational tasks in different brain
areas. This motivates the search for general principles that could endow such
generic recurrent neural circuits with seemingly “universal” computational
power, especially for real-time computing.

In computer science and mathematical logic there exist well-established theo-
retical frameworks for making such universality-conjectures precise. One such
framework characterizes the class of all digital functions that are in principle
computable (this is the class of recursive functions) and shows that Turing
machines have universal computational power with regard to this class. But
this framework is geared towards offline computations on digital inputs, and
is of little use for analyzing parallel real-time computations on analog func-
tions of time (or on spike trains) by neural circuits. The same holds for the
classical framework of computational complexity theory, where the class of
recursive functions is replaced by the class P of all digital functions that can
be computed within an acceptable (=polynomial) computation time.

We would like to argue that in contrast to Turing machines, generic compu-
tations by neural circuits are not digital, and are not carried out on static
inputs, but rather on functions of time (or time series). A circuit that gets as
input an analog function of time u(·) and outputs another function of time
y(·) defines a map F between functions of time. Such map is called an oper-
ator in mathematics, and a filter F in engineering. In lack of a better term
we will use the term filter in this article, although filters are usually viewed
in neuroscience as somewhat trivial signal procressing or preprossessing de-
vices, and are sometimes associated with specific approaches towards neural
computation that are currently not fashionable. However, one should not fall
into the trap of identifying the general term of a filter with special classes of
filters such as linear filters, quadratic filters, or more generally filters that can
be represented by a finite Volterra or Wiener series (see [2], [3], [4], [5]), that
all have rather limited computational capabilities. Rather one should keep in
mind that any input to any organism is a function of time, and any motor
output of an organism is a function of time. Hence the computation that they
perform is a special case of a filter. The same holds true for any artificial
behaving system, such as a robot.

Usually when one discusses filters, one automatically has a specific complexity
hierarchy for filters in mind: linear filters are at the lowest level of this hierar-
chy, the next level of the hierarchy consists of filters that can be represented
as a sum of a linear filter and a quadratic filter (i.e., a Volterra polynomial of
degree 2), the nth level of the hierarchy consists of all filters that can be rep-
resented as Volterra polynomials (or equivalently as Wiener polynomials) of
degree n, and the ∞-level of this hierarchy consists of all filters that can only
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be represented by infinite Volterra series. However even very basic computa-
tional tasks, such as for example the computational operation of a threshold
gate or a perceptron, see [4], require filters that are located at a fairly high
finite level, or even at the ∞-level of this hierarchy. Also the computational op-
eration executed by a single neuron places any realistic computational model
for even very simple neural circuits at the ∞-level of this hierarchy.

The approach pursued in this article suggests completely different representa-
tions and hierarchies for filters, which appear to be more useful for analyzing
neural computation. Basic filters that are of particular importance in neural
computation, such as the response of a thresholding device (for example a
spiking neuron) to an incoming spike train, can appear at a low level of such
alternative hierarchy. In fact, this alternative framework allows us to place
any filters, for example those filters that happen to be abundantly available in
some specific physical realization domain, at the bottom level of a hierarchy,
and to measure the complexity of any target filter F in terms of how many
such basis filters are needed to approximate F .

We had introduced in [6] a quite general computational model for filters, that
conceptually divides real-time processing into two complementary subtasks:

(1) separation of different input functions by a filter L that is composed of
finitely many basis filters B, drawn from some fixed pool B of filters

(2) static transformation of the current output of L into the current target
output of the system by some fixed readout map f , chosen from some
fixed pool F of “memory less” functions 1 .

The resulting computational model M = 〈L, f〉 is called a liquid state machine.
In contrast to the familiar finite state machine from computer science, which
provides the computational core of any Turing machine, it allows a potentially
infinite set of different output values xM(t) of the filter L (that may correspond
for example in a biological interpretation to the current activation state of a
recurrent neural circuit, or more abstractly to the current internal state of a
high dimensional dynamical system). This state xM(t) is liquid in the sense
that it will in general change continuously during the presentation of an input
function u(·), not just at prespecified discrete time points. It is left up to
the readout map f at which resolution this liquid state xM (t) is “read” and
transformed into the output (Mu)(t) of the liquid state machine M at time t.

Thus formally each liquid state machine M computes a filter that maps input
functions u(·) onto output functions (Mu)(·). 2 In accordance with common

1 These functions are called “memoryless” or “static” because they map discrete or
analog numbers on numbers, rather than functions of time on numbers or on other
functions of time.
2 We often write u(·) instead of u for the input functions in order to remind the
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conventions we write (Fu)(t) for the output of a filter F when F is applied to
the input function u(·). In this article all these functions will be interpreted as
functions of time. It is important to keep in mind that this filter output (Fu)(t)
at time t will in general not just depend on the value of the input function u(·)
at time t, but potentially on all values u(s) for s ≤ t. 3 Using this terminology
one can formally describe the two complementary computational operations
of a liquid state machine (LSM) M = 〈LM , fM〉 by the equation

xM(t) = (LMu)(t), (1)

i.e., all information about past values u(s), s ≤ t, of the input function u(·)
that might be needed for the output (Mu)(t) of the LSM M at time t is first
condensed into the current liquid state xM(t), and a second equation

(Mu)(t) = fM(xM(t)), (2)

which says that the output of M at time t is produced from xM (t) by applying
its static readout map fM to the current liquid state. In the application of
this framework to computations in recurrent neural circuits the first equation
describes (primarily) the task of temporal integration, and the second equa-
tion describes the familiar (and less) difficult task of spatial integration of
information.

A closely related computational model has independently been proposed in [7]
under the name of “echo state network”. This model is formulated for discrete
time and iterative updates of network states, rather than directly for filters.
We will show in section 2 that the approximation theorems that are proven in
this article can also be applied to such networks.

We will prove in this article that, under some mild conditions on the pool
B of basis filters and the class F of possible readout functions, the class of
LSMs M that are composed from basis filters in B and readout functions in F

have universal computational power with regard to a very interesting class of
computational operations on analog functions of time that we will now define.

reader that these inputs are functions (of time), rather than numbers. These input
functions range over some domain U , or the n-fold cross product Un of such domain
U . In the latter case u(·) ∈ Un represents a multi-dimensional input, consisting of
n functions of time that simultaneously enter the system. The output of all filters
that are considered in this article could also be multi-dimensional. However, a filter
with m-dimensional output is formally equivalent to m filters with one-dimensional
output. Hence we address in our notation only the case where the output of a filter is
some function y(·) ∈ R

R, i.e., a function that maps real numbers (usually interpreted
as time) into real numbers.
3 We restrict our attention in this article on causal filters F , where (Fu)(t) does
not depend on u(s) for s > t.
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We will only consider computational operations on functions of time that are
input-driven, in the sense that the output does not depend on any absolute
internal clock of the computational device. Filters that have this property are
called time invariant. Formally one says that a filter F is time invariant if any
temporal shift of the input function u(·) by some amount t0 causes a temporal
shift of the output function by the same amount t0, i.e., (Fut0)(t) = (Fu)(t+t0)
for all t, t0 ∈ R, where ut0(t) := u(t + t0). Note that if the domain U of input
functions u(·) is closed under temporal shifts, then a time invariant filter
F : Un → R

R is identified uniquely by the values y(0) = (Fu)(0) of its output
functions y(·) at time 0. In other words: in order to identify or characterize
a time invariant filter F we just have to observe its output values at time 0,
while its input varies over all functions u(·) ∈ Un. Hence one can replace in the
mathematical analysis such filter F by a functional, i.e. a simpler mathematical
object that maps input functions on real values (rather than on functions of
time).

Various theoretical models for analog computing are of little practical use
because they rely on hair-trigger decisions, for example they allow that the
output is 1 if the value of some real-valued variable x is ≥ 0, and 0 otherwise.
Another unrealistic aspect of some models for computation on functions of
time u(·) is that they allow that the output of the computation depends on
the full infinitely long history of the input function u(·). On the other hand it
was shown in [8] that recurrent analog neural networks automatically acquire
a fading memory quality as soon as any realistic type of noise is assumed for
their analog processing units. One may argue that this result destroys all hopes
that the amazing computational capabilities that have been predicted in some
theoretical articles on recurrent neural networks can be implemented in any
physical device, such as for example a biological neural system. Therefore,
instead of trying to simulate Turing machines, we focus in this article on
analog computations of continuous maps that can be expected to degrade
gracefully under the influence of noise (this has been empirically supported
by computer simulations reported in [6], where noise had been added to the
membrane potential of the integrate-and-fire neurons in the circuit). More
precisely, we restrict our attention to the computation of filters that have
fading memory. One may argue that no biologically relevant computations are
eliminated by this restriction. Fading memory is a continuity property of filters
F , which requires that for any input function u(·) ∈ Un the output (Fu)(0)
can be approximated by the outputs (Fv)(0) for any other input functions
v(·) ∈ Un that approximate u(·) on a sufficiently long time interval [−T, 0]
going back into the past. Formally one defines that F : Un → R

R has fading
memory if for every u ∈ Un and every ε > 0 there exist δ > 0 and T > 0
so that |(Fv)(0) − (Fu)(0)| < ε for all v ∈ U n with ‖u(t) − v(t)‖ < δ for all
t ∈ [−T, 0]. Informally, a filter F has fading memory if the most significant
bits of its current output value (Fu)(0) depend just on the most significant
bits of the values of its input function u(·) in some finite time interval [−T, 0]
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going back into the past. Thus, in order to compute the most significant bits
of (Fu)(0) it is not necessary to know the precise value of the input function
u(s) for any time s, and it is also not necessary to know anything about the
values of u(·) for more than a finite time interval back into the past. Note that
a filter F that has fading memory is automatically causal, i.e., (Fu)(0) does
not depend on values u(s) for s > 0.

In section 2 we will consider a corresponding notion of fading memory for
circuits, which begin their computation at a specific time point in a specific
initial state, and show that all these circuits define fading memory filters. This
creates a link between common concepts from circuit complexity theory and
the filter-based notation used in this article. Basically one just has to observe
that for computational devices with fading memory it does not matter whether
they have been driven “forever” by some time-varying input u : (−∞,∞) →
R

n (as suggested by the filter notation), or whether the computation had
been started at a specific time point tI very far back in the past, in some
unknown initial state xI . The filter-oriented notation is mathematically more
convenient, since one can eliminate the formal dependence on tI and xI , which
practically is of little interest for fading memory devices. We will show in
section 3 of this article that liquid state machines (LSMs) with basis filters
from some class B and readout maps from some class F have under mild
conditions on B and F universal computational power with regard to all time
invariant fading memory computations on continuous functions of time, in the
sense that any time invariant fading memory filter F can be approximated by
an LSM M from this class up to any given degree of precision. In section 4
this result is extended to the mathematically more difficult case where the
input functions u(·) represent spike trains, rather than continuous functions
of time.

The condition on the class B of basis filters that is needed for these results
is the following pointwise separation property: for any two input functions
u(·), v(·) ∈ Un with u(s) 6= v(s) for some s ≤ 0 there exists some filter B ∈ B

that separates u(·) and v(·), i.e., (Bu)(0) 6= (Bv)(0). Note that it is not re-
quired that there exists a filter B ∈ B with (Bu)(0) 6= (Bv)(0) for any two
functions u(·), v(·) ∈ Un with u(s) 6= v(s) for some s ≤ 0. Simple exam-
ples for classes B of filters that have this pointwise separation property are
the class of all delay filters u(·) 7→ ut0(·) (for t0 ∈ R) and the class of all
linear filters with impulse responses of the form h(t) = e−at with a > 0. A
biologically quite interesting class of filters that satisfies the formal require-
ment of the pointwise separation property is the class of filters defined by
standard models for dynamic synapses, see [9]. A liquid filter LM of an LSM
M is said to be composed of filters from B if there are finitely many filters
B1, . . . , Bm in B – to which we refer as basis filters in this context – so that
(LMu)(t) = 〈(B1u)(t), . . . , (Bmu)(t)〉 for all t ∈ R and all input functions u(·)
in Un. Thus for a biological interpretation an array of parallel input synapses
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with somewhat different synaptic parameters (that control their internal dy-
namics) would formally suffice to implement all desired liquid filters LM . How-
ever this argument ignores the fact that in reality the basis filters B not just
have to make (Bu)(0) 6= (Bv)(0) – as required by the pointwise separation
property – but they have to make sure that for all pairs of input functions
u(·), v(·) for which the target output of the system has to differ at time 0
there exists some component of the input to the readout module that assumes
at time 0 sufficiently different values for circuit inputs u(·) and v(·), so that
this difference can be picked up by the readout in spite of noise. Obviously the
complex recurrent architecture of cortical microcircuits (“loops within loops”)
and the diverse temporal responses of different types of neurons and synapses
(see for example [10] and [11]) contribute a rich repertoire of amplifiers for
input differences.

The condition on the class F of readout functions that is needed for our results
is the following approximation property, sometimes referred to as universal
approximation property in neural network theory: for any m ∈ N , any compact
(i.e., closed and bounded) set X ⊆ R

m, any continuous function h : X → R,
and any given ρ > 0, there exists some f in F so that |h(x) − f(x)| ≤ ρ for
all x ∈ X.

We will show in Theorem 3.1 of section 3 that those two conditions (pointwise
separation property of B and approximation property of F ) together guarantee
universal computational power for the corresponding class of LSMs, i.e. the
power to approximate any time invariant fading memory filter F on continuous
functions of time with any desired precision. In section 4 we define a suitable
notion of fading memory computations on spike trains, that allows us to prove
in Theorem 4.1 a corresponding result for LSMs that carry out computations
on spike trains.

The theoretical approach towards computation on spike trains that is proposed
in this article differs strongly from previous approaches that have focused
on the construction of specific circuits of spiking neurons that can carry out
specific computations on spike trains (see for example [12]). A generic problem
in these approaches is the need to construct special mechanisms for absorbing
and integrating information encoded in the interspike intervals of biologically
realistic input spike trains, whose interspike intervals are typically much larger
(in the range of 10 to 100 ms) than the transmission delays between neurons
in a cortical microcircuit (that tend to be below 5 ms). Furthermore these
explicit constructions of circuits of spiking neurons tend to produce circuits
with a dominant feedforward structure, in spite of the fact that biological
neural circuits are highly recurrent, simply because it is very hard (if not
impossible) to construct a recurrent circuit of spiking neurons that has a given
input/output behavior.
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On the other hand it had already been shown in [13] that generic recurrent
circuits of integrate-and-fire neurons are able to transform temporal input pat-
terns into spatial activity patterns of the circuit. Hence one may argue that it
is not necessary to understand, or even control, the full input/output behav-
ior of such circuits. Instead, it suffices to verify that such recurrent circuits
have the pointwise separation property (practically it even suffices to verify
this pointwise separation property for input function u(·) and v(·) for which
the target output of the filter should be different). In fact, extensive computer
simulations of rather realistic models for biological neural circuits [6] suggest
that a randomly drawn recurrent circuit consisting of a few hundred neurons,
can separate a very large class of different input spike trains through its state
of activation at some later time point t. Hence one can restrict all constructive
(or adaptive) effort for approximating a given filter F by a recurrent circuit of
spiking neurons to the selection or learning of an appropriate readout map f .
It is known (see [14] that already a single pool of spiking neurons (with just
feedforward connections into this pool, and out of this pool) can provide such
f : it can approximate any given continuous function, and hence has the desired
approximation property. Furthermore there exists a simple local learning rule
that can adapt such pool of spiking neurons to approximate a specific given
continuous function (see [14], [6]). Alternatively one could approximate by
spiking neurons any other class of feedforward neural networks that is known
to have the universal approximation property, such as multi-layer perceptrons
(see [15] for an approximation of these artificial neural networks by networks
of spiking neurons). Thus the theoretical approach that is outlined in this
paper suggests to approximate a given input/output behavior F on functions
of time (or spike trains) by first picking randomly some sufficiently complex
recurrent circuits of spiking neurons, and then adapting the weights of a pool
of output neurons to approximate the given target outputs. This approach
is biologically more realistic from the point of view of learning than learning
algorithms that aim at modifying the state trajectory of the recurrent circuit,
since the neurons that produce the actual circuit output have better access
to error signals, and it is clearer in which direction a synaptic weight should
be changed in order to reduce the output error, compared with neurons deep
inside the recurrent circuit.

In addition this approach has the advantage that the same recurrent circuit
can be used simultaneously – with the help of additional other readout func-
tions that can be trained independently – to compute in parallel different
outputs from the same input u(·). This provides a new paradigm for parallel
computation in real-time on time-varying input that appears to be rather at-
tractive from the biological point of view. In other words: m different filters
F1, . . . , Fm can be implemented with the same recurrent circuit (i.e., the same
L), yielding a giant saving of hardware (i.e., neurons).

Altogether the computational approach pursued in this article suggests that
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for analyzing computations in cortical microcircuits it may be less fruitful
trying to understand how (in which specific code) different sensory inputs are
represented by the very high-dimensional vector that describes the current
circuit activity, a question that is usually phrased as the question of neu-
ral coding or neural representation of external stimuli. The more important
question from the point of view of the neural system (more precisely: from
the point of view of the readout modules of the neural system) is how well
saliently different inputs are separated through the high-dimensional vectors
describing the current neural activity. In this way one arrives on a completely
different road at the concept of “intelligence without representation”, that
has previously been proposed in the context of robotics [16] in order to over-
come known deficiencies of traditional approaches from artificial intelligence
in coping with the need to deliver adequate output-behaviours in real-time for
realistically complex sensory input streams.

2 Recurrent Circuits with Fading Memory Define Filters with Fad-

ing Memory

There exists a difference between the type of functions computed by circuits
and the type of functions represented by filters. A filter F assigns an output
value (Fu)(t) to a time point t ∈ R and an input function u : R → R (or
u : R → R

n), assuming implicitly that input has been coming in “forever”.
In contrast, computations in circuits are usually assumed to start at some
concrete time point tI < t back in the past, in some concrete initial state xI ,
thereby defining a circuit output C(xI , ud[tI ,t], t) ∈ R at the current time t

that depends just on a finite segment ud[tI ,t] of the input function u(·), but
in addition on the initial state xI of the circuit. However many recurrent
circuits have fading memory, which implies that the current circuit output
C(xI , ud[tI ,t], t) depends less and less on its initial state xI when t − tI grows.
We prove that any such circuit C with fading memory defines a fading memory
filter FC through the definition (FCu)(t) := limtI→−∞ C(xI , ud[tI ,t], t), where
arbitrary initial values xI may be used on the r.h.s. Therefore it is justified
to model a circuit with fading memory whose activity had started a relatively
long time ago (which is usually the case for a biological neural circuit) by a
fading memory filter. Thus, as long as one restricts the attention to circuits
and filters with fading memory, the structural difference between these two
computational frameworks disappears (or rather: fades away). This result,
which we formulate precisely as Theorem 2.1, creates in particular a bridge
between the filter-oriented mathematical analysis pursued in this article, and
the circuit-oriented mathematical analysis in [7] of closely related effects for
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artificial neural network models.

Definition 2.1 Fix some space U of input functions u : R → R, and let C

be a circuit that assigns to any initial state xI from some set I, any t ∈ R,
and any finite segment ud[tI ,t] of a function (or vector of functions) u(·) ∈ U n

some output C(xI , ud[tI ,t], t) ∈ R. We say that this circuit C has fading memory
(relative to U and I) if there exists for every t ∈ R and every ε > 0 some
δ > 0 and tI < t so that |C(xI , ud[tI ,t], t)−C(x

′

I , vd[tI ,t], t)| < ε for all u, v ∈ Un

and for all xI , x
′

I ∈ I, provided that ‖u(t′) − v(t′)‖ ≤ δ for all t′ ∈ [tI , t].

Note: We assume that any circuit C has associated with it a state tran-
sition function SC so that SC(xI , ud[tI ,t], t) ∈ I (which represents the in-
ternal state of circuit C at time t) has the property that C(xI , ud[tI ,t], t) =
C(SC(xI , ud[tI ,t′], t

′), ud[t′,t], t) for any t′ ∈ [tI , t].

Theorem 2.1 Any circuit C that has fading memory (relative to U and I)
defines a fading memory filter FC : Un → R

R through the definition

(FCu)(t) := lim
tI→−∞

C(xI , ud[tI ,t], t),

where arbitrary initial states xI ∈ I may be used on the r.h.s.

Remark 2.2 All the concepts and results of this paper can also be formulated
for discrete instead of continuous time. For discrete time it was shown in [7]
that any network which is uniformly state contracting in the sense of Definition
4 in [7] defines a circuit that has fading memory according to our preceding
definition, and hence according to the preceding Theorem 2.1 a fading memory
filter. Thus all the sigmoidal networks with weight matrix ‖W‖ < 1 that are
considered in [7] provide interesting special cases of fading memory filters.

Proof of Theorem 2.1: We first show that limtI→−∞ C(xI , ud[tI ,t], t) exists,
for any choices of states xI ∈ I for the initial time points tI < t. Fix some
ε > 0. We show that there exists some tI < t so that |C(x̂I , ud[t1,t], t) −
C(x̃I , ud[t2,t], t)| < ε for any x̂I , x̃I ∈ I, any u ∈ Un, and any t1, t2 ≤ tI .
Since C is assumed to have fading memory, there exists some tI < t so that
|C(xI , ud[tI ,t], t) − C(x′

I , ud[tI ,t], t)| < ε for all xI , x
′
I ∈ I and all u ∈ Un. Set

xI := SC(x̂I , ud[t1,tI ], tI) and x′
I := SC(x̃I , ud[t2,tI ], tI). Then |C(x̂I , ud[t1,t], t)−

C(x̃I , ud[t2,t], t)| < ε according to the basic property of the state transition
function S. Thus we have shown that the filter FC is well-defined by the defi-
nition in the claim of Theorem 2.1. In fact we have shown that the convergence
to (FCu)(t) is uniform in u, which we will need for the second part of this proof.

It remains to be shown that this filter FC has fading memory. Fix some u ∈ Un

and ε > 0. We have to prove that there exist δ > 0 and T > 0 so that
|(FCv)(0) − (FCu)(0)| < ε for all v ∈ Un with ‖u(t) − v(t)‖ < δ for all t ∈
[−T, 0]. Fix ∆ > 0 so that |(FC ũ)(0) − C(x̃I , ũd[tI ,0], 0)| < ε

3
for all x̃I ∈ I, all
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ũ ∈ Un, and all tI ≤ −∆ (we exploit here that the circuit outputs converge to
(FC ũ)(0) uniformly in ũ for tI → −∞, which follows from the first part of the
proof). Furthermore fix δ > 0 and ∆′ > 0 according to the definition of fading
memory for circuits so that |C(xI , ud[−∆′,0], 0) − C(x′

I , vd[−∆′,0], 0)| < ε
3

for all
u, v ∈ Un and xI , x

′
I ∈ I, provided that ‖u(t′)− v(t′)‖ ≤ δ for all t′ ∈ [−∆′, 0].

Since xI , x
′
I ∈ I are allowed to be arbitrarily chosen, the same property holds

with the same δ > 0 for any tI ≤ −∆′ instead of −∆′ (use the state transition
function SC). Set tI := −max(∆, ∆′). Then if ‖u(t) − v(t)‖ ≤ δ for all t ∈
[−T, 0], we have for any xI , x

′
I ∈ I that C(xI , ud[tI ,0], 0)−C(x′

I , vd[tI ,0], 0)| < ε
3
,

|(FCu)(0)−C(xI , ud[tI ,0], 0)| < ε
3
, and |(FCv)(0)−C(xI , vd[tI ,0], 0)| < ε

3
, hence

|(FCu)(0) − (FCv)(0)| < ε. 2

Remark 2.3 One usually assumes that a circuit C has no absolute depen-
dence on time, i.e., that the internal state and current output of C just depend
on the time that has passed since the circuit C had been activated (but of
course also on the initial state xI and the input that has entered the cir-
cuit in the meantime). Such circuit C is time invariant in the sense that
C(xI , u

t0d[tI ,t], t) = C(xI , ud[tI+t0,t+t0], t + t0) for all functions ut0 ∈ Un defined
by ut0(t) = u(t + t0). If a circuit C with fading memory is time invariant in
this sense, then the filter FC that is defined by C has not only fading memory,
but is in addition time invariant.

3 Real-Time Computing with Analog Input

In this section we discuss the mathematically simpler case of computations
on continuous input functions, such as for example the postsynaptic currents
(or contributions to the membrane potential) in neurons of a neural circuit
that result from spiking activity in afferent neurons, i.e., neurons that are not
components of the considered circuit. These inputs can be modeled by a vector
of continuous functions of time u : R → R. In this interpretation it is justified
to assume that the values of these functions are uniformly bounded, and also
that their steepness (= absolute value of the derivative in case that they are
differentiable) is uniformly bounded. Both assumptions will be needed for the
subsequent theorem. More precisely, we assume that the domain U of input
functions has the form

U = {u : R → [−K, K] : |u(s) − u(t)| ≤ K ′ · |s − t| for all s, t ∈ R}

11



for some arbitrary constants K, K ′ > 0. The filters in the subsequent theorem
are applied to vectors u = 〈u1, . . . , un〉 of functions from U for some arbitrary
fixed n ∈ N .

In order to be able to approximate any given time invariant fading memory
filter F by liquid state machines M with liquid filters LM composed from
basis filters B1, . . . , Bm from some fixed class B of basis filters, it is obviously
necessary that B has the pointwise separation property, because for any u, v ∈
Un with u(s) 6= v(s) for some s ≤ 0 there exists a time invariant fading memory
filter F with (Fu)(0) 6= (Fv)(0). Obviously this filter F can be approximated
arbitrarily closely by liquid state machines with basis filters from B only if
there exists some basis filter B ∈ B with (Bu)(0) 6= (Bv)(0). The following
theorem shows that this necessary condition is essentially also sufficient.

Theorem 3.1 Assume that B is an arbitrary class of time invariant fading
memory filters that has the pointwise separation property. Furthermore assume
that F is an arbitrary class of functions that has the approximation property.

Then any given time invariant fading memory filter F can be approximated
arbitrarily closely by LSMs M with liquid filter LM composed from basis filters
in B and readout maps fM chosen from F . In formal terminology: For every
ε > 0 there exist m ∈ N, B1, . . . , Bm ∈ B and fM ∈ F so that the LSM M =
〈LM , fM〉 with LM composed of B1, . . . , Bm satisfies |(Fu)(t) − (Mu)(t)| < ε

for all u ∈ Un and all t ∈ R.

Furthermore, if all functions in F are continuous, then a given filter F can be
approximated arbitrarily closely by such LSMs if and only if F is time invariant
and has fading memory.

Remark 3.2 A remarkable consequence of this theorem is that for a large
variety of classes B of basis filters (such as delay lines, linear filters, dynamic
synapses, or circuits with fading memory) the pointwise separation property,
in combination with sufficiently “flexible” readout maps, endows the resulting
LSMs with “universal computational power” in the giant class of filters F that
are time invariant and have fading memory. In fact, one may argue that any
neural computation that may be vital for the survival of an organism can be
represented by such time invariant fading memory filter F .

Proof of Theorem 3.1: The last part of the theorem (“if and only if”) follows
immediately from the first part, because any LSM M = 〈LM , fM〉 with LM

composed from time invariant fading memory filters (from B) and a continuous
function fM represents a time invariant fading memory filter. Furthermore
time invariance and fading memory are properties that are inherited by any
filter F that can be approximated arbitrarily closely by time invariant fading
memory filters.
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The first part of the theorem follows from the Stone-Weierstrass Approxima-
tion Theorem, similarly as in [17], see also [18]. For simplicity of notation we
just consider the case n = 1 (the case n > 1 is analogous). We apply the
Stone-Weierstrass Theorem (see for example [19]) to functionals that map

U− := {ud(−∞,0] : u ∈ U}

into R (where ud(−∞,0] is the restriction of the function u : R → R to the
domain (−∞, 0]; the set U was defined before Theorem 3.1. The transition
to functionals is necessary because the Stone-Weierstrass Theorem can only
be applied to functions with values in R, hence not directly to filters (whose
values are from R

R, rather than R). Note that a fading memory filter F is
automatically causal, hence the value of (Fu)(0) depends only on ud(−∞,0].
Furthermore, since U is closed under shifts in time, any time invariant filter
F : U → R

R is already completely determined by its values (Fu)(0) for u ∈ U .
Hence we can define for any fading memory filter F the value (Fud(−∞,0])(0) of
F for input functions from U− uniquely as the value (Fv)(0) for any v ∈ U with
vd(−∞,0] = ud(−∞,0]. Furthermore, if a filter F : U → R

R is time invariant, then
it is already uniquely determined by these values (Fud(−∞,0])(0) for u ∈ U .

We will apply the following formulation of the Stone-Weierstrass Theorem
from [19]: Assume that E is a compact metric space, and S is a set of con-
tinuous functions from E into R that has the pointwise separation property
(i.e., for any u, v ∈ E with u 6= v there exists some function B ∈ S with
B(u) 6= B(v)). Then there exist for any continuous function F from E into R

and for any ε > 0 some functions B1, . . . , Bm in S and a polynomial 4 p such
that |F (u) − p(B1, . . . , Bm)(u)| ≤ ε for every u ∈ E.

In order to apply this result for the proof of Theorem 3.1 we just have to
show that U− can be endowed with a metric d that turns U− into a compact
metric space. Furthermore this metric d needs to have the property that for
any fading memory filter F on U the function from U− into R defined by
(Fud(−∞,0])(0) is continuous with respect to this metric d on U−. In addition
we have to show that the polynomials p can be replaced by functions f ∈ F .

We define a function d : U− × U− → R by

d(u, v) : = sup
t≤0

|u(t) − v(t)|

1 + |t|
.

4 Sums and products of functions Bi, Bj ∈ S are pointwise defined, e. g. (Bi ·
Bj)(u) := (Bi(u)) · (Bj(u)). Once one has defined sums and products of functions in
S, the definition of a polynomial p(B1, . . . , Bm) of functions in S is obvious. Note
that such polynomial may also have a constant term, with an arbitrary real value.
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Lemma 3.3 The function d defines a metric on U− that turns U− into a
compact metric space.

We refer to the Appendix for a proof of Lemma 3.3.

If F is any filter on U with fading memory, there exists for every given u ∈ U

and every given ρ > 0 some δ > 0 and T > 0 so that |(Fu)(0)− (Fv)(0)| < ρ

for all v ∈ U with the property that |u(t) − v(t)| < δ for all t ∈ [−T, 0].
Set δ′ := δ

1+T
. Then it is obvious that for any v ∈ U− the assumption

d(ud(−∞,0], vd(−∞,0]) < δ′ implies that |u(t)−v(t)|
1+|t|

< δ′, and hence |u(t) − v(t)| <

δ, for all t ∈ [−T, 0]. Thus |(Fud(−∞,0])(0) − (Fvd(−∞,0])(0)| < ρ for any
ud(−∞,0], vd(−∞,0] in U− with d(ud(−∞,0], vd(−∞,0]) < δ′. Hence the function
from U− into R defined by (Fud(−∞,0])(0) is continuous with respect to the
metric d on U−.

To complete the proof of Theorem 3.1 it just remains to show that the polyno-
mial p, which occurs in the statement of the Stone-Weierstrass Theorem, can
be replaced in our context by a function f ∈ F . Since all basis filters B ∈ B

are assumed to have fading memory, they yield continuous functions from the
metric space 〈U−, d〉 into R. Since 〈U−, d〉 is compact according to Lemma 3.3,
any continuous function with domain 〈U−, d〉 has a bounded range. Hence it
suffices to approximate the given polynomial p(B1, . . . , Bm) on a compact sub-
set S of R

m. The approximation property of the class F implies that there
exists for every ρ > 0 some f ∈ F so that |p(x)− f(x)| < ρ for all x ∈ S. This
completes the proof of Theorem 3.1. 2

4 Real-Time Computing on Spike Trains

Previous theoretical work on computations with spiking neurons has usually
focused on computing with single spikes (see [20] for a survey). In this section
we address the question which computations on spike trains can in principle
be carried out by neural circuits.

We show in Theorem 4.1 that if there exists for any two different spike trains
u and v a neural circuit Bu,v that can separate u and v (through its activity
at time 0, after the spike train was given as input to the circuit), then an
extremely large set of computations on spike trains can be carried out by
networks of spiking neurons.
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The existence of such circuits Bu,v has not yet been rigorously proven. But
computer simulations (see [6,21]) show that randomly connected circuits of
spiking neurons with a sufficient number of recurrent synaptic connections
will typically assume different states at time 0 in response to spike input
that differed significantly during the preceding 1000 ms. In fact, if the con-
nection density is very high, some networks of spiking neurons tend to be
chaotic, i.e., their current state amplifies and preserves even small differences
between earlier circuit states for extended periods of time [22]. Some closely
related theoretical results for recurrent threshold circuits with online input
that characterize parameter regimes where such circuits have good represen-
tation properties were recently presented in [23]. Thus altogether one might
argue that the separation property of neural circuits for spike input, which
is one of the assumptions of the subsequent Theorem 4.1, appears to be a
reasonable assumption from a pragmatic point of view (for inputs u, v that
differed not too long back in the past, say during the last few seconds), but
that it is still an open problem from a theoretical point of view.

The other assumption of Theorem 4.1 is the existence of a class F of possible
readout function that has the approximation property. This assumption can in
principle be satisfied by pools of spiking neurons since pools of spiking neurons
can approximate any given continuous function on static inputs (see [24] and
[14] for a proof).

In order to model the computation of a neural circuit on spike input by a fading
memory filter, as we do in this section, one also needs to assume that the circuit
output depends continuously on the temporal structure of the spike input to
the circuit, i.e. moving the arrival time of a spike by an infinitesimal amount
changes the circuit output just by an infinitesimal amount. This assumption
is approximately satisfied if one takes into account that a biological circuit
of neurons is really a stochastic system, and in order to arrive at a formally
deterministic output one needs to average: either over space, i.e., over the
outputs of several basically identical circuits, or over time, i.e. over several
trials with the same input. Obviously only the averaging over space can be
carried out by a neural system in real-time. Furthermore we view the effects of
the output neurons of the circuit on the membrane potential of postsynaptic
neurons as the output of the filter, rather than the output spikes themselves,
in order to approximate the computational operation of a neural circuit with
spike input by a fading memory filter with spike input.

The theoretical result about the computational power of networks of spik-
ing neurons that is presented in this section has consequences for practical
computations with spiking neurons in software- and hardware simulations. In
fact, computer simulations suggest that the theoretical predictions about ef-
fects that occur “in the limit” become already clearly visible for rather small
networks, even in the presence of noise. Although our theoretical result leaves
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open the question how large a network of spiking neurons needs to be in or-
der to carry out a given computation on spike trains, and also leaves open
the question how that computation would be affected by noise, the computer
simulations of [25,6,21] suggest that a large variety of complex computational
operations on spike trains can be carried out by networks consisting of a few
hundred neurons, even with noise added to the membrane potential of these
neurons. Actually, to the best of our knowledge the paradigm for computations
on spike trains that is suggested by the subsequent Theorem 4.1 provides at
present the only strategy for implementing a given complex computation on
spike trains by a circuit of spiking neurons.

The analysis of the computational power of LSMs on continuous input func-
tions from section 3 cannot be applied directly to the case where the input u

consists of spike trains, i.e., of sequences of point events in time. As mathe-
matical object one can view a spike train u simply as a subset of R: the set of
time points where a spike occurs in the spike train, or equivalently (up to some
fixed delay): the set of firing times of the neuron that emits this spike train).
Alternatively one could represent each spike train u (defined as a subset of R)
as a function fu : R → {0, 1} with fu(t) = 1 ⇔ t ∈ u. Due to the firing mech-
anism of biological neurons there exists some minimal distance ∆ > 0 (say,
∆ = 0.1ms) between any two firing times of the same neuron. Hence it is safe
to assume that the sets u ⊆ R that represent spike trains are not arbitrarily
dense, but that |s − t| ≥ ∆ for any two different points s, t ∈ u. This rather
trivial condition will be essential for the subsequent mathematical analysis.
We denote the class of all sets u ⊆ R with this property by U∆, where ∆ > 0
is some arbitrary fixed parameter (say: ∆ = 0.1ms).

From the point of view of mathematics there exist some pretty weird func-
tions F from spike trains into real numbers, that cannot be expected to be
computable by any realistic network of spiking neurons under realistic noisy
conditions. Examples are functions F that output 1 if the last interspike in-
terval was ≥ π, and 0 otherwise, or functions F that output 1 if the infinite
sequence of spikes in the preceding spike train encodes – one bit per spike –
an infinite bit sequence that corresponds to an irrational number, and that
output 0 if this infinite bit sequence encodes a rational number. Hence be-
fore one can formulate a practically meaningful result about the capability of
LSMs to approximate any given “relevant” map F from spike trains into real
numbers, one first has to identify a suitable class of such maps F that may
serve as “computational universe” for this purpose. Obviously the output of F

needs to depend in a continuous way on spike times in the input, since other-
wise no physical device can implement it. For the same reason the amount of
information that F needs to “remember” from past interspike intervals of the
input spike train should be finite. We will show that a variation of the fading
memory notion, that was discussed in the preceding section, can be used to
define a suitable universe for analyzing realistic computations on spike trains.
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We define a suitable notion of fading memory for filters F : Un
∆ → R

R that
map arrays of n spike trains from U∆ into arbitrary functions of time. The
corresponding definition from section 1 for continuous input functions can-
not be applied to functions fu, fv : R → {0, 1} that represent spike trains,
since these functions have the property that for any δ ≤ 1 the condition
|fu(t) − fv(t)| < δ implies already that fu(t) = fv(t), i.e., t ∈ u ⇐⇒ t ∈ v.
One also expects from any function F on spike trains that can be realistically
computed by a neural circuit that its output Fu does not depend on hair-
trigger decisions regarding the precise timing of spikes in the input u. Instead,
one expects that infinitesimal changes of firing times in the input spike trains
cause only infinitesimal changes in the output value of F . In addition one does
not expect from any biologically realistic computation on spike trains that its
current output depends in an essential manner on the spike times of infinitely
many input spikes. Both of these conditions are formalized in the subsequent
definition of fading memory on spike trains. We assume here always that the
output of F is some smooth function of time, such as the currents (or changes
in membrane voltage) that a neural circuit triggers in subsequent neurons to
which it is synaptically connected. Hence the subsequent theory cannot be
applied directly to the case where the output of the computation of a neural
circuit is the spike train of some neuron ν, but it can be applied to model the
time course of the currents that are injected into such output neuron ν by a
neural circuit.

Definition: 5 Informally a filter F : U∆ → R
R has fading memory on spike

trains if for any spike trains u, v ∈ U∆ and any time point t the difference
|(Fu)(t)−(Fv)(t)| becomes arbitrarily small in case that (for some sufficiently
large m ∈ N) the spike times of the last m spikes in u are sufficiently close to
the spike times of the corresponding spikes in v.

The formal definition is somewhat more complex, since we have to take into
account that u and v may contain different numbers of spikes. In that case one
has to demand that all “extra spikes” in one of the two spike trains occurred

5 An alternative definition of fading memory on spike trains is made explicit in the
proof of Theorem 4.1 (see Lemma 4.6): A time invariant filter F : U∆ → R

R has
fading memory on spike trains if and only if there exists for every u ∈ U∆ and every
ε > 0 some δ > 0 such that |(Fu ∩ (−∞, 0])(0) − (Fv ∩ (−∞, 0])(0)| < ε for every
v ∈ U∆ with

0
∫

−∞

|Cu(t) − Cv(t)|

t2
d t < δ ,

where Cu is a smooth function from R into R that results form replacing each
“spike” s ≤ 0 in u by some continuous “hill” (Cv is defined analogously).
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sufficiently far back in the past. Formally, we say that a filter F : U∆ → R
R

has fading memory on spike trains if for every u ∈ U∆ and every ε > 0 the
following holds: There exist δ > 0 and m ∈ N such that |(Fu)(t)−(Fv)(t)| < ε

for every v ∈ U∆ that satisfies the following conditions:

i) if |u ∩ (−∞, t]| ≥ m then |v ∩ (−∞, t]| ≥ m and for each k ≤ m

the kth last point in u∩ (−∞, t] has distance ≤ δ from the kth last point in
v ∩ (−∞, t]

ii) if mu := |u ∩ (−∞, t]| < m then |v ∩ (−∞, t]| ≥ mu, and for each
k ≤ mu the kth last point in u∩ (−∞, t] has distance ≤ δ from the kth last
point in v ∩ (−∞, t], and all other points in v ∩ (−∞, t] are ≤ −m.

The class of filters on spike trains that satisfy these conditions is very large.
In fact, one might argue that it contains any map from spike trains (e. g. spike
trains form sensory neurons) to muscle activations that a behaving organism
might need to compute in order to survive.

The following theorem exhibits a sufficient condition for showing that neural
circuits can approximate any given map F from spike trains into real numbers
that belong to the previously defined “computational universe”. Provided that
there exists for any two different spike trains u and v a neural circuit or circuit
component Bu,v whose current state (e. g. membrane potential of neurons
in Bu,v) is different depending on which of the two spike trains u or v was
previously sent to this circuit component, circuits that are assembled from
finitely many such components Bu,v can approximate with any given degree
of precision any given time invariant filter F that has fading memory on spike
trains.

Theorem 4.1 Let U∆ (for some ∆ > 0) be the class of spike trains u with
distance ≥ ∆ for any two spikes in u. Assume that B is an arbitrary class of
time invariant filters over Un

∆ that have fading memory on spike trains, and
that B has the pointwise separation property on U∆ (i. e., for any u, v ∈ U∆

with u ∩ (−∞, 0] 6= v ∩ (−∞, 0] there exists some B ∈ B with (Bu)(0) 6=
(Bv)(0)). Furthermore assume that F is an arbitrary class of functions that
has the approximation property. Then any given time invariant filter F : U n

∆ →
R

R with fading memory on spike trains can be approximated arbitrarily closely
by LSMs M = 〈LM , fM〉 with LM composed from finitely many basis filters in
B and fM ∈ F (formally: ∀ ε > 0 ∃ M ∀ u ∈ Un

∆ ∀ t ∈ R |(Fu)(t) −
(Mu)(t)| < ε).

Proof of Theorem 4.1: We will just consider the notationally simpler case
n = 1; the case n > 1 is handled analogously. Since all filters involved are
assumed to be time invariant, and since U∆ is closed under translation, it
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suffices to focus on the time point t = 0. We show that there exists a metric d

over U−
∆ := {u ∩ (−∞, 0] : u ∈ U∆} that turns this set into a compact metric

space, and which also has the property that fading memory on spike trains is
equivalent to continuity over this metric space 〈U−

∆ , d〉. The proof of Theorem
4.1 follows then from the Stone-Weierstrass Theorem just like the proof of
Theorem 3.1. In order to define the metric d we first associate with any spike
train u ⊆ (−∞, 0] a continuous function Cu : (−∞, 0] → R. We define for
s, t ≤ 0 the “tent map” with center s by

Ts(t) :=











1 − (s − t) , if s − 1 ≤ t ≤ min(s + 1, 0)

0 , else ,

and
Cu(t) : =

∑

s∈u

Ts(t) .

Thus each s ∈ u is first replaced by a continuous function Ts(t) that reaches its
maximal value at t = s, and then these continuous functions Ts(·) are added
up for all s ∈ u. Since the density of any u ∈ U−

∆ is limited, this function Cu(t)
has a bounded value for any t ≤ 0, is continuous and piecewise linear.

We define the desired metric d over U−
∆ by

d(u, v) : =

0
∫

−∞

|Cu(t) − Cv(t)|

t2
dt .

Thus we first replace the spike trains u and v by smooth functions Cu and
Cv (reminiscent of low pass filtering) and then measure the difference between
these smooth functions in some straightforward manner, giving less weight
to differences between Cu(t) and Cv(t) for strongly negative values t in order
to arrive at an integral that converges for any u, v ∈ U−

∆ . The continuous
functions Cu, Cv could also be defined in other ways for this purpose, as long
as the proofs of subsequent lemmata (especially Lemma 4.2) carry over to
these alternative definitions.

It requires a little bit of effort to verify that the previously defined function
d : U−

∆ × U−
∆ → R satisfies the axioms for a metric (see [19]). Whereas in

this case it is trivial to verify the triangle inequality, it is harder to verify
the seemingly obvious axiom that represents the claim of the following lemma
(whose proof is given in the Appendix).

Lemma 4.2 d(u, v) = 0 ⇒ u = v for any u, v ∈ U−
∆ .

In order to prove that the metric space 〈U−
∆ , d〉 is compact, and that continuity

with respect to d is equivalent to fading memory on spike trains, we first
prove auxiliary lemmata that allow us to express convergence with regard to

19



the metric d in terms of relationships between spike times of the spike trains
involved. We write |v| for the number of spikes in a spike train v ∈ U−

∆ (thus
|v| ∈ N ∪ {∞}). For any k ∈ N and any v, v1, v2, . . . ∈ U−

∆ we formalize the
statement that it looks as if (vi)i∈N converges to v if one just focuses on the
kth most recent spike in each of the spike trains involved as follows:

Q(k, (vi)i∈N, v) :⇔

(|v| ≥ k ⇒ ∀δ > 0∃i0∀i ≥ i0(|vi| ≥ k and the

kth last spike in vi has distance ≤ δ from the kth last spike in v) ∧

(|v| < k ⇒ ∀T > 0∃i0∀i ≥ i0 (|vi| ≥ k ⇒ the kth largest spike in vi

is not contained in [−T, 0])).

It will be shown in Lemma 4.3 and 4.5 that ∀k ∈ N Q(k, (vi)i∈N, v) is equivalent
to d(vi, v) → 0 for i → ∞.

Lemma 4.3 For any v, v1, v2, . . . ∈ U−
∆ one has ∀k ∈ N Q(k, (vi)i∈N, v) ⇒

d(vi, v) → 0 for i → ∞.

The proof of Lemma 4.3 is given in the Appendix. With the help of Lemma
4.3 it is not difficult to prove:

Lemma 4.4 The metric space 〈U−
∆ , d〉 is compact.

[Proof of Lemma 4.4] According to Lemma 4.3 it suffices to show that for
any u1, u2, . . . ∈ U−

∆ there exists some u ∈ U−
∆ and a subsequence (ũi)i∈N

of (ui)i∈N so that ∀k ∈ N Q(k, (ũi)i∈N, u) holds. For each i ∈ N let ui(1) >

ui(2) > . . . be the elements of the set ui ⊆ (−∞, 0] in descending order, with
ui(k) := −∞ if ui is a finite set with fewer than k elements. We construct

now by recursion on l ∈ N a subsequence (u
(l)
i )i∈N of (ui)i∈N and a sequence

u(l) := {u(1), . . . , u(m)} with 0 ≥ u(1) > u(2) > . . . > u(m), where 0 ≤ m ≤ l

(the set u(l) is assumed to be empty if m = 0) so that ∀k ≤ l Q(k, (u
(l)
i )i∈N, u(l))

if m = l and ∀k ∈ N Q(k, (u
(l)
i )i∈N, u(l)) otherwise

l = 1 :

Consider the set {ui(1) : i ∈ N}. If there exists some T > 0 so that ui(1) ∈
[−T, 0] for infinitely many i, choose some u(1) ∈ [−T, 0] and a subsequence

(u
(1)
i )i∈N of (ui)i∈N so that u

(1)
i (1) converges to u(1) for i → ∞. This im-

plies that Q(1, (u
(1)
i )i∈N, u(1)) for u(1) := {u(1)}. Otherwise set m = 0 (thus

u(1) = ∅) and u
(1)
i = ui for all i ∈ N. Since either |{ui(1) : i ∈ N}| < ∞,

or |{ui(1) : i ∈ N}| = ∞ and limi→∞ ui(1) = −∞, this implies that ∀k ∈

N Q(k, (u
(1)
i )i∈N, u(1)).
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l − 1 7→ l :

Assume that u(l−1) = {u(1), u(2), . . . , u(m)} with m ≤ l − 1 and (u
(l−1)
i )i∈N

have already been constructed so that either m < l−1 and ∀k ∈ N Q(k, (u
(l−1)
i )i∈N,

u(l−1)), or m = l− 1 and ∀k ≤ l− 1 Q(k, (u
(l−1)
i )i∈N, u(l−1)). In the former case

we define u(l) = u(l−1) and u
(l)
i = u

(l−1)
i for all i ∈ N, and the claim is ob-

vious. In the latter case we check whether there exists some T > 0 so that
u

(l−1)
i (l) ∈ [−T, 0] for infinitely many i. If yes, we choose some u(l) ∈ [−T, 0]

with u(l) < u(l − 1) and a subsequence (u
(l)
i )i∈N of (u

(l−1)
i )i∈N so that u

(l)
i (l)

converges to u(l) for i → ∞ (this implies that ∀k ≤ l Q(k, (u
(l)
i )i∈N, u(l))). If

not, we set m := l − 1 and define u
(l)
i := u

(l−1)
i for all i ∈ N. We then have

∀k ∈ N Q(k, (u
(l)
i )i∈N, u(l)). Finally we define the desired subsequence (ũi)i∈N

of (ui)i∈N by setting ũi := u
(i)
i , and a set u :=

⋃

l∈N u(l). It is then obvious that
∀k ∈ N Q(k, (ũi)i∈N, u).

With the help of the preceding Lemma 4.4 we can now prove the converse of
Lemma 4.3:

Lemma 4.5 For any u, u1, u2, . . . ∈ U−
∆ one has d(vi, v) → 0 for i → ∞ ⇒

∀k ∈ N Q(k, (vi)i∈N, v).

The proof of Lemma 4.5 is given in the Appendix. Lemma 4.3. and Lemma
4.5 together allow us to derive the following essential lemma for the proof of
Theorem 4.1. It provides a link between the notion of fading memory on spike
trains and the notion of continuity with regard to the metric d, to which the
Stone Weierstrass Theorem can be applied.

Lemma 4.6 A time invariant filter F : U∆ → R
R has fading memory on

spike trains if and only if the function F− : U−
∆ → R defined by F−(u−) : =

(Fu)(0) (for some arbitrary u ∈ U∆ with u ∩ (−∞, 0] = u−) is well-defined
and continuous with respect to the metric d on U−

∆ .

[Proof of Lemma 4.6]

“⇒” If F has fading memory on spike trains then the value of (Fu)(0) only
depends on u ∩ (−∞, 0], hence F− is well-defined. In order to prove that F−

is continuous with respect to the metric d we assume that some u ∈ U−
∆ and

some ε > 0 have been given. We need to show that there exists some δ > 0 so
that |F−u − F−v| < ε for all v ∈ U−

∆ with d(u, v) < δ.

Assume for a contradiction that such δ does not exist. Then there exists for
every m ∈ N some um ∈ U−

∆ with d(um, u) < 1
m

and |F−um − F−u| ≥ ε.
Thus we have d(um, u) → 0 for m → ∞, and hence ∀ k ∈ N Q(k, (um)m∈N, u)
according to Lemma 4.5. But that implies |F−um−F−u| → 0 by the definition
of fading memory on spike trains, a contradiction.
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“⇐” Since F is assumed to be time invariant it suffices to show that for
every u ∈ U∆ and every ε > 0 there exist δ > 0 and m ∈ N so that |(Fu)(0)−
(Fv)(0)| < ε for all v ∈ U∆ such that conditions i) and ii) of the definition
of fading memory on spike trains hold for u, v, δ, m. Since F− is continuous
with respect to the metric d, we know that there exists some δ− > 0 so that
|F−(u∩(−∞, 0])−F−(v∩(−∞, 0])| < ε for all v ∈ U∆ with d(u∩(−∞, 0], v∩
(−∞, 0]) < δ−. But it is obvious that there exist δ > 0 and m ∈ N so that one
has d(u ∩ (−∞, 0], v ∩ (−∞, 0]) < δ− for all v ∈ U∆ such that conditions i)
and ii) hold for u, v, δ, m. Hence one has |(Fu)(0)− (Fv)(0)| < ε for all these
v ∈ U∆. 2

In order to complete the proof of Theorem 4.1 we just have to apply the
Stone-Weierstrass Theorem to functions F− : U−

∆ → R that are continuous
with respect to the metric d on U−

∆ . The Stone-Weierstrass Theorem can be
applied to these functions since 〈U−

∆ , d〉 is a compact metric space according to
Lemma 4.4. According to Lemma 4.6 this yields the desired statement about
filters with fading memory on spike trains.

5 Conclusions

We have examined in this article a new framework for the analysis of the com-
putational power of neural circuits. Whereas there exists a well-established
computational theory for batch-computing on digital input (see for example
[26]), the biologically more realistic case of real-time computing on fast varying
analog input hat remained largely unexplored. In order to eliminate unrealistic
types of such computations, where infinite bit precision of some input u(t) at
time t becomes relevant, or where values of u(t) for an infinitely long interval
of time points t matter, we have proposed to focus on fading memory compu-
tations where such pathological cases do not occur. On the other hand, since
the fading memory concept leaves open how fast dependence on previous in-
put segments is fading, it subsumes also all biologically relevant computations
that involve memory or temporal integration. We have shown that within this
context of fading memory computations universal computational power can
be achieved by a class of circuits under rather weak conditions. One just has
to assume that this class of circuits satisfies the obviously necessary condition
that any two different inputs u, v can be separated by a subsequent circuit
state. Since randomly connected recurrent circuits of spiking neurons tend to
have this property for fairly large classes of inputs [21], in particular if they are
sufficiently large and heterogeneous, one arrives in this way at a theoretical
foundation for the possible computational use of such circuits. A more system-
atic study of the separation property of randomly connected threshold circuits
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has recently been given in [23], based on preceding work on computations at
the edge of chaos in dynamical systems. There is some hope that some of these
results can be transferred to networks of spiking neurons, thereby providing
tools for a more principled analysis of the separation property of such circuits
for online spike input.

Previous approaches for providing positive evidence for the computational
power of circuits of spiking neurons was based on strategies to implement finite
automata or specific well-understood and highly structured circuit architec-
tures with circuits of spiking neurons. These approaches had only been able to
explain relatively simple computations with spiking neurons in a noise-robust
manner. In contrast, the theory presented in this article provides a possible
theoretical explanation for the computational power of the complex and highly
recurrent circuits consisting of neurons and dynamic synapses with a diverse
set of time constants, which emerge as the biologically more realistic models
from detailed empirical studies of neocortical microcircuits ([10], [11]).

Another aspect in which the theoretical framework presented in this article
differs from previous approaches is that it de-emphasizes the need to iden-
tify a clear neural representation for each external stimulus to an organism:
it suggests instead that neural separation is more important than neural rep-
resentation. In other words: it suffices that saliently different external stimuli
leave significantly different traces in the subsequent activity of neural circuits,
even if there is no clear neural code by which these traces encode these stimuli.
This approach is consistent with the fact that in many experiments the initial
state of the neural circuit varies from trial to trial: traces are piled up on top
of other traces that were caused by earlier external or internal inputs to the
neural circuit. Neural separation may still be guaranteed even if there exists
no invariant neural representation of specific stimuli.

Our theoretical approach suggests that purposeful real-time processing of sen-
sory stimuli is possible just on the basis of neural separation (rather than
representation), since readout modules can easily be trained to assign target
outputs to complex circuit states, even if there is no simple rule that makes
this assignment easy (from the point of view of a human observer). This pre-
diction relies on the fact that almost any classification task can be carried
out by a linear separator (or a small pool of linear separators) if the patterns
that need to be classified are first projected nonlinearly into a fairly high-
dimensional space, even if this nonlinear projection is very complicated (in a
biological context this nonlinear projection would be defined by the current
state of activation of a neural microcircuit resulting from the injection of some
input pattern). The whole approach towards pattern recognition via support
vector machines in machine learning, see [27], relies on this effect. Also in
this regard the theory presented in this article is complementary to preceding
approaches, since it works particularly well for those types of circuits where
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other approaches have difficulties: for fairly large recurrent circuits consisting
of heterogeneous neurons and dynamic synapses that respond in a complex
nonlinear way to incoming input. The theoretical prediction that the readout
from a recurrent circuit is easier if the circuit is fairly large may suggest on
first sight that this computational model is rather uneconomical, since it re-
quires so many neurons in the recurrent circuit. But one should keep in mind
that the same recurrent circuit can be used simultaneously by a large number
of different readouts, and thereby support simultaneously a large number of
different computational tasks (see Figure 4 in [6] and Figure 2 in [21], and [28]
for experimental demonstrations of this fact).

According to [9] already feedforward circuits (in fact, already filterbanks con-
sisting of feedforward dynamic synapses with slightly different parameter val-
ues) satisfy the separation property for analog inputs. Recurrent connections
tend to amplify however the separation of circuit states, hence they tend to
make the task of the readout easier and more noise robust. In addition it was
argued in [21] that recurrent connections enable a circuit to compute nonlinear
combinations of input features. On the basis of such fixed nonlinear prepro-
cessing even simple linear readouts gain most of the classification power of a
more powerful universal approximator such as multi-layer perceptrons. Hence
the recurrent connections within a circuit may provide similar advantages as
a fixed nonlinear kernel for support vector machines (see [27]).

The computational theory presented in this article is based on concepts such
as fading memory filters that are also relevant for analog computing in a re-
alistic noisy setting, but the theory itself applies so far only to the noisefree
(deterministic) case. In a realistic scenario with noise the pointwise separation
property becomes less relevant. Instead it matters whether “significantly dif-
ferent” input histories u, v result in current circuit states that are “sufficiently
different” so that they can be distinguished even in the presence of noise by
a suitably trained readout. Such more quantitative version of the separation
property has been studied empirically in [6] (see Fig. 2). Furthermore it has
been investigated analytically for the simpler case of randomly connected re-
current threshold circuits in [23].

The investigation of this more quantitative version of the separation property
also provides hints for understanding the possible computational advantage of
having long term synaptic plasticity within the recurrent circuit (rather than
just at the synapses to the readout, as considered in this article): Such long
term synaptic plasticity within the recurrent circuit may serve to modulate
the resolution of the separation property of the circuit so that it achieves
larger separation for input differences that are relevant for the organism, and
smaller separation for behaviorally irrelevant input differences. In the language
of dynamical systems theory one can formulate another potential goal of long
term synaptic plasticity within the recurrent circuit: keeping the dynamics
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of the circuit (for practically relevant online inputs) at the “edge of chaos”
[29], where the circuit is sufficiently sensitive to reflect recent salient input
differences in its current state, but is not yet chaotic (i.e., it does not produce
large separation for any tiny input differences way back in the past).

In contrast to most previous work on computations in models for recurrent
neural circuits, the computations considered in this article were online com-
putations, rather than computations on batch-input. Consequently attractors,
which commonly encode the results of computations on batch-inputs in re-
current circuits, were not considered in this article. However, new work in
progress by Joshi and Maass shows that feedbacks from readouts into the re-
current circuits may be used to create attractors for some components of a
high-dimensional circuit state, in which intermediate results of computations
may be stored for periods of a few seconds and longer (“working memory”). In
this way some of the computational advantages of attractor neural networks
can be transferred to the model for real-time computing on continuous input
streams discussed in this article.

Herbert Jaeger (see [7] and [30]) has discovered independently the power of
liquid state machines in artificial neural networks with discrete time, showing
for example that they may yield novel solutions to difficult time series pre-
diction and control problems. We have shown in section 2 that circuits with
fading memory of the type considered in [7] give also rise to fading memory fil-
ters, and hence provide another application domain for the theoretical results
of this article.

The concepts and results of this article are not suitable for answering the
question how many basis filters B1, . . . , Bm from the class B of basis filters
may be needed to approximate a given filter F up to a certain degree of preci-
sion. Such bounds on the speed of convergence are very rare even in the case
of neural computation on static inputs, i.e. for standard artificial neural net-
works, and the only mathematical results that provide such bounds (see [31]
for a discussion) are almost never used practically. At this point it is not clear
whether similar theoretical results for the approximation of filters are feasible,
and even if they are found it is dubious whether they would be practically
relevant. Hence from the practical point of view it appears to be more fruitful
to carry out experimental studies. For the case of LSMs whose liquid filter L

is simply some generic recurrent circuit consisting of a few hundred spiking
neurons and the readout function is implemented by some other pool of spik-
ing neurons, or even by just a single linear neuron, some quite encouraging
experimental results are reported in [6,21,32]. In [25] it is shown that liquid
filters L that are composed from a very small number of dynamic synapses
as basis filters (which have the pointwise separation property according to
[9]) endow liquid state machines with rather good approximation capabilities.
Thus so far it appears that the approximation results that were derived in this
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paper are practically relevant, because their assumptions are approximately
satisfied by generic models for neural circuits.

The approximation results derived in this article induce new complexity hi-
erarchies for nonlinear filters that appear to be more useful and flexible than
the well-known degree-hierarchy of Volterra polynomials. One can fix any col-
lection B of basis filters that are natural computational units from the point
of view of a specific theoretical or practical context (e.g. in the context of
modeling biological neural computation the set of filters that are computed
by neurons). One can then measure the complexity of other filters F in terms
of how many basis filters from B have to be composed in order to approximate
F up to a certain degree of precision. If the class B of basis filters satisfies
the pointwise separation property, the complexity of any time invariant fading
memory filter F can be measured in this way (according to Theorems 3.1 and
4.1).

Finally, it turns out that the new approach towards neural computation that
is suggested by the theoretical framework of this article is the first one that al-
lows us to carry out complex computations on basically any computer models
of biologically realistic neural circuits, thereby opening up new ways of inves-
tigating such circuits. Hence this approach may contribute to an experimental
and theoretical basis for understanding the computational function of neural
microcircuits in the cortex, and it may provide new ideas for capturing their
computational capability in artificial devices.
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6 Appendix

[Proof of Lemma 3.3] One can easily show that the function d defined by d(u, v) :

= supt≤0
|u(t)−v(t)|

1+|t| satisfies the axioms for a metric. For example, the triangle in-

equality is verified as follows for any u, v, w ∈ U− : d(u, v) := supt≤0
|u(t)−v(t)|

1+|t| ≤

supt≤0
|u(t)−w(t)|+|w(t)−v(t)|

1+|t| ≤ supt≤0
|u(t)−w(t)|

1+|t|

+supt≤0
|w(t)−v(t)|

1+|t| = d(u,w) + d(w, v).

In order to prove that the metric space 〈U−, d〉 is compact, it suffices to verify
that there exists for any sequence (uk)k∈N of functions from U− some v ∈ U− and
some subsequence (ũi)i∈N of (uk)k∈N such that limi→∞ d(ũi, v) = 0. But this is an
immediate consequence of the Arzela-Ascoli Theorem (see for example [33]).

Technical Remark: The proof of Lemma 3.3 shows that it is not necessary to
assume that the functions in U are uniformly Lipschitz-continuous. It suffices if the
functions in U are equicontinuous (i.e., for every ε ∈ 0 there exists a δ > 0 such
that |u(x) − u(y)| < ε for every u ∈ U and any x, y ∈ R with |x − y| < δ).

[Proof of Lemma 4.2] The claim is not completely obvious, since in the larger
domain U∆ there exist in fact different spike trains u, v with Cu = Cv : define for
example u := Z, v := {z + 1

2 : z ∈ Z}.

Assume for a contradiction that there exist u, v ∈ U−
∆ with u 6= v but d(u, v) = 0.

The latter implies that Cu(t) = Cv(t) for all t ≤ 0 (since Cu and Cv are continuous
functions), and hence also that their derivatives C

′

u, C
′

v have the same value for
any t ≤ 0 where these derivatives exist (since Cu, Cv are piecewise linear, their
derivatives are piecewise constant and do not exist at those points where linear
pieces with different slopes meet).

Let s0 ≤ 0 be a maximal point in the symmetric difference (u − v) ∪ (v − u) of the
two different sets u and v. We can assume without loss of generality that s0 ∈ u−v.

Case 1: s0 = 0
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We first show that u ∩ (−1, 0) = v ∩ (−1, 0). For that we actually do not even
need the assumption s0 = 0. According to the definition of the piecewise linear
function Cu every point t ∈ u ∩ (−1, 0) causes at t a downwards jump by −2 or
−1 of the piecewise constant derivative Cu

′, independently of the other points in u
(a downwards jump by −1 occurs at t only if t − 1 ∈ u; note that t > −1 implies
that t + 1 /∈ u). Furthermore these are the only points in (−1, 0) where downwards
jumps of Cu

′ occur. Hence Cu
′ = Cv

′ implies that u ∩ (−1/0) = v ∩ (−1, 0). But
then the assumption 0 = s0 ∈ u − v implies that Cu(0) = Cv(0) + 1, thus Cu 6= Cv,
a contradiction.

Case 2: s0 < 0
We then have S := u ∩ (s0, 0] = v ∩ (s0, 0]. Set ũ := u − S and ṽ := v − S. Since
Cu = Cv we also have Cũ = Cṽ, hence C

′

ũ = C
′

ṽ. On the other hand s0 ∈ ũ − ṽ and
ũ∩ (s0, 0] = ∅ imply that the piecewise constant function C

′

ũ has a downwards jump
at s0, whereas C

′

ṽ has no downwards jump at s0 (since s0 /∈ ṽ), a contradiction to
C

′

ũ = C
′

ṽ.

[Proof of Lemma 4.3] Fix some arbitrary ε ∈ 0. We will show that there exists
some i0 so that d(vi, v) ≤ ε for all i ≥ i0. Choose T > 0 sufficiently large so that
∫ −T

−∞
|Cu(t)−Cũ(t)|

t2
dt ≤ ε

2 for any u, ũ ∈ U−
∆ .

Case 1: |v| < ∞
By the assumption of the Lemma there exists some ĩ such that for every i ≥ ĩ
and every k > |v| the kth largest point of vi is ≤ −T − 2. Obviously these points

≤ −T − 2 have no relevance for the value of
∫ 0
−∞

|Cvi
(t)−Cv(t)|

t2
dt. By choosing i0 ≥ ĩ

sufficiently large we can achieve that for i ≥ i0 all the other points of vi (i.e., the
kth largest points for k ≤ |v|) lie so close to the corresponding points of v that
∫ 0
−T

|Cvi
(t)−Cv(t)|

t2
dt ≤ ε

2 .

Case 2: |v| = 0
Choose k0 ∈ N so large that the kth

0 largest point of v is ≤ −T − 2. Then it suffices
to choose i0 sufficiently large so that for all i ≥ i0 and all k ≤ k0 the kth largest

point in vi lies so close to the kth largest point in v that
∫ 0
−T

|Cvi
(t)−Cv(t)|

t2
dt ≤ ε

2 .

[Proof of Lemma 4.5] Assume that the claim is wrong, and choose k ∈ N minimal
so that Q(k, (vi)i∈N, v) does not hold.

Case 1: k ≤ |v|
If there were infinitely many i such that |vi| < k this would contradict the assump-
tion that d(vi, v) → 0 for i → ∞ (since Cv is a superposition of ≥ k functions Ts).
Hence there exists some ε > 0 and infinitely many i ∈ N so that |vi| ≥ k and the
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kth largest point of vi has distance ≥ ε from the kth largest point in v. According
to Lemma 4.3 and according to the proof of Lemma 4.4 there exists an infinite
subsequence (ṽi)i∈N of these vi and some u ∈ U−

∆ so that d(ṽi, u) → 0 for i → ∞
and ∀k ∈ N Q(k, (ṽi)i∈N, u). Since the kth largest point of ṽi and v have distance
≥ ε, this implies that |u| < k or that the kth largest point of u has distance ≥ ε
from the kth largest point of v, thus in either case u 6= v. According to Lemma 4.2
this implies that d(u, v) > 0. But then it is impossible that d(ṽi, u) → 0 for i → ∞
and d(ṽi, v) → 0 for i → ∞ (by the triangle inequality for the metric d).

Case 2: k > |v|
Then there exist infinitely many i ∈ N and some T > 0 that |vi| ≥ k and kth largest
point of vi is ≥ −T . But since Q(k′, (vi)i∈N, v) holds for all k′ < k (by the minimal
choice of k), we have for all m ≤ |v| that |vi| ≥ m for sufficiently large i, and the
mth largest point of the vi converge to the mth largest point of v. Define ui as the
subset of vi consisting of the |v| largest points of vi. Thus we have d(ui, v) → 0
for i → ∞. But this yields a contradiction to the assumption that d(vi, v) → 0 for
i → 0, since there are infinitely many i with |vi| ≥ k > |v| and the kth largest point
of vi is ≥ −T .
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