
© Fred Ma 2005 1

Organizing DSP Circuits on
Pre-Built Hardware Using
Evolutionary Algorithms

Fred Ma

© Fred Ma 2005 2

Overview
♦ Coarse grain reconfigurable hardware in telecom
♦ Example: Pre-built hardware and DSP circuit
♦ Problem:

Arranging the circuit elements on the hardware
♦ Solving the problem with genetic algorithms (GAs)
♦ Ensuring that solutions meet all physical constraints
♦ Results

© Fred Ma 2005 3

Telecom Data Processing

♦ High throughput
computations

♦ Regular, repetitive
computations

×

ALUALU

X

32-bit

D Q

♦ Lots of numeric computation
⇒ Coarse grain hardware

• Swaths of bits to represent
numbers

• Logic optimized for arithmetic

Hardware ����

© Fred Ma 2005 4

Why Reconfigurable?

♦ Hardware speed, software configurability
♦ Avoid cost and delay of chip fabrication
♦ Ease of bug fixes, design revisions

• Download new hardware to remote locations

♦ Adaptability to developing/evolving air interface
standards

© Fred Ma 2005 5

Chameleon Architecture

♦ Basic computational block:
Datapath Unit (DPU)

♦ Tile: Stack of DPUs under one Controller
♦ Slice: Stack of Tiles

Datapath
Unit (DPU)

From other DPUs

Memorylogiclogic

Tile

Local
wires Long

wires

DPU

Slice

ALU

logic

Control

Memory

4 slices
~100 DPUs

X
X

© Fred Ma 2005 6

Example “Circuit” of DPUs

0000000 00000

en
en

AND

>>1

AND

>>1

>>15

en

Count

CountDone
Increment/hold

OR

Shift
Reset

en

1111 1111111 End
count
value

DPU for counting

00001

DPU

DPU

DPU

♦ At each instant:
Internal operations
of DPU are
determined by
Controller

© Fred Ma 2005 7

Placement of DPUs

3
4
6
9

8
1
7
2

5

1
2
3
4
5
6
7
8
9

3
96

4

2 1

5 7

8

DPU position (or slot)

DPU ID number

local wires

Tile

3
4
6
9

8
1
7
2

5

1
2
3
4
5
6
7
8
9

3

9
6

4

2 1

5 7

8

DPU position (or slot)

DPU ID number

local wires

Tile

♦ Simplified problem: Arrange DPUs onto array so that all
connections can be made using local wires

♦ Actual problem: Additionally uses long wires, and ensures that
location of each DPU supports the required functions (tedious!)

Example
Local wire
only goes
up 3
positions
and down 2
positions

Actual
Local wire
goes
up 8,
down 7

© Fred Ma 2005 8

Genetic Algorithms (GAs):
Educated Trial and Error

♦ For combinatorial problems
(resource allocation, scheduling)

♦ Encode candidate solutions
as a strings of parameter
values (chromosomes)

♦ Start with a large
population of solutions,
combine good ones
to create better solutions

♦ Fitness:
A chromosome’s measure of goodness

Red 4 MazdaYes

Color?
How many wheels?

Rear spoilers?
Type of

engine?

Car Genes

Gene

Chromosome
(candidate solution)

3-wheel car
not very good

© Fred Ma 2005 9

Improving the Solutions: Evolution

Selection
Give higher probability of
selection to high fitnesses

Crossover
Pair off selected parents

and swap genes

♦ Population members selectively replaced by
promising offspring in each generation

♦ Population’s average fitness improves

Children

Parents
Population of
chromosomes

Randomly select
parents of next

generation

© Fred Ma 2005 10

Pros (& Cons) of GAs
♦ GAs are heuristic and stochastic (not true optimizer)

We don’t care about optimization!
We just want a any arrangment of DPUs

that satisfies all requirements.
♦ True optimization algorithms are highly dependent on

problem details
Slight change in DPU array architecture

can completely change the problem
GA chromosomes are easy to encode and
strange requirements are easy to enforce.

♦ But
As a statistical search method,

GAs can computationally demanding

© Fred Ma 2005 11

Genetic Placement of DPUs
♦ Valid solutions must meet

many constraints
♦ Newly generated

chromosomes must be
permutations of the DPUs

♦ Some DPUs need to be in
specific tiles because of
memory or control

♦ Some DPUs have to be in either even or odd positions
or special positions containing multipliers

⇒ Many solutions will NOT be valid

3
4
6
9

5
1
7
2

8

1
2
3
4
5
6
7
8
9

7th gene in
chromosome has

gene value 1

Chromosome

DPU position

DPU ID number
(or slot)

© Fred Ma 2005 12

Enforcing Positional Constraints
♦ During fitness evaluation, chromosomes undergo

problem-specific heuristic repairs for all constraint
violations

♦ Non-repairable violations cause a
penalization in fitness to discourage their proliferation

♦ Some violation types are avoidable by
clever encoding of the problem parameters into
chromosomes

A B FC D E H I

A B C D E F H I

A B CD E F H I

A B C D E F H I

Swap Shift

Home tile Home tile

© Fred Ma 2005 13

Results

© Fred Ma 2005 14

Effectiveness of GA Placement

10
0

10
1

10
2

10
3

10
4

0

1000

2000

3000

4000

of Generations

S
uc

ce
ss

fu
l S

ea
rc

he
s

GA Performance, Various Kernels

10
-2

10
--1

10
0

10
1

0

1000

2000

3000

4000

Run Time [s]

S
uc

ce
ss

fu
l S

ea
rc

he
s

IIR Xpose
IIR DF2
IIR DF2 4
FIR Xpose
IIR Xpose 4
FIR DF1
FFT Easy
FFT
FFT Hard

Simple

Hard

Searches

Searches

Manual
placement
takes days 1024pt

© Fred Ma 2005 15

Experimental Findings
♦ 50% population change per generation is best
♦ 30%~50% of the new solutions should be created

from crossover
♦ 50%~70% should be from mutation

Random variation of existing population members
to guard against inbreeding

♦ Computational effort correlates well with other
measures of circuit complexity

♦ Significant reduction in search times from
heuristic repair of constraint violations

♦ Search times comparable to simulated annealing

© Fred Ma 2005 16

Conclusions
♦ Flexibility of problem encoding and solution evaluation

GAs easily adapt to diverse constraints
from different reconfigurable hardware

♦ Combining GA search with repair is a crucial strategy
Hybridize GA with “local search”

♦ Traditional role of mutation as minor background
process can be far from optimal

♦ The developed GA places real-world circuits in
seconds

Good enough for interactive CAD

© Fred Ma 2005 17

Further Details
♦ F. Ma, J. P. Knight, and C. Plett, “Physical resource binding for a

coarse grain reconfigurable array using evolutionary algorithms”,
IEEE Transactions on Very Large Scale Integrated Systems,
(accepted).

♦ F. Ma, J. P. Knight, and C. Plett, “Physical resource binding for a
coarse grain reconfigurable array”, Engineering of
Reconfigurable Systems and Algorithms, June 21-24 2004.

♦ F. Ma, J. P. Knight, and C. Plett, “Reconfigurable logic design
case”, SPIE Conf. on Reconfigurable Technology: FPGAs and
Reconfigurable Processors for Computing and Communications
(part of ITCom 2002), v. 4867, pp. 113–126, July 30 2002.

© Fred Ma 2005 18

The End

© Fred Ma 2005 19

Reference Slides

© Fred Ma 2005 20

How Hard is the Problem?

♦ 1028 possible orderings of DPUs
♦ Heuristic search difficulty

• Depends on density of valid solutions in search space

♦ Random exhaustive search
• Tried billions of combinations over a week
• Couldn’t find solution for FFT
• Enabling repair of violations didn’t help

© Fred Ma 2005 21

GA Parameters
(from extensive experimentation)

♦ Random Keys encoding:
• Each DPU assigned a random real “key”
• Get DPU order by sorting the keys

♦ Uniform crossover: Randomly
choose genes to swap

♦ Quadratic penalty for wires exceeding 8 DPU
positions

♦ Ranked fitness to avoid scaling problems
• Rank of genome after sorting population by descending cost

♦ 1~2 global vertical wires driven from each tile
♦ Mutate general population members for diversity

© Fred Ma 2005 22

DPUs Belonging in Specific Tiles

Tile#2

key=1/3 key=2/3

offset offset
Physical
Tile#1

Physical
Tile#3

Physical

Key

Tile#1

Key

Tile#3Tile#2

Physical

DPU

Key
based based based

0 11/3 2/3

DPUs
bound to

Tile#2

DPUs
bound to

Tile#1

DPUs
bound to

Tile#3

♦ Equal size subranges define
key based tiles

♦ Physical tiles defined by
counting 4 DPUs/tile

♦ The problem:
Key based tile edges not the
same as physical tile edges

♦ Solution:
Penalize misaligned tile
edges

• Treat offset as an
overlength wire

• Misalignments minimized
by evolution

© Fred Ma 2005 23

Fixing Stubborn Tile Binding Violations

♦ Aggressive circuit design:
Hard to meet all constraints

♦ Seek simple re-ordering to fix
violation

♦ Swap errant DPU into home tile
• Don’t create/worsen a tile violation

♦ Multiple passes
• Each pass tries to

fix all tile violations

A B FC D E H I

A B C D E F H I

A B CD E F H I

A B C D E F H I

A B C D E F H I

A B C D E F H I
Home tile

Tile

Scan inward
for a swappee

Physical tile
boundary

Swappee found

bound
DPU(swapper)

Swap Shift

© Fred Ma 2005 24

Even/Odd Position Constraints

♦ Fine positional constraint relies completely on
local search for compliance

♦ Save area by interleaving DPUs with
complementary functions

♦ A polarity violating DPU checks immediate
neighbours for swapping

♦ Small fine-tuning movements

Even
Odd

© Fred Ma 2005 25

Identify Good Search Conditions (FFT)

n

0 50 100
0

2

4

6

R
un

tim
e

[s
ec

]

% Population Change/Generation

0 50 100
0

500

1000

PFK
0 50 100

90

95

100

S
uc

ce
ss

fu
l R

un
s

[%
]

% Population Change/Generation% Population Change/Generatio

0 0.01 0.02
80

90

100

Probability of Mutation

Su
cc

es
sf

u
l R

u
n

s
[%

]

P
b2w

=10

P
b2w

=200

KFO=0.1
KFO=0.3
KFO=0.5
KFO=0.7
KFO=0.9

of

 G
en

er
at

io
ns

KFO:
Kids Fraction Offspring

• The fraction of kids made
up of offspring (rather
than mutants)

• Indicates greedy search

© Fred Ma 2005 26

Effect of Population Size
(FFT Kernel)

Increasing Size:
♦ Fewer generations
♦ Longer execution
♦ Higher success rate1 2 3 4 5 6 7 8 910

0

500

1000

1500

of Run Time [s]S
u

c
c
e

s
s
fu

l
S

ea
rc

he
s

50 100200400800
0.8

0.85

0.9

0.95

1

Population Size

S
ea

rc
h

S
uc

ce
ss

 R
at

e

10
1

10
2

10
3

10
4

0

1000

2000

of Generations

S
uc

ce
ss

fu
l S

ea
rc

he
s

Pop=50
Pop=100
Pop=200
Pop=400
Pop=800

© Fred Ma 2005 27

Back-to-back FFT/IFFT

♦ Double netlist size, record
length, and DPUs/slice

♦ Local wires still span 8 DPUs
♦ 5 global wires/tile vs. 1
♦ 5x generations

50% more runtime
♦ Much reduced success rate

10
1

10
2

10
3

10
4

10
5

0

500

1000

of Generations

S
uc

ce
ss

fu
l S

ea
rc

he
s

10
−1

10
0

10
1

10
2

10
3

0

500

1000

1500

Run Time [s]

S
uc

ce
ss

fu
l S

ea
rc

he
s

Pop=50
Pop=100
Pop=200
Pop=400
Pop=800

50 100200400800
0

0.2
0.4
0.6
0.8

1

Population Size

S
ea

rc
h

S
uc

ce
ss

 R
at

e

© Fred Ma 2005 28

Circuit Complexities

Kernel DPUs MULs
DPUs+
MULs Nets

Driven
Ports Tiles

IIR Xpose 7(2) 5 12 11 15 1
IIR DF-II 8(2) 5 13 12 15 1
IIR DF-II x4 14(8) 5 19 15 21 4
FIR Xpose 10(2) 5 15 14 22 1
IIR Xpose x4 13(8) 5 18 14 27 4
FIR DF-I 19(2) 5 24 23 31 1
FFT Easy 20(2) 6 26 24 50 3
FFT 20(2) 6 26 24 50 3
FFT Hard 20(2) 6 26 24 50 3

Easy

Hard

© Fred Ma 2005 29

GAs Compared to Simulated Annealing

0 5 10

x 10
4

0

0.2

0.4

0.6

0.8

1

Total Solns Evaluated

Li
ke

lih
oo

d
of

 S
uc

ce
ss

fu
l S

ea
rc

h

0 5 10
0

0.2

0.4

0.6

0.8

1

Run Time [Seconds]

Li
ke

lih
oo

d
of

 S
uc

ce
ss

fu
l S

ea
rc

h

Genetic Algorithm
Simulated Anneal

