Organizing DSP Circuits on Pre-Built Hardware Using Evolutionary Algorithms

Fred Ma

Overview

- ♦ Coarse grain *reconfigurable* hardware in telecom
- Example: Pre-built hardware and DSP circuit
- Problem:

Arranging the circuit elements on the hardware

- Solving the problem with genetic algorithms (GAs)
- Ensuring that solutions meet all physical constraints
- Results

Telecom Data Processing

- High throughput computations
- Regular, repetitive computations

- ♦ Lots of numeric computation ⇒ Coarse grain hardware
 - Swaths of bits to represent numbers
 - Logic optimized for arithmetic

Why Reconfigurable?

- Hardware speed, software configurability
- Avoid cost and delay of chip fabrication
- Ease of bug fixes, design revisions
 - Download new hardware to remote locations
- Adaptability to developing/evolving air interface standards

Chameleon Architecture

♦ Slice: Stack of Tiles

Example "Circuit" of DPUs

Placement of DPUs

- Simplified problem: Arrange DPUs onto array so that all connections can be made using local wires
- Actual problem: Additionally uses long wires, and ensures that location of each DPU supports the required functions (tedious!)

Genetic Algorithms (GAs): Educated Trial and Error

- For combinatorial problems (resource allocation, scheduling)
- Encode candidate solutions as a strings of parameter values (chromosomes)
- Start with a large *population of solutions*, *combine good ones* to create better solutions

• Fitness:

A chromosome's measure of goodness

3-wheel car

not very good

Improving the Solutions: Evolution

Selection Give higher probability of selection to high fitnesses

Crossover Pair off selected parents and swap genes

- Population members selectively replaced by promising offspring in each generation
- Population's average fitness improves

Pros (& Cons) of GAs

GAs are *heuristic* and *stochastic* (not true optimizer)
We don't care about optimization!

We just want a *any arrangment* of DPUs that satisfies all requirements.

True optimization algorithms are *highly* dependent on problem details

Slight change in DPU array architecture can completely change the problem

GA chromosomes are *easy to encode* and strange requirements are *easy to enforce*.

• But

As a statistical search method, GAs can computationally demanding

Genetic Placement of DPUs

- Valid solutions must meet many constraints
- Newly generated chromosomes must be permutations of the DPUs
- Some DPUs need to be in specific tiles because of memory or control

- Some DPUs have to be in either even or odd positions or special positions containing multipliers
- \Rightarrow Many solutions will NOT be valid

Enforcing Positional Constraints

 During fitness evaluation, chromosomes undergo problem-specific *heuristic repairs for all constraint violations*

- Non-repairable violations cause a penalization in fitness to discourage their proliferation
- Some violation types are avoidable by clever encoding of the problem parameters into chromosomes

Effectiveness of GA Placement

GA Performance, Various Kernels

Experimental Findings

- ♦ 50% population change per generation is best
- 30%~50% of the new solutions should be created from crossover
- ♦ 50%~70% should be from mutation

Random variation of existing population members to guard against inbreeding

- Computational effort correlates well with other measures of circuit complexity
- Significant reduction in search times from heuristic repair of constraint violations
- Search times comparable to simulated annealing

Conclusions

 Flexibility of problem encoding and solution evaluation GAs easily adapt to diverse constraints from different reconfigurable hardware
Combining GA search with repair is a crucial strategy Hybridize GA with "local search"

- Traditional role of mutation as minor background process can be far from optimal
- The developed GA places real-world circuits in seconds

Good enough for interactive CAD

Further Details

- F. Ma, J. P. Knight, and C. Plett, "Physical resource binding for a coarse grain reconfigurable array using evolutionary algorithms", *IEEE Transactions on Very Large Scale Integrated Systems*, (accepted).
- F. Ma, J. P. Knight, and C. Plett, "Physical resource binding for a coarse grain reconfigurable array", *Engineering of Reconfigurable Systems and Algorithms*, June 21-24 2004.
- F. Ma, J. P. Knight, and C. Plett, "Reconfigurable logic design case", SPIE Conf. on Reconfigurable Technology: FPGAs and Reconfigurable Processors for Computing and Communications (part of ITCom 2002), v. 4867, pp. 113–126, July 30 2002.

The End

Reference Slides

How Hard is the Problem?

♦ 10²⁸ possible orderings of DPUs

- Heuristic search difficulty
 - Depends on *density* of valid solutions in search space

Random exhaustive search

- Tried billions of combinations over a week
- Couldn't find solution for FFT
- Enabling repair of violations didn't help

GA Parameters

(from extensive experimentation)

- Random Keys encoding:
 - Each DPU assigned a random real "key"
 - Get DPU order by sorting the keys
- Uniform crossover: Randomly choose genes to swap

- Quadratic penalty for wires exceeding 8 DPU positions
- Ranked fitness to avoid scaling problems
 - Rank of genome after sorting population by descending cost
- ♦ 1~2 global vertical wires driven from each tile
- Mutate general population members for diversity

DPUs Belonging in Specific Tiles

- Equal size subranges define key based tiles
- *Physical* tiles defined by counting 4 DPUs/tile
- The problem:

Key based tile edges not the same as physical tile edges

Solution:

Penalize misaligned tile edges

- Treat offset as an overlength wire
- Misalignments minimized by evolution

Fixing Stubborn Tile Binding Violations

- Aggressive circuit design: Hard to meet all constraints
- Seek simple re-ordering to fix violation
- Swap errant DPU into home tile
 - Don't create/worsen a tile violation
- Multiple passes
 - Each pass tries to fix all tile violations

Even/Odd Position Constraints

- Fine positional constraint relies completely on local search for compliance
- Save area by interleaving DPUs with complementary functions
- A polarity violating DPU checks immediate neighbours for swapping
- Small fine-tuning movements

Identify Good Search Conditions (FFT)

KFO:

Kids Fraction Offspring

- The fraction of kids made up of offspring (rather than mutants)
- Indicates greedy search

Effect of Population Size (FFT Kernel)

Back-to-back FFT/IFFT

Circuit Complexities

				DPUs+		Driven	
	Kernel	DPUs	MULs	MULs	Nets	Ports	Tiles
Fasy	IIR Xpose	7(2)	5	12	11	15	1
Laby	IIR DF-II	8(2)	5	13	12	15	1
	IIR DF-II x4	14(8)	5	19	15	21	4
Т	FIR Xpose	10(2)	5	15	14	22	1
	IIR Xpose x4	13(8)	5	18	14	27	4
	FIR DF-I	19(2)	5	24	23	31	1
	FFT Easy	20(2)	6	26	24	50	3
	FFT	20(2)	6	26	24	50	3
Hard	FFT Hard	20(2)	6	26	24	50	3

GAs Compared to Simulated Annealing

