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Abstract—One of the challenges of designing for coarse-grain re-
configurable arrays is the need for mature tools. This is especially
important because of the heterogeneity of the larger, more prede-
fined (and hence more specialized) array elements. This work de-
scribes the use of a genetic algorithm (GA) to automate the physical
binding phase of kernel design. We identify the generalizable fea-
tures of an example platform and discuss suitable ways to harness
the binding problem to a GA search engine.

Index Terms—Coarse grain reconfigurable array, evolutionary
algorithm, genetic algorithm (GA), physical binding, placement.

I. INTRODUCTION

COARSE-GRAIN reconfigurable arrays are field-pro-
grammable arrays in which many of the gates have

been preformed into word-oriented data-path units (DPUs).
Course-grained arrays are less flexible than field programmable
gate arrays (FPGAs), but can yield higher speeds and densities
in applications which are aligned with the architecture. They
have been receiving widespread attention for DSP on streaming
data [1]–[7].

In all reconfigurable arrays, the desired circuit function is first
mapped to available array elements (DPUs, memory, control,
etc.) as a netlist. These elements are then bound to location-spe-
cific array instances. These two steps are well defined for fine-
grained FPGAs but under development for coarse-grained ar-
rays. This paper focuses on the second problem: the physical
binding of a design to array instances. We demonstrate how ar-
chitectural constraints can be handled using a genetic algorithm
(GA). Our methodology currently targets architectures like the
Chameleon platform [3] (Fig. 1), but we identify many features
that can be generalized to other architectures.

The problem of physically organizing kernel netlists onto a
coarse-grain reconfigurable array has been addressed before.
An early place-and route-algorithm for coarse-grain arrays
used simulated annealing (SA), and is part of an integrated
CAD system for the rDPA architecture [1], [8]. Much of the re-
search in this area has been in placement for fine-grain FPGAs.
Here, routing typically follows placement, and an empirical
metric is used during placement to estimate routability. For
the fine-grain FPGA Garp, [9] mixes relative placement with
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Fig. 1. Architecture of Chameleon array.

synthesis to exploit the regularity of bit slices in mapping dat-
apaths to fine-grain arrays. Like regular fine-grain FPGAs, the
coarse-grain linear array RaPiD [5] has a separate placement
done by SA [10], followed by routing done with Pathfinder
[11] or a pipelining-aware router [12]. For the two-dimensional
(2-D) coarse-grain array Morphosys [2], [13] mixes relative
placement with transformations of computational expression
trees to maximize throughput in the face of limited memory
bandwidth (memory is external to the array). The work in [14]
compiles from a high-level language SA-C [15] to fully sched-
uled instructions on the Morphosys platform. Both Morphosys
and SA-C are geared toward vectorizable 2-D image pro-
cessing. [Morphosys operates in a single instruction multiple
data (SIMD) manner]. At a higher abstraction level is Raw’s
2-D processor array [7] for which a SystemC-like language,
StreamIt [16], was developed. Stream processing is represented
as a collection of filter-based processes connected by channels.
Processes are bound to processors via simulated annealing, and
the resulting latency affects the scheduling.

A. Chameleon Architecture

Chameleon’s architecture [3], [17] is meant for stream data,
but is not restricted to 2-D image processing. It is a 2-D array of
DPUs, partitioned first into vertical slices, then into tiles (Fig. 1).
Each DPU contains an ALU, a shifter, logic masking in both
of its two operand inputs, and pipeline registers. The DPUs’
behavior is controlled by finite state machines (FSMs) that are
programmed into the PLA. In each cycle, control lines from the
PLA select from eight “personalities” loaded into each DPU,
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not necessarily in SIMD fashion. Each personality consists of
a set of configuration bits that determine how all the different
components in the DPU operate. The local memories and PLAs
allow kernels to be designed with some degree of distributed,
locally controlled operation.

Chameleon’s interconnect is primarily vertical, though hor-
izontal buses span slices. Hence, slices form a natural parti-
tioning point for large kernels. Within each slice, connections
are mostly made by local wires; they can connect DPUs within
eight positions of each other, even across tiles. In addition, a set
of global buses span the whole slice. Their use requires regis-
tered destination ports to meet timing. Two DPUs at the bottom
of each tile do multiplication, and DPUs in even rows can read
memories while DPUs in odd rows can write to them.

The following features of the platform are general principles
that can be applied to other platforms: 1) partitioning of DPUs
(into slices, in this case) to limit complexity of the interconnect
network; 2) lots of interconnect along one axis (vertical in this
case), with limited global interconnect along the other axis; 3)
partitioning of DPUs into tiles to limit complexity of the con-
trol PLA; 4) division of interconnect into local and global wires
to limit complexity; 5) latency incurred with global wires; 6)
gross location-specific resources that constrain the placement
of DPUs to which they connect, e.g., multipliers and memories;
and 7) interleaving DPUs with complementary capabilities to
reduce complexity, e.g., even (odd) memory read (write).

B. Organization of the Rest of the Paper

This paper is organized as follows. In Section II, we describe
the place-and-route problem in terms of the Chameleon archi-
tecture, approaches to its solution, and reasons for choosing
GAs. In Section III, fundamental choices in the GA implemen-
tation are made based on a simplified placement problem. In
Section IV, heterogeneous constraints are incorporated using pe-
nalization and repair of violations. Section V summarizes the
schedule of steps in our GA. Section VI discusses results from
several kernels, as well as variations of the algorithm parame-
ters and iteration scheme.

II. PROBLEM DETAILS AND SOLUTION APPROACHES

The resource binding problem is simplified by a key feature
of the Chameleon architecture: The output of each DPU is con-
nected to the inputs muxes of all DPUs within eight rows of
it. Unlike FGPAs, this local wiring is not shared. Therefore, a
net’s routability by local wires is automatically determined by
the placement of source and destination DPUs. There is no “es-
timation” of routability during placement, and no separate step
after placement to find routes between source and destination. If
a DPU arrangement contains a net over eight rows from source
to destination, it is simply and immediately found to be infea-
sible; there is no varying degree of acceptable delay.

Fig. 2 illustrates this reduced, simultaneous “place-and-
route” for a hypothetical architecture with only 3 DPUs/tile,
and a local wire reach of three rows up and two rows down.
The placement problem at this point is: find an arrangement of
the DPUs in the net list such that no nets exceed the local wire
reach. This simplified placement problem is a starting point for

Fig. 2. DPUs in a netlist are arranged onto a slice. The required connections
should be mostly realizable with the limited reach of local wires. Example
architecture has 3 DPUs/tile and 3 tiles/slice. Local wires extend up three rows
and down two rows, except near the top and bottom.

the full placement algorithm. A realistic architecture will have
a multitude of additional conditions, or constraints, that must
be satisfied for a solution to be “feasible.”

The method used to find a solution should be able to accom-
modate highly varied constraints. In Chameleon, for example,
DPUs that access the local memories must be adjacent to those
memories, and should occupy sites that have the correct memory
read[write] capability. Other special conditions are fixed multi-
plier placement, and the availability (with possible retiming) of
a few long lines for overlength nets.

Mathematically, the problem is as follows. A DPU netlist is
a directed hypergraph , where each net con-
sists of source DPU and one or more destinations

. The coarse-grain array is a vector of DPU
positions . To allow gross position con-
straints, contiguous are further grouped into abutted tiles

such that ,
where . Each may be required to re-
side within a subset of adjacent tiles (1-tile subsets in this case).
We assume that the array interleaves classes of DPUs
with varying capabilities ( for Chameleon). A
may also be required to reside in certain classes; hence, are
also grouped into classes , where

. Under
this notation, the problem is then to arrange the ’s onto the

’s such that: 1) there are no more than nets
being sourced from each tile to destinations more than
away and 2) any memberships of each in and are met.

The problem is currently formulated for a single-slice kernel.
It does not consider the retiming that may be necessary from
using global interconnect. At this time, we expect the designer to
perform the global partitioning of the kernel into slices, and any
retiming that may be needed from the use of global interconnect
by the placement algorithm.

The manually placed kernel in [17] took days. As
coarse-grain reconfigurable arrays become larger, this will
become more demanding. In automating this, our goal is to pro-
vide quick enough feedback on design feasibility to maintain
continuity of the designer’s work.

The following problem features motivate our approach for the
methodology. Because of the heterogeneous constraints, this or-
dering problem differs from the classical travelling salesman
problem (TSP), in which a tour of cities must be organized to
minimize travel costs [18], [19]. Since the problem is primarily
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driven by constraint satisfaction, we are not seeking “the op-
timum” solution; any solution is good so long as it complies
with the architecturally imposed constraints. Additionally, we
seek a method that can easily adapt to changing constraints as
a platform’s architecture evolves. Because of these two consid-
erations, we chose a heuristic search through the solution space
rather than laboriously trying to recast the constraints for an op-
timum-finding method. Fitness-based searches in particular ease
the problem encoding for a multitude of variations on a plat-
form’s architecture.

This effort focuses on a working solution; we do not address
theoretical complexity here, though empirical complexity is ex-
plored in Section VI-B. Serious consideration (including hand
routing attempts) indicate that if there is a polynomial time al-
gorithm, it would be very hard to find. For such potentially
NP-hard problems, heuristic approaches are often used. Just as
important is the fact a problem’s difficulty can change signif-
icantly with minor changes in constraints. A general method-
ology should have performance that is robust in the face of vari-
ations in the exact feature set, which again suggests a heuristic
approach.

Since candidate solutions are permutations of the DPU
indices, the search space method must be suitable for combi-
natorial problems, e.g., simulated annealing, tabu search, and
GAs. One of the motivating reasons for choosing GAs was its
amenability to parallel processing. Other iteration schemes are
may also perform well, as discussed in Section VI-B.

III. BASELINE GA BASED ON INTERCONNECT

The conceptual foundations of GAs may be found in [18] and
[20], while the myriad of issues regarding its application can be
found in [21] and [22]. We freely borrow from, and modify, the
more liberal population replacement strategies of evolutionary
strategies (ES) [23]. GAs and ESs are collectively known as
evolutionary algorithms; we will use the term GAs to emphasize
the discrete nature of the problem parameters.

The basic operation of the GA is to maintain a population of
(initially random) solution points, or chromosomes, or genomes.
In each generation, better offspring solutions are formed by
combining parameters, or genes, from existing parent chro-
mosomes in a process known as mating. All new solutions
are evaluated and assigned a fitness. The population improves
because fitter chromosomes are more likely to be selected
as parents. Their offspring conditionally displace population
members through various schemes.

A chromosome is not exactly the same as a solution. A phe-
notype is a set of problem parameters that comprise a candi-
date solution, e.g., a list of which DPUs go into which position
(Fig. 2). Its encoding as a chromosome is called a genotype.
The two can be very different, depending on the mapping from
chromosome to solution [for example, Fig. 3(b), next section].
The population can be viewed as a set of sample points in the
genotype space. Through the generations, sample points tend to
get denser in regions of good fitness, since the responsible gene
values proliferate through the population.

For the DPU binding of Fig. 2, the DPU ordering naturally
forms a simple chromosome consisting of an integer vector. The

Fig. 3. (a) PMX: 2-point crossover that results in collisions, e.g., gene value 1
in the first offspring. PMX replaces the outside 1 with 7 (overwritten by 1 inside).
If the new 7 outside had conflicted with a 7 inside, the process is repeated.
(b) RKR: Obtaining a 4-slot ordering from a chromosome.

vector element is the gene, the element position corresponds to
the DPU position, and the gene value is the index of the DPU to
be located there. We will call this vanilla encoding.

A. Crossover

In classical GAs, genes from two parents are often combined
by 2-point crossover: Two randomly determined crossover
points in the chromosome delineate a segment of contiguous
genes to be swapped between parents. Whether or not a fa-
vorable attribute gets propagated to the offspring depends on
whether the associated genes, referred to as a building block,
are kept together in the crossover. If these genes are far apart, a
building block is less likely to fall entirely inside or outside of
the crossover segment and remain intact; the building block is
then disrupted.

Disruption is reduced by ordering the genes so that key
building blocks are compact; however, it is difficult to recog-
nize all ways that genes can combine to form building blocks,
or how influential are various building blocks in the search. One
way to address this is to explore different gene orderings by
inverting the order of a random gene segment in a chromosome.
This requires 1) that the genes be tagged to disassociate their
meaning from their position and 2) a means to have a common
order between mating parents. In this work, an alternate ap-
proach, uniform crossover [21], [22], is discussed below.

Disruption is further reduced by using an integer gene for a
DPU index rather than several binary genes. This prevents the
crossover points from falling between the bits of the DPU index,
thus disrupting that information. However, it also suppresses a
beneficial role, which is to create new DPU index values. This
role is essential because gene values get less diverse with evo-
lution. If this happens too fast, the population may prematurely
converge on a suboptimal region of the search space (local min-
imum). To maintain diversity, regular mutation of a few chromo-
somes is needed to compensate for the lack of gene disruption.
In mutation, one gene is randomly changed.

Ordering problems form a special subset of combinatorial
problems because the only valid solutions are permutations of
a set of indices. Swapping a random set of genes between valid
solutions often yields invalid solutions, since a gene value might
show up both inside and outside crossover segment [Fig. 3(a)].
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We call this a collision. Avoiding this requires specialized
crossovers that create offspring which are also permutations
[18], [21], [22]. Different permutation-preserving crossovers
propagate different kinds of order information, e.g., absolute
position, adjacency, and/or relative ordering of gene values.
Many schemes target TSP-like problems, for which solutions
are rotationally invariant, i.e., is the same as .
These schemes are not suitable for DPU binding, since there
are no local wires wrapping around from the top of the slice to
the bottom.

We initially tried partially matched crossover (PMX), be-
cause it propagates both order and position information; a DPUs
absolute position is important when it connects to a site-specific
resource, while interconnecting wire length depends on both rel-
ative order and absolute position. In PMX, a 2-point crossover
is followed by a repair phase that resolves collisions [Fig. 3(a)].
The conflicting value outside the crossover segment is changed
to a value that is unlikely to cause a collision. Thus, building
blocks inside the crossover segment are preserved, but the prob-
ability of preserving building blocks outside are worse than for
a normal 2-point crossover. An apparent bias toward preserva-
tion of building blocks near the center of the chromosome is
avoided by treating the chromosome as circular. This allows the
crossover segment to straddle the end points.

To avoid the disruption in PMX, we explored the use of
random key representation (RKR) [Fig. 3(b)], [21], [22], which
encodes an ordering problem in a way that avpids collisions.
Each gene in the chromosome corresponds to a DPU—or
equivalently, its index—rather than a DPU position. Each gene
value is a random real number in the range [0.0, 1.0], which is
used as a sort key. The DPU ordering is obtained by sorting the
DPUs according to the sort key. The higher the sort key value
for a DPU, the more likely it will end up toward the bottom
of the slice. The sort key acts as a sloppy indicator of DPU
position; the final position of any one DPU depends on the sort
keys for all the DPUs. Intuitively, each collision-free point in
the vanilla genotype space maps to a region of RKR space.

Under RKR, we tried uniform crossover because our problem
has different building blocks from the TSP. In the TSP, the
adjacency of cities to be visited is important, since the cost
is determined by the edges between consecutive cities. Since
2-point crossover and PMX preserve information represented
by close-together genes, adjacency of cities is propagated. In
the DPU binding problem, however, interconnections must not
exceed the length of local wires. Since these nets do not nec-
essarily connect adjacent DPUs, we dispensed with crossovers
that favor compact building blocks. In uniform crossover, genes
to be swapped are randomly determined.

B. Cost and Fitness Scaling

The GA search is driven by the fitnesses of the solutions,
which must reflect how compliant they are to the various con-
straints in Section I. Constraint driven searches differ from opti-
mization searches in that constraint violations are first combined
into a cost, and then converted to fitness. If fitness is calculated
as 1/cost, the fitness explodes toward infinity as the violations
approach zero. This means a few better-than-average solutions

Fig. 4. (a)–(c) Wire length cost schemes for local wires that span eight
DPUs. (d) Fitness as the cost difference from maximum cost. Small C
(left) accentuates relative differences between fitnesses, while large C
(right; e.g., from more extreme outliers in larger populations) yields relatively
similar fitnesses. (e) Delayed convergence from reduced selective pressure.
Since the entire population is replaced in each generation, the larger population
took almost 600�10 matings; the smaller population took less than 40�10
matings.

will be selected for mating most of the time, crowding out di-
versity and prematurely converging. Zero cost can be avoided
by adding a constant “baseline” cost to the overall cost. The se-
lection of this offset cost, however, is an open question, and its
effect on selective pressure depends on the distribution of costs.

We first establish a cost structure based on the wire lengths
needed to connect a DPU arrangement for a chromosome
[Fig. 4(a)–(c)]. Costs for violating any location constraints are
then incorporated. Finally, individual costs are summed into
overall chromosome cost, which is converted to fitness.

In wire cost scheme Fig. 4(a), the quadratic cost for over-
length wires is typical of schemes that penalize a solution based
on how much it encroaches into an infeasible region in the
search space. However, we also impose a shallow linear ramped
cost for wires of legal length to encourage connected DPUs to
be closer together. Hence, it is possible for a feasible solution
to have nonzero cost in this scheme.

The premise for Fig. 4(b) was that all legal wire lengths were
equally good and all overlength wires were equally bad. This
scheme often converged prematurely.

The best performing cost scheme was Fig. 4(c), a combina-
tion of (a) and (b). Compared to (a), its search time was more
consistent. This was attributed to greater diversity, due to ab-
sence of selective pressure from the linear cost ramp.
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Fig. 5. (a) Ranked fitness. (b) Adding offset to rank to reduce selective
pressure. (c) Unrolled roulette wheel of fitnesses.

Global vertical wires in the architecture are easily accom-
modated by assigning them to the worst violators of local wire
length, thus ensuring the most value for a scarce resource.
Those penalties are then “pardoned” from the overall cost. In
the Chameleon architecture, each tile can drive three global
32-bit buses, totalling nine buses for the slice. Hence, the wiring
cost assessment will pardon the three longest overlength wires
driven from each tile. To minimize retiming problems, nets that
drive registered inputs can be favored in allocating these global
wires.

We initially obtained fitness from cost by subtracting a
chromosome’s cost from the greatest cost in the population,

[Fig. 4(d)]. This guarantees that all chromosomes had
nonzero fitness (except the worst one) and had some chance of
mating, thus ensuring diversity. However, selective pressure is
reduced for a large population size . To see how, consider
a probability distribution of chromosomes over cost. Consider
any (large) cost threshold for which there is a
90% chance of a chromosome having lesser cost. For a popu-
lation of , the chances of having a cost greater than
is, which increases with . Therefore, for
the same cost distribution and any given large threshold ,
a larger population has a greater likelihood of containing an
outlying genome with a greater cost. Hence, large a typi-
cally yields large , which leads to fitnesses that relatively
similar [Fig. 4(d)]. This reduces selective pressure and leads to
long search times [Fig. 4(e)].

Sigma truncation avoids the modulation of selective pressure
by population size. The trade-off is that it does not ensure the
inclusion of all chromosomes for selection. Instead, is
taken to be some number of standard deviations above the mean
cost; fitness is taken to be zero for any chromosomes with higher
cost. This effectively reduces the population size, and diversity.

To avoid both modulation of selective pressure and exclusion
of chromosomes from selection, ranked fitness was used. The
chromosomes are ranked in order of decreasing cost [Fig. 5(a)].
The rank is then linearly mapped to fitness. Diversity is en-
hanced because even the poorest chromosomes have a proba-
bility of selection which is not almost zero. Furthermore, rela-
tive fitnesses and selective pressure are immune to . As

well, isolated star performers remain close to the runners up
and are prevented from crowding out diversity. Finally, a con-
trolled degree of differentiation is maintained between all chro-
mosomes even if some absolute costs are bunched together in
the cost distribution. Effectively, ranked fitness provides locally
adapting nonlinearity to maintain steady selective pressure, both
in time, as the generations elapse, as well as across the popula-
tion in any generation. The cost-fitness conversion has large dif-
ferentiation in cost regions where there are many chromosomes,
with costs bunched together; where costs are far apart, the dif-
ferentiation is reduced.

Selective pressure can be controlled through the mapping be-
tween rank and fitness. For example, consider a population of

chromosomes. Suppose one wants to combat pre-
mature convergence. Selective pressure can be decreased by
adding an offset to all the fitnesses [Fig. 5(b)], thus com-
pressing relative fitness. Suppose that one wants a level of di-
versity such that the ratio of probabilities of selecting the best
and worst chromosomes is . By adding to the
tallest and shortest bars (and all other bars) in Fig. 5(a), we cal-
culate , from which

. For .

C. Selection of Parents

The roulette wheel method places all genomes on a pie chart,
with the slice width proportional to fitness. A dial is spun to
select a parent (or parents). Implementation is done by map-
ping the rim of the pie chart to the real number range
[Fig. 5(c)]. For ranked fitness, a parent is selected by generating
a random number ; the selected parent is the
genome whose segment encompasses . This conversion of
to may be done by table lookup (LUT) via binary search.
(For a multiarm roulette wheel, linearly scanning the LUT may
be more efficient). As can be seen from Fig. 5(c), this table is
trivial for ranked fitness, since the segment delineation points
in are the cumulative sum of linear unit-ramped fit-
nesses. Hence, (or rather, its rank ) is related to its position in

by an arithmetic series. can thus be algebraically
determined from .

For the case where is added to all the ranks, the arithmetic
series of Fig. 5(c) is modified slightly. It is straightforward to
show that maps to ’s rank according to

For Fig. 5(a) and (c), .

D. Population Replacement, Mutation, and Diversity

We define kids as any newcomers to the population, offspring
as kids from mating, and mutants as kids from mutation. Our
initial attempts used generational evolution. For a population
of , this scheme selects pairs of parents at a time,
with possible repetition, to generate offspring; the entire
population is replaced at once. Unfortunately, this kind of search
threw out even the best chromosomes with the old generation.
We next tried steady-state replacement, in which one mating
was performed per “generation.” Any offspring and mutants are
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incorporated into the population before selecting parents for the
next generation.

Initially, mutation was performed only on offspring, e.g., a
probability of mutation % generates an average of
one mutant from two offspring, yielding three newcomers or
kids. This method gave frequent premature convergence where
the cost converged to a single unchanging value throughout most
of the population. We simultaneously measured diversity using
several metrics and found it decreased rapidly. To combat this
more chromosomes from the population were mutated, e.g., for
a population of chromosomes, % now generates

mutants, selected with uniform probability, without repe-
tition. Including offspring, this yields kids per gen-
eration. Because of the dramatic improvement that this gave,
we explored a range of values for the fraction of the population
to replace each generation, as well as the ratio of mutants to
offspring. These ratios seemed more important for harder prob-
lems. 50% and 40%, respectively, worked well as discussed in
Section VI.

The initial population replacement policy was to merge the
kids with the population of , sort all chromosomes by cost,
and keep the best . There is no guarantee of how many kids are
kept. Another experiment, which improved diversity, was to un-
conditionally inject the kids into the population, displacing the
worst members. Diversity was further enhanced by removing
duplicates among all kids, as well as duplicates between kids
and the population. Note this is much more meaningful with in-
teger genes of vanilla encoding, since RKR’s real valued genes
can be very similar but still technically nonidentical.

IV. HETEROGENEOUS CONSTRAINTS

A. Tile Bound DPUs

The placement of a DPU may be constrained to a tile for a
number of reasons. In [17], for example, the memories of a tile
are chained into a contiguous memory, and the DPU must read
from or write to the memory. Another reason may be that certain
DPUs share the same PLA (Fig. 1), e.g., because of a common
FSM for control, or FSMs with a lot of mutual dependence. In
general, a placement algorithm that accommodates tile bound
DPUs allows the array architecture to have DPUs with different
capabilities in different tiles. We refer to the binding tile as the
home tile.

Initially, we penalized solutions with tile binding violations;
however this rendered much of the search space infeasible. Fur-
thermore, since RKRs keys are a sloppy specification of posi-
tion, this would discourage tile-bound DPUs from going near
the tile boundary, even if the final solution requires this. In [17],
for example, DPUs bound to the top/bottom tiles “strained” to
be close to the center tile, since central positions were favor-
able for interconnection. A generalization of this is that valid
solutions are likely to lie near infeasible regions of the search
space for those problems that push resource limits. To avoid re-
pulsion of tile bound DPUs from the tile boundary, we modi-
fied the genotype–phenotype decoding to allow a gentler penal-
ization. For illustration, we assume a reduced architecture with

DPUs/tile and tiles/slice.

Fig. 6. Modifying the chromosome decoding to support tile binding for a
4 DPU/tile architecture.

Fig. 6(a) shows a starting point for linearly remapping the
key values of tile bound DPUs to the subrange for their home
tiles. A high key value then causes the DPU to be positioned
toward the tail end of the home tile . We need a way to de-
fine the home tile’s subrange. To simply assume equal subranges

would cause some
tiles to have more than DPUs, as in Fig. 6(a). The
tile boundaries’ key values must be defined in a way that ensures

DPUs in each tile, assuming

DPUs overall [Fig. 6(b)]. If tile has bound DPUs, it
should have unbound DPUs; thus, the un-
bound DPUs that straddle each boundary are easily determined
by counting out the sorted unbound DPUs along the key number
line. It remains to decide exactly where each boundary should sit
between the straddling DPUs. The simplest choice of midway
between straddling DPUs is both arbitrary and unjustified.

This uncertainty can be avoided by using both boundary def-
initions (a) and (b). Denote the boundaries in (a) as key-based
boundaries [Fig. 6(c)]. After the tile bound DPUs are mapped to
the home tile, each tile can have the wrong number of DPUs

, which we refer to as the tile’s size. The GA can be made
to favor solutions with correct tile sizes of .
To do this, determine the physical boundaries by counting out
the desired DPUs per tile; physical boundaries are
designated by straddling DPU pairs rather than a specific key
value. Any misalignment between the DPUs straddling a key-
based boundary versus the corresponding physical boundary is
penalized in the same manner as an overlength wire. One can
imagine elastics connecting physical and key-based boundaries,
pulling them together into alignment. The cost of misaligned
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boundaries can be incurred even if no DPUs violate any tile
bindings, i.e., a completely feasible solution can have nonzero
cost. Since the problem is no longer one of constraint satisfac-
tion alone, violations must be tallied independently from cost.
Unlike optimization, however, improved fitness from aligned
boundaries does not translate into a better phenotype; it only im-
proves the search by enabling a good remapping scheme for the
keys of tile bound DPUs. For example, we intuitively expect less
repulsion of tile bound DPUs from the boundaries because of
the “fuzziness” of misalignment, which has two contributions.
First, the physical boundaries are based on DPU ordering, which
depend on their key values in a sloppy way. Second, the strad-
dling DPUs themselves define a range of key values which the
key-based boundary can fall between and still be aligned.

The misalignment penalty encourages but does not guarantee
alignment, particularly in the early generations of evolution.
Bound DPUs that fall between physical and key-based bound-
aries may violate their tile bindings. To resolve this, we search
for a feasible modification of the DPU ordering. If such a fix can
be found, the effect of this heuristic (local) search is to remap
some solutions from an infeasible regions to nearby points in
feasible regions. As mentioned, solutions for resource-limited
problems are likely to lie near the interface, making it worth-
while to fix almost-feasible solutions. Since the repair raises in-
feasible points near the interface to feasibility, repulsion effects
from penalization are further mitigated, thus encouraging more
search to take place there.

Fig. 7(a)–(c) shows the approach for repairing tile binding
violations. Starting from the nearest edge, the home tile is
searched for a slot in which the errant DPU, or swapper, can
be put. The DPU occupying that slot, or swappee, can then be
swapped with the swapper [Fig. 7(c)]. To be a swappee, the
swap should not cause the candidate DPU to violate any tile
bindings. If the candidate is already an errant DPU, the swap
should not bring it farther away from its home tile. Such a
swap could make the chromosome grossly infeasible, since the
swappee would be a whole tile farther from its home.

Our GA does not penalize tile binding violations that can be
repaired. The tile binding violations can only arise from mis-
alignment of physical and key-based boundaries, which are al-
ready penalized. For the same reason, even unrepairable tile
binding violations are not penalized. Another reason to avoid
penalizing repairable violations is the importance of not discour-
aging search in the vicinity of almost-feasible points.

Unlike PMX repairs, our repairs are applied to the pheno-
type for the purpose of evaluation only. The repairs are not en-
coded back into the genotype because changing the chromo-
some to reflect improvements is like a life form being able to
change its own genes due to things learned during its lifetime.
Changing the chromosome would allow it to be perpetuated in
the evolution. Such Lamarckian evolution has been disproved
in the biological world, though local optimization of chromo-
somes has been used in GAs, with controversy [20]. It effec-
tively pushes the chromosome back to the shores of an infeasible
region [Fig. 7(d)]; this makes the search greedier and makes it
harder to break out of local optima. Studies have shown Lamar-
ckian evolution preventing the discovery of feasible points ([22,

Fig. 7. (a)–(c) Repair of tile binding violations. (d) Lamarckian learning in a
2-D search space. The underlying chromosome is pushed out of an infeasible
region by repairs from local search. (e) Non-Lamarckian local search changes
the search space by replacing infeasible points with nearby feasible points.

p. 321]). We avoid it and leave the solutions in the infeasible re-
gion. Penalization of tile edge misalignments will minimize tile
violations.

Conceptually, restricting the effects of repair to cost evalu-
ation is equivalent to embedding the repair into the chromo-
some decoding rather than shifting chromosomes in the search
space. It does not change the rules governing how to choose new
test points; it modifies the genotype–phenotype mapping to give
some of the feasible solutions more representation in the search
space [Fig. 7(e)]. Regions in the genotype space that use to be in-
feasible are replaced by replicas of nearby feasible points. Thus,
the infeasible regions shrink and the feasible solutions are easier
to find.

When a phenotype is changed by a tile repair, it creates
the possibility that previous unrepairable violations become
repairable. Therefore, after each repair, the remaining tile
violators are rescanned for further repairability.

B. Polarity Bindings

One architectural approach to improve silicon usage is to in-
terleave DPUs with complementary functionality. This can save
resources over duplicating all functionality across all DPUs. An
example of this is Chameleon’s read/write access to memory,
alternating between even and odd position DPUs. We call this
the position’s polarity.

Finely interleaved position constraints like polarity require
different treatment from gross location constraints such as tile
binding. Though deterministic local search was used to find
nearby feasible variations of tile binding violators, the GAs
global search was stochastically discouraged from putting too
many points too deeply into infeasible regions, i.e., where not
even local search can find feasible variations. This global evo-
lution does not help much in complying with the fine position
constraints of polarity. We assume that polarity constraints
have 50% chance of violation, then rely completely on the
deterministic local search to fix the violations. Thus, wherever
evolution has placed a sampling point in the search space, a
nearby polarity compliant solution is sought through a series
of small interchanges. Because of the fragility of polarity
compliance, it cannot be found by a stochastic search, e.g.,
if a chromosome was compliant with many of its polarity
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constraints, a single DPU movement can shatter this by shifting
many DPUs by one position. The riskiness can be viewed as
a random search step from in a genotype space containing
finely alternating regions of feasibility and infeasibility.

The repair heuristic is simple. A polarity violating DPU can
reverse its polarity by swapping positions with a neighboring
DPU. The following conditions are to be satisfied: 1) the
neighbor with the closest key value is preferred; 2) the swap
should not create a new polarity violation in the neighbor,
though it may fix an existing one; 3) no new tile binding
violations should be created, though existing ones may be
fixed; and 4) physical tile edges are used to assess tile binding
compliance, since key-based edges are fictitious.

Condition 1) minimizes the perturbation in the search space
to maintain tight association between the new cost and actual
costs available close to the underlying genome. We thought that
mapping infeasible points to far-away variations might deceive
the stochastic search. We did not worry about whether a tile
binding violator is brought further away from its home tile, as
the movement is small compared to migration between tiles.

As with tile bindings, if any violations are repaired, the re-
maining violators are rescanned for further repairability. After
an iteration with no repairable violations, unrepairable viola-
tions are penalized a small cost of 1. This is the same as a wire
exceeding the maximum length by 1, and the violating DPU is
only 1 position away from a polarity compliant position. We use
a small penalty because we are not relying on GAs stochastic
global search to resolve polarity violations. Instead, we rely on
the ubiquity of finely interleaved regions of violation and com-
pliance to potentially fix all polarity violations through adjacent
moves. The token penalty provides some differentiation with a
solution that is equally good except for the polarity violation.

V. SCHEDULING OF GA STEPS

The overall framework for the GA is as follows. 1) After gen-
erating an initially random population of genomes and evalu-
ating them for cost, a subset of genomes is selected as parents
according to fitness; 2) offspring and mutants are generated,
evaluated for cost, and merged into the population; 3) the cycle
is then repeated, starting with selection of parents according to
fitness; and 4) the search stops when a solution is found that
does not contain violations of tile bindings or polarity bind-
ings, or outstanding violations of local wirelength limits after
global wires have been used to eliminate the worst offenders.
Section VI describes an additional empirical stopping condition.

The evaluation of a genome consists of the following steps,
in order: 1) the random keys are sorted to obtain the DPU ar-
rangement; 2) tile misalignments are penalized; 3) repairs are
repeatedly attempted on tile binding violations until no further
fixes are possible; 4) repairs are repeatedly attempted on polarity
violations until no further fixes are possible; 5) remaining po-
larity violations are penalized; 6) violations of local wire length
are found and penalized; 7) global wires are used to pardon
the worse violators; and 8) outstanding costs and violations are
tallied.

TABLE I
KERNELS TESTED. MULs: MULTIPLIERS. DF-I: DIRECT FORM I. DF-II: DIRECT

FORM II. Xpose: TRANSPOSED DF-II. x4: 4 INTERLEAVED STREAMS.
BRACKETS SHOW MEMORY READ/WRITE DPUs. EASY[HARD] =

NO[EXTRA] CONSTRAINTS

VI. RESULTS

The proposed GA was implemented in C++/STL. In [24], we
initially applied the GA to the netlist of [17], which implements
a 1024-point FFT in one slice. Of the kernels tested, it was the
most complex, consisting of a central butterfly engine, address
generation for twiddle factors and data undergoing transforma-
tion, and selective interleaving to maintain 1 butterfly/cycle. The
kernel’s use of array resources is summarized in Table I, second
last row. We comprehensively characterized its convergence be-
havior across several parameters, including the fraction of the
population to replace with kids (PFK) in each generation, as
well as the fraction of each generation’s kids to be made up
of offspring (KFO) rather than mutants. A population size of

was used, based on preliminary trials. Aside from
the extremities, the algorithm was robust across both parame-
ters’ value ranges [Fig. 8(a)–(c)]; 50% PFK was recommended,
with 30%–50% KFO. Here, we briefly describe some probable
reasons for this “sweet spot.” Lower PFKs require more gener-
ations, due to the lesser exploration per generation [Fig. 8(a)],
but this is offset somewhat by the lesser work per generation.
Thus, there is no overriding trend in run time across the PFK
range, though 50% PFK seems the most robust with respect to
different KFO [Fig. 8(b)].

For the FFT, the combination of high KFO and low PFK
suffers more failed searches [Fig. 8(c)]. This combination
yields a greedy search. High KFO means more exploitation by
generating offspring rather than diversification by generating
mutants. Low PFK leans toward a steady-state replacement
strategy, which again is greedy because most of the population
remains undisplaced between generations. For tough problems
such as the FFT, an overly greedy search can impede escape
from local optima.

Fig. 8(d) shows that aside from KFO, diversification can be
obtained by limiting (probability best to worst genome,
Section III-C). This was done under steady-state replacement,
thus the dramatic drop in success for low mutation rates. This
result is given to show how easily selective pressure can be con-
trolled by ranked fitness.
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Fig. 8. (a)–(d) Convergence of successful searches for the FFT kernel.
(e)–(f) Distribution of search times for placement for different kernels.
Histogram data was generated in the log x domain.

A. Other Kernels

We applied our GA to a suite of kernels designed at a high
level, i.e., datapath design [Table I, Fig. 8(e)]. This includes
modifications of the FFT, a 9-tap symmetric finite impulse re-
sponse (FIR) filter, and an infinite impulse response (IIR) bi-
quad (second order) [25]. Due to latency in the feedback loop,
all the IIRs require 4-slow timing [26]; the “ 4” filters use this
to interleave four data sets on the same filter [27]. This imposes
extra placement constraints on memory read/write DPUs, since
the memories (Fig. 1) must be chained into 4 data sets within
the slice.

As in the FFT, the performance of the search was found to
be fairly robust across most of the KFO and PFK range. Suc-
cess rates for the FIR/IRR kernels were all 100%. This means
that a solution was found to meet all constraints before the ter-
mination condition (no improvement in the minimum number
of violations for 35 000 generations). This termination condi-
tion was empirically determined to allow the capture of most
of the data points in the search time distributions. Its adequacy

is evident in the distributions of Fig. 8(e)–(f), obtained by ag-
gregating results from and

. One hundred searches were performed for
each KFO/PFK combination, thus yielding 4500 searches per
curve. Because of the ubiquitous 100% success for the nonFFT
kernels, the caveat against high-KFO/low-PFK does not apply.
The searches even tended to be slightly faster in this regime. It
seems that for less difficult problems, the search space is more
densely populated with feasible solutions, and a greedy search
is beneficial.

Kernels are listed in Fig. 8(e)–(f) and Table I in order of
difficulty of placement, as determined by their search time
distributions. There is a strong correlation between placement
difficulty and the intuitive measures of circuit complexity in
Table I. The FFT kernels were changed by adding/removing
constraints. “FFT Easy” has no tile/polarity constraints, while
“FFT Hard” has more than necessary. The FFT distributions
shrink with greater difficulty due to failed searches.

The difficulty rankings in Table I make intuitive sense. In
rows 1–2, the easiest kernels are the simple IIR kernels, which
have no high fan-in or fan-out nodes, and use very few resources.
FIR Xpose is harder to place than the simple IIRs because it
represents a folded 9-tap filter rather than a 5-tap biquad. More
algorithmic delays and adders yield a more complex circuit.
The “ 4” IIRs in row 4 and 6 are more complicated than their
noninterleaved counterparts because there are 4 times as many
memory read/write DPUs. Furthermore, these DPUs are con-
strained to the tiles for their associated data sets. FIR DF-I is the
most complicated of the non-FFT kernels to place (and in partic-
ular, more complicated than FIR Xpose) because this structure
uses an adder tree, which is known to be hard to organize phys-
ically. The adder tree also requires its own DPUs; in contrast,
the adders in a DF-II structure are in-line with the delay line,
and can share DPUs with algorithmic delays. The FFT and its
variants are the most complex.

B. Varying Population Size, Array Size, and Iteration Scheme

The problem and the algorithm were varied to gauge the
the performance and the problem difficulty. The most complex
kernel was used (FFT).

Population sizes can be used to control diversity.
were tested, yielding search

times from tenths of seconds to several seconds. Larger
needed fewer generations to find a solution, but took more
time overall. This suggests the use of small . A caveat
is that the successful searches dropped from nearly 100% at

to 87% for . Adjacent population sizes
had run time distributions that overlapped considerably; hence,
search times are sensitive to , but not extremely so.

For the same set of , the effect of problem size was ex-
plored by nearly doubling the tile size, to 16 DPUs. A prelim-
inary design of a back-to-back FFT/FFT was used for the test,
nearly doubling the size of the FFT kernel. (This emulates the
complexity of a more plausible back-to-back FFT/IFFT). Most
of the run times ranged from just under 1 s to 40 s, about an order
of magnitude more than the baseline FFT. This is still within
the realm for an interactive CAD environment. As above, small
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finds solutions faster, but fails more often. Overall suc-
cess rates are degraded by doubling the size, ranging from 45%
to 82%. This makes it important to adopt a strategy of early ter-
mination and restart of searches. For successful searches, search
times are not extremely sensitive to .

The GA is just one iteration framework. Our initial studies of
SA shows it to be a promising iterator for further research. Many
of the discussed concepts of problem encoding and hybridiza-
tion with local search/repair also apply. After empirically tuning
the shape of the cooling curve and the variation of search neigh-
borhood with temperature, SA was found to perform almost
identically to GA in terms of probability of successful search
versus run time.

As an indication of problem difficulty, the GA and SA were
compared to a random search. The greater the ratio of valid
solutions to infeasible points in the search space, the faster a so-
lution is found. Chameleon’s slice has approximately 27 DPUs,
yielding 10 arrangements of DPUs for kernels that take up the
entire slice. A random search of any practical duration has negli-
gible chance of revisiting a solution point, and is the same as the
early stages of a randomly ordered exhaustive search. Three ker-
nels were tested: 1) FFT; (2) FFT/FFT in the double size slice;
and 3) FFT without repair. In no case was a solution found by
the random search after running for days and evaluating billions
of solution points. Not even repair of violations increases
enough for a solution to be found by the lengthy beginnings of
an exhaustive search. Therefore, an intelligent iteration scheme
such as GA or SA is needed.

VII. CONCLUSION

We identify the generalizable features of a coarse-grain re-
configurable array, such as location-specific resources at fine
and gross levels. A GA approach was investigated for placement
because of its flexibility in handling architectural constraints,
particularly as platforms evolve. The chromosome was encoded
using random keys to avoid the need for special measures for or-
dering problems. Mating was performed with uniform crossover
because of the distributed building blocks.

A baseline GA was set up based on a netlist’s realizability
using local wires. The fitness nonlinearity of constraint driven
problems was circumvented via ranked fitness, which also
allowed for controlled and predictable selective pressure. The
heterogeneous distribution of array resources was handled by
binding constraints. Penalization was used to minimize gross
position violations, while non-Lamarckian local search was
used to fix all other violations. Tile constraints were handled
by remapping the position-specifying genes to subranges for
the home tile. Tile sizes were regulated by penalization. Local
search heuristics are presented to repair remaining violations of
fine-and gross position constraints.

The GA performed robustly on several kernels over a wide
variety of search conditions. Search times for a doubled array
size and kernel size was still within the realm of interactive
CAD, though early restarts may be needed due to more failed
searches. Simulated annealing was found to perform similarly.

Prolonged random searches were unable to find a solution. This
indicates that intelligent iterators like GA/SA are required, due
to the sparsity of feasible solutions.

Future work includes extending the GA to more completely
capture the constraints and functionality that can be expected in
reconfigurable platforms. For example, multipliers are expen-
sive and available in only a few locations in Chameleon. They
also have limited functional overlap with regular DPUs. There-
fore, they should be handled differently from regular DPUs.
Placement of the chainable memories should also be handled
by the algorithm. GA parameters KFO and PFK can also be al-
lowed to vary according to search progress, as can be the degree
of mutation, e.g., by more than one gene.
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