Organizing DSP Circuits on Pre-Built Hardware Using Evolutionary Algorithms

Fred Ma

Overview

- Coarse grain reconfigurable hardware in telecom
- Example: Pre-built hardware and DSP circuit
- Problem:

Arranging the circuit elements on the hardware

- Solving the problem with genetic algorithms (GAs)
- Ensuring that solutions meet all physical constraints
- Results

Telecom Data Processing

- High throughput computations
- Regular, repetitive computations
- Lots of numeric computation \Rightarrow Coarse grain hardware
- Swaths of bits to represent numbers
- Logic optimized for arithmetic

Why Reconfigurable?

- Hardware speed, software configurability
- Avoid cost and delay of chip fabrication
- Ease of bug fixes, design revisions

- Download new hardware to remote locations
- Adaptability to developing/evolving air interface standards

Chameleon Architecture

- Slice: Stack of Tiles

Example "Circuit" of DPUs

DPU for counting

Placement of DPUs

- Simplified problem: Arrange DPUs onto array so that all connections can be made using local wires
- Actual problem: Additionally uses long wires, and ensures that location of each DPU supports the required functions (tedious!)

Genetic Algorithms (GAs): Educated Trial and Error

- For combinatorial problems (resource allocation, scheduling)
- Encode candidate solutions as a strings of parameter values (chromosomes)
- Start with a large population of solutions, combine good ones to create better solutions

Car Genes

Color?

How many wheels?
Rear spoilers?
Type of
\downarrow engine?
\cdots... Redx 4 YYes Mazda $\cdot .$.
Gene
Chromosome
(candidate solution)

- Fitness:

A chromosome's measure of goodness

Improving the Solutions: Evolution

Randomly select
Population of chromosomes

Selection
Give higher probability of selection to high fitnesses

Children

Crossover
Pair off selected parents and swap genes

- Population members selectively replaced by promising offspring in each generation
- Population's average fitness improves

Pros (\& Cons) of GAs

- GAs are heuristic and stochastic (not true optimizer)

We don't care about optimization!
We just want a any arrangment of DPUs that satisfies all requirements.

- True optimization algorithms are highly dependent on problem details

Slight change in DPU array architecture can completely change the problem
GA chromosomes are easy to encode and strange requirements are easy to enforce.
-But
As a statistical search method, GAs can computationally demanding

Genetic Placement of DPUs

- Valid solutions must meet many constraints
- Newly generated chromosomes must be permutations of the DPUs
- Some DPUs need to be in specific tiles because of memory or control
- Some DPUs have to be in either even or odd positions or special positions containing multipliers
\Rightarrow Many solutions will NOT be valid

Enforcing Positional Constraints

- During fitness evaluation, chromosomes undergo problem-specific heuristic repairs for all constraint violations

- Non-repairable violations cause a penalization in fitness to discourage their proliferation
- Some violation types are avoidable by clever encoding of the problem parameters into chromosomes

Results

Effectiveness of GA Placement

Experimental Findings

- 50\% population change per generation is best
- $30 \% \sim 50 \%$ of the new solutions should be created from crossover
- 50\%~70\% should be from mutation

Random variation of existing population members to guard against inbreeding

- Computational effort correlates well with other measures of circuit complexity
- Significant reduction in search times from heuristic repair of constraint violations
- Search times comparable to simulated annealing

Conclusions

- Flexibility of problem encoding and solution evaluation GAs easily adapt to diverse constraints from different reconfigurable hardware
- Combining GA search with repair is a crucial strategy Hybridize GA with "local search"
- Traditional role of mutation as minor background process can be far from optimal
- The developed GA places real-world circuits in seconds

Good enough for interactive CAD

Further Details

- F. Ma, J. P. Knight, and C. Plett, "Physical resource binding for a coarse grain reconfigurable array using evolutionary algorithms", IEEE Transactions on Very Large Scale Integrated Systems, (accepted).
- F. Ma, J. P. Knight, and C. Plett, "Physical resource binding for a coarse grain reconfigurable array", Engineering of Reconfigurable Systems and Algorithms, June 21-24 2004.
- F. Ma, J. P. Knight, and C. Plett, "Reconfigurable logic design case", SPIE Conf. on Reconfigurable Technology: FPGAs and Reconfigurable Processors for Computing and Communications (part of ITCom 2002), v. 4867, pp. 113-126, July 302002.

The End

Reference Slides

How Hard is the Problem?

- 10^{28} possible orderings of DPUs
- Heuristic search difficulty
- Depends on density of valid solutions in search space
- Random exhaustive search
- Tried billions of combinations over a week
- Couldn't find solution for FFT
- Enabling repair of violations didn't help

GA Parameters

(from extensive experimentation)

- Random Keys encoding:
- Each DPU assigned a random real "key"
- Get DPU order by sorting the keys
- Uniform crossover: Randomly choose genes to swap

- Quadratic penalty for wires exceeding 8 DPU positions
- Ranked fitness to avoid scaling problems
- Rank of genome after sorting population by descending cost
- 1~2 global vertical wires driven from each tile
- Mutate general population members for diversity

DPUs Belonging in Specific Tiles

- Equal size subranges define key based tiles
- Physical tiles defined by counting 4 DPUs/tile
- The problem:

Key based tile edges not the same as physical tile edges

- Solution:

Penalize misaligned tile edges

- Treat offset as an overlength wire
- Misalignments minimized by evolution

DPUs DPUs DPUs bound to bound to bound to Tile\#1 Tile\#2 Tile\#3

Fixing Stubborn Tile Binding Violations

- Aggressive circuit design: Hard to meet all constraints
- Seek simple re-ordering to fix violation
- Swap errant DPU into home tile
- Don't create/worsen a tile violation
- Multiple passes
- Each pass tries to fix all tile violations

Scan inward for a swappee

Swappee found

Even/Odd Position Constraints

- Fine positional constraint relies completely on local search for compliance
- Save area by interleaving DPUs with complementary functions
- A polarity violating DPU checks immediate neighbours for swapping

- Small fine-tuning movements

Identify Good Search Conditions (FFT)

\% Population Change/Generation

KFO:
Kids Fraction Offspring

- The fraction of kids made up of offspring (rather than mutants)
- Indicates greedy search

Effect of Population Size

(FFT Kernel)

Increasing Size:

- Fewer generations
- Longer execution
- Higher success rate

Back-to-back FFT/IFFT

- Double netlist size, record length, and DPUs/slice
- Local wires still span 8 DPUs
- 5 global wires/tile vs. 1
- 5x generations 50% more runtime
- Much reduced success rate
Run Time [s]

Circuit Complexities

	Kernel	DPUs+			Driven		
		DPUs	MULs	MULs	Nets	Ports	Tiles
Easy	IIR Xpose	7(2)	5	12	11	15	1
	IIR DF-II	8(2)	5	13	12	15	1
	IIR DF-II x 4	14(8)	5	19	15	21	4
	FIR Xpose	10(2)	5	15	14	22	1
	IIR Xpose $\times 4$	13(8)	5	18	14	27	4
	FIR DF-I	19(2)	5	24	23	31	1
	FFT Easy	20(2)	6	26	24	50	3
Hard	FFT	20(2)	6	26	24	50	3
	FFT Hard	20(2)	6	26	24	50	3

GAs Compared to Simulated Annealing

