
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON NEURAL NETWORKS 1

A Fast and Accurate Online Sequential Learning
Algorithm for Feedforward Networks

Nan-Ying Liang, Guang-Bin Huang, Senior Member, IEEE, P. Saratchandran, Senior Member, IEEE, and
N. Sundararajan, Fellow, IEEE

Abstract—In this paper, we develop an online sequential
learning algorithm for single hidden layer feedforward networks
(SLFNs) with additive or radial basis function (RBF) hidden nodes
in a unified framework. The algorithm is referred to as online
sequential extreme learning machine (OS-ELM) and can learn
data one-by-one or chunk-by-chunk (a block of data) with fixed
or varying chunk size. In OS-ELM, the parameters of hidden
nodes (the input weights and biases of additive nodes or the
centers and impact factors of RBF nodes) are randomly selected
and the output weights are analytically determined based on the
sequentially arriving data. The algorithm uses the ideas of ELM of
Huang et al. developed for batch learning which has been shown
to be extremely fast with generalization performance better than
other batch training methods. Apart from selecting the number of
hidden nodes, no other control parameters have to be manually
chosen. Detailed performance comparison of OS-ELM is done
with other popular sequential learning algorithms on benchmark
problems drawn from the regression, classification and time series
prediction areas. The results show that the OS-ELM is faster than
the other sequential algorithms and produces better generalization
performance.

Index Terms—Extreme learning machine (ELM), GAP-RBF,
GGAP-RBF[AU: Please define "GAP-RBF"
and "GGAP-RBF"], minimal resource allocation
network (MRAN), online sequential ELM (OS-ELM), resource
allocation network (RAN), resource allocation network via ex-
tended kalman filter (RANEKF), stochastic gradient descent
back-propagation (SGBP).

I. INTRODUCTION

I N the past two decades, single hidden layer feedforward
neural networks (SLFNs) have been discussed thoroughly

by many researchers [1]–[10]. Two main architectures exist
for SLFN, viz.: [AU: Please define "viz."]1) those
with additive hidden nodes, and 2) those with radial basis
function (RBF) hidden nodes. For many of the applications
using SLFNs, training methods are usually of batch-learning
type. Batch learning is usually a time consuming affair as it
may involve many iterations through the training data. In most
applications, this may take several minutes to several hours and
further the learning parameters (i.e., learning rate, number of
learning epochs, stopping criteria, and other predefined param-
eters) must be properly chosen to ensure convergence. Also,

Manuscript received September 23, 2005; revised May 17, 2006.
The authors are with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798, Singapore (e-mail:
gbhuang@ieee.org).

Digital Object Identifier 10.1109/TNN.2006.880583

whenever a new data is received batch learning uses the past
data together with the new data and performs a retraining, thus
consuming a lot of time. There are many industrial applications
where online sequential learning algorithms are preferred over
batch learning algorithms as sequential learning algorithms do
not require retraining whenever a new data is received.

The back-propagation (BP) algorithm and its variants have
been the backbone for training SLFNs with additive hidden
nodes. It is to be noted that BP is basically a batch learning
algorithm. Stochastic gradient descent BP (SGBP)[11] is one
of the main variants of BP for sequential learning applications.
In SGBP, network parameters are learned at each iteration
on the basis of first-order information of instantaneous value
of the cost function using the current training pattern. SGBP
suffers from slow training error convergence as large number
of training data may be required. To overcome this deficiency,
researchers have proposed to use second order information
in the network parameter learning process, such as the recur-
sive Levenberg–Marquardt algorithm [12], [13]. Even though
second-order methods can shorten the overall convergence
time, they may need more time for processing each data and
this may pose problems in sequential learning if the data arrives
quickly. The network size of SGBP needs to be predefined and
fixed.

Sequential learning algorithms have also become popular for
feedforward networks with RBF nodes. These include resource
allocation network (RAN) [14] and its extensions [15]–[18].
Different from SGBP, the number of RBF hidden nodes in RAN
[14] and its variants [15]–[19] is not predefined. RAN [14] and
RANEKF [15] determines whether to add a new node based on
the novelty of incoming data. Besides growing nodes based on
the novelty, MRAN [16], [17], GAP-RBF [18], and GGAP-RBF
[19] can also prune insignificant nodes from the networks. RAN,
RANEKF, and MRAN require many control parameters to be
tuned and in the case of large problems the learning speed may
be slow [18], [19]. Although GAP-RBF [18] and GGAP-RBF
[19] have tried to simplify the sequential learning algorithms
and increase the learning speed, they need the information about
the input sampling distribution or input sampling range, and
the learning may still be slow for large applications. Also, all
the aforementioned sequential learning algorithms handle data
one by one only and cannot handle data on a chunk (block of
data) by chunk basis. It is worth noting that all the BP-based
and RAN-based sequential learning algorithms can only handle
specific types of hidden (additive or RBF) nodes and not both.

In this paper, a sequential learning algorithm referred to as
online sequential extreme learning machine (OS-ELM) that

1045-9227/$20.00 © 2006 IEEE

egbhuang
Note
GAP-RBF can be changed into: Growing and pruning RBF network (GAP-RBF)

egbhuang
Cross-Out

egbhuang
Note
viz can be changed into: namely

egbhuang
Note
[15]-[18] can be changed into: [15]-[19]

egbhuang
Note
add the following sentence here: "The activation functions for additive nodes in OS-ELM can be anybounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrablepiecewise continuous functions."

IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON NEURAL NETWORKS

can handle both additive and RBF nodes in a unified framework
is introduced. OS-ELM can learn the training data not only
one-by-one but also chunk-by-chunk (with fixed or varying
length) and discard the data for which the training has already
been done. It is a versatile sequential learning algorithm in the
following sense.

1) The training observations are sequentially (one-by-one or
chunk-by-chunk with varying or fixed chunk length) pre-
sented to the learning algorithm.

2) At any time, only the newly arrived single or chunk of ob-
servations (instead of the entire past data) are seen and
learned.

3) A single or a chunk of training observations is discarded
as soon as the learning procedure for that particular (single
or chunk of) observation(s) is completed.

4) The learning algorithm has no prior knowledge as to how
many training observations will be presented.

OS-ELM originates from the batch learning extreme learning
machine (ELM) [20], [21], [22] developed for SLFNs with
additive and RBF nodes. The performance of ELM has been
evaluated on a number of benchmark problems from the
function regression and classification areas. Results show
that compared with other gradient–descent-based learning
algorithms (including BP algorithms) ELM provides better
generalization performance at higher learning speed and the
learning phase in many applications is completed within sec-
onds [20]–[23].

In OS-ELM with additive nodes, the input weights (of the
connections linking the input nodes to hidden nodes) and biases
are randomly generated and based on this the output weights
are analytically determined. Similarly, in OS-ELM with RBF
nodes, the centers and widths of the nodes are randomly gen-
erated and fixed and then, based on this, the output weights
are analytically determined. Unlike other sequential learning
algorithms which have many control parameters to be tuned,
OS-ELM only requires the number of hidden nodes to be spec-
ified.

The performance of the proposed OS-ELM is evaluated by
comparing it with other sequential learning algorithms such as
SGBP, RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF.
Experimental results on benchmark problems from regression,
classification, and time-series prediction problems show that
the proposed OS-ELM produces better generalization per-
formance at a very fast learning speed. For regression, the
benchmark problems considered are three higher dimensional
real-world problems from the University of California at Irvine
(UCI) machine learning repository [24], viz.: 1) abalone—de-
termination of the age of abalone using the abalone database;
2) Auto-MPG—determination of the fuel consumption of
different models of cars using the Auto-MPG database; 3)
California housing—estimation of the median house prices
in the California area using California housing database. For
classification, the comparison is done based on the following
real world benchmark problems [24], viz.: 1) image segment
problem, 2) satellite image problem; and 3) DNA Problem. For

time-series prediction, the Mackey–Glass chaotic time series
[25] is used.

The paper is organized as follows. Section II gives a brief
review of the batch ELM. Section III presents the derivation
of OS-ELM. Section IV highlights the difference between
OS-ELM and other popular sequential learning algorithms
such as SGBP, GAP-RBF, GGAP-RBF, RAN, RANEKF, and
MRAN. Performance evaluation of OS-ELM is shown in
Section V based on the benchmark problems in the areas of re-
gression, classification, and time-series prediction. Conclusions
based on the study are highlighted in Section VI.

II. REVIEW OF ELM

This section briefly reviews the batch ELM developed by
Huang et al. [20]–[22] to provide the necessary background for
the development of OS-ELM in Section III. A brief mathemat-
ical description of SLFN incorporating both additive and RBF
hidden nodes in a unified way is given first.

A. Mathematical Description of Unified SLFN

The output of an SLFN with hidden nodes (additive or RBF
nodes) can be represented by

(1)

where and are the learning parameters of hidden nodes and
the weight connecting the th hidden node to the output node.

is the output of the th hidden node with respect to
the input . For additive hidden node with the activation func-
tion (e.g., sigmoid and threshold),
is given by

(2)

where is the weight vector connecting the input layer to the
th hidden node and is the bias of the th hidden node.

denotes the inner product of vectors and in .
For RBF hidden node with activation function

(e.g., Gaussian), is given by

(3)

where and are the center and impact factor of th RBF
node. indicates the set of all positive real values. The RBF
network is a special case of SLFN with RBF nodes in its hidden
layer. Each RBF node has its own centroid and impact factor,
and its output is given by a radially symmetric function of the
distance between the input and the center.

B. ELM

In supervised batch learning, the learning algorithms use a
finite number of input–output samples for training. For , arbi-
trary distinct samples . Here, is a

egbhuang
Note
"." should be changed into ":"

egbhuang
Note
viz can be changed into: i.e.,

egbhuang
Note
viz can be changed into: i.e.,

egbhuang
Note
add two more references here: [27], [30]

egbhuang
Note
add two more references here: [27], [30]

IE
EE

Pr
oo

f

LIANG et al.: FAST AND ACCURATE ONLINE SEQUENTIAL LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS 3

input vector and is a target vector. If an SLFN with
hidden nodes can approximate these samples with zero error,
it then implies that there exist , and such that

(4)

Equation (4) can be written compactly as

(5)

where

...
... (6)

... and ... (7)

is called the hidden layer output matrix of the network [26];
the th column of is the th hidden node’s output vector with
respect to inputs and the th row of is the
output vector of the hidden layer with respect to input .

The ELM algorithm is based on the following two principles.
1) When the number of training samples equals the number

of hidden nodes, i.e., , one can randomly assign
the parameters of hidden nodes (the input weights and bi-
ases for additive hidden nodes or the centers and impact
factors for RBF) and based on this analytically calculate
the output weights by simply inverting and realize zero
training error. Calculation of the output weights is done in a
single step here. There is no need for any lengthy training
procedure where the network parameters are adjusted in-
teractively with appropriately chosen control parameters
(learning rate and learning epochs, etc.).

2) When the number of training samples is greater than the
number of hidden nodes, i.e., , one can still ran-
domly assign the parameters of hidden nodes and calculate
the output weights by using a pseudoinverse of to give
a small nonzero training error . Here also the output
weights’ calculation is done in a single step and does not
need lengthy training procedure. These have been formally
stated in the following theorems [27].

Theorem II.1: Let an SLFN with additive or RBF hidden
nodes and an activation function which is infinitely dif-
ferentiable in any interval of be given1 Then, for arbi-
trary distinct input vectors , and

randomly generated with any continuous proba-
bility distribution, respectively, the hidden layer output matrix

is invertible with probability one.

1Detail discussions on threshold networks have been given in [22].

Proof: Instead of repeating the rigorous proof provided by
Huang et al. [27], the basic idea of the proof can be summarized
as follows.

Let us consider a vector
, the th column

of , in Euclidean space , where and is
any interval of . Following the same proof method of Tamura
and Tateishi [28, p. 252] and Huang [26, Th. 2.1], it can be
easily proved that vector does not belong to any subspace
whose dimension is less than . Hence, from any interval

it is possible to choose bias values for
the hidden neurons such that the corresponding vectors

span . This means that for any
randomly generated and based on any continuous
probability distribution, can be made full-rank with
probability one.

Theorem II.1 implies that the SLFNs with randomly gen-
erated additive or RBF hidden nodes can learn distinct sam-
ples with zero error. In real applications, the number of hidden
nodes will always be less than the number of training sam-
ples and, hence, the training error cannot be made exactly
zero but can approach a nonzero training error . The following
theorem formally states this fact [27].

Theorem II.2: Given any small positive value and acti-
vation function which is infinitely differentiable
in any interval, there exists such that for arbitrary
distinct input vectors , for any

randomly generated according to any continuous
probability distribution with
probability one.

Proof: According to Theorem II.1, for any , we
have . Thus, there should exist

which makes .
According to Theorems II.1 and II.2, the hidden node param-

eters and (input weights and biases or centers and impact
factors) of SLFNs need not be tuned during training and may
simply be assigned with random values. Equation (5) then be-
comes a linear system and the output weights are estimated as

(8)

where is the Moore–Penrose generalized inverse [29] of
the hidden layer output matrix . There are several ways to
calculate the Moore–Penrose generalized inverse of a matrix,
including orthogonal projection method, orthogonalization
method, iterative method, and singular value decomposition
(SVD) [29]. The orthogonal projection method can be used
when is nonsingular and . How-
ever, may tend to become singular in some applications.
Thus orthogonal projection method may not perform well in
all applications. The orthogonalization method and iterative
method have limitations since searching and iterations are used.
The SVD can always be used to calculate the Moore–Penrose
generalized inverse of , and thus is used in the most imple-
mentations of ELM.

It should be noted that the aforementioned theorems assume
the availability of complete training data and use the (8) for

egbhuang
Note
"the" should be changed into: "equation"

IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON NEURAL NETWORKS

calculating the output weights. ELM is thus a batch learning
method. Universal approximation capability of ELM has been
analyzed in [30] in an incremental method2 and it has been
shown that single SLFNs with randomly generated additive or
RBF nodes with a widespread of activation functions can univer-
sally approximate any continuous target function on any com-
pact subspace of the Euclidean space .

III. OS-ELM

The batch ELM described previously assumes that all the
training data (samples) is available for training. However, in
real applications, the training data may arrive chunk-by-chunk
or one-by-one (a special case of chunk) and, hence, the batch
ELM algorithm has to be modified for this case so as to make it
online sequential.

The output weight matrix given in (8) is a
least-squares solution of (5). Here, we consider the case where
rank the number of hidden nodes. Under this condi-
tion, of (8) is given by

(9)

This is also called the left pseudoinverse of from the fact that
. If tends to become singular, one can make it

nonsingular by choosing smaller network size or increasing
data number in the initialization phase of OS-ELM. Substi-
tuting (9) into (8), becomes

(10)

Equation (10) is called the least-squares solution to .
Sequential implementation of the least-squares solution of (10)
results in the OS-ELM.

Given a chunk of initial training set and
, if one considers using the batch ELM algorithm, one

2Huang et al. [30] learn the data in batch mode but the hidden nodes of the
network grow one by one. However, the sequential learning algorithm proposed
in this paper has fixed network architecture and learns training data in sequential
mode.

needs to consider only the problem of minimizing
where

...
...

and

... (11)

By Theorem II.1, the solution to minimizing is
given by where .

Suppose now that we are given another chunk of data
, where denotes the number of observa-

tions in this chunk; the problem then becomes minimizing

(12)

where (13), shown at the bottom of the page, holds.
Considering both chunks of training data sets and , the

output weight becomes

(14)

where

(15)

For sequential learning, we have to express as a function
of , and and not a function of the data set .
Now can be written as

(16)

...
...

and

... (13)

egbhuang
Note
"activation functions" should be changed into: "piecewise continuous activation functions"

egbhuang
Note
add the following sentence in the end of this paragraph: "In the implementation of ELM, the activation functions for additive nodes can be anybounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrablepiecewise continuous functions."

IE
EE

Pr
oo

f

LIANG et al.: FAST AND ACCURATE ONLINE SEQUENTIAL LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS 5

and

(17)

Combining the above equations [AU: Please specify
which equations], is given by

(18)

where is given by

(19)

Generalizing the previous arguments, as new data arrives, a re-
cursive algorithm for updating the least-squares solution, which
is similar to the recursive least-squares algorithm [31], can be
written as follows. When th chunk of data set

is received, where and denotes the number of ob-
servations in the th chunk, we have

(20)

where (21), shown at the bottom of the page, and

... (22)

both hold.
rather than is used to compute from

in (20). The update formula for is derived using the
Woodbury formula [32]

(23)

Let , then the equations for updating
can be written as

(24)

Equation (24) gives the recursive formula for .
Remark 1: From the above equations [AU: Please

specify which equations], it can be seen that the
sequential implementation of the least-squares solution (10) is
similar to recursive least-squares algorithm in [31]. Hence, all
the convergence results of RLS can be applied here. [AU:
PLease define "RLS"]

Remark 2: From the derivation of OS-ELM, it can be
seen that OS-ELM and ELM can achieve the same learning
performance (training error and generalization accuracy)
when rank . In order to make rank and
rank the number of initialization data should not
be less than the hidden node number .

Now, the OS-ELM can be summarized as follows.
Proposed OS-ELM Algorithm: First, select the type of node

(additive or RBF), the corresponding activation function , and
the hidden node number . The data

arrives sequentially.
OS-ELM consists of two phases, namely an initialization

phase and a sequential learning phase. In the initialization
phase, the appropriate matrix is filled up for use in the
learning phase. The number of data required to fill up
should be at least equal to the number of hidden nodes. Ac-
cording to Theorem II.1, rank if the first training
data are distinct. For example, if there are ten nodes, ten
training samples are enough. If the first training data are
not distinct, more training data may be required. However, in
most cases the number of training data required can be equal or
close to . Following the initialization phase, learning phase
commences either on a one-by-one or chunk-by-chunk (with

...
... (21)

egbhuang
Note
(14) and (17)

egbhuang
Note
"the above equations" should be changed into "equation (24)"

egbhuang
Note
add "(RLS)" after "recursive least-squares"

egbhuang
Note
"required" should be "required in the initialization phase"

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON NEURAL NETWORKS

fixed or varying size) basis as desired. Once a data is used, it is
discarded and not used any more.

Step 1) Initialization Phase: Initialize the learning
using a small chunk of initial training data

from the given training set

.
a) Assign random input weights and bias

(for additive hidden nodes) or center and
impact factor (for RBF hidden nodes),

.
b) Calculate the initial hidden layer output matrix

...
...

(25)

c) Estimate the initial output weight
, where and

.
d) Set .

Step 2) Sequential Learning Phase: Present the th
chunk of new observations

where denotes the number of observations in
the th chunk.

a) Calculate the partial hidden layer output matrix
for the th chunk of data , as

shown in (26), at the bottom of the page.
b) Set .

c) Calculate the output weight

(27)

d) Set . Go to Step 2).
Remark 3: The chunk size does not need to be constant, i.e.,

the number of training observations in the th chunk
does not need to be the same as . When the training data is

received one-by-one instead of chunk-by-chunk , (27)
has the following simple format (Sherman–Morrison formula
[32]):

(28)

where ,
which is the case analyzed and demonstrated in [33].

Remark 4: In order to handle the case where and/or
are singular or near singular and to make

OS-ELM more robust, and can be
calculated using SVD as done in all our implementations of
OS-ELM.

Remark 5: If , then OS-ELM becomes the batch
ELM. Thus, batch ELM can be considered as a special case of
OS-ELM when all the training observations are present in one
learning iteration.

IV. COMPARISON OF OS-ELM WITH OTHER SEQUENTIAL

LEARNING ALGORITHMS

In this section, the similarities and differences between
OS-ELM and some of the other well-known sequential learning
algorithms are presented.

A. One-by-One Versus Chunk-by-Chunk Learning Modes

In real applications, the data presented to the learning al-
gorithm may be one-by-one or chunk-by-chunk where the
chunk size may vary. Sequential learning algorithms like
SGBP [11], RAN [14], RANEKF [15], MRAN [16], [17],
GAP-RBF [18], GGAP-RBF [19], and OS-ELM can be used
only in the one-by-one mode. SGBP can in principle work for
chunk-by-chunk but difficulty may arise as their learning speed
is too slow for them to complete the first chunk before the
next one arrives. However, SGBP works well for one-by-one
learning mode. OS-ELM works well for one-by-one and also
for chunk-by-chunk learning modes. Further, the chunk can be
varying and need not be fixed.

B. Selection of Parameters

The control parameters used in the sequential learning algo-
rithms RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF
include distance parameters and impact factor
adjustment parameter . Besides these, MRAN uses some
growing and pruning parameters. GAP-RBF and GGAP-RBF

...
... (26)

IE
EE

Pr
oo

f

LIANG et al.: FAST AND ACCURATE ONLINE SEQUENTIAL LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS 7

TABLE I
SPECIFICATION OF BENCHMARK DATA SETS

need an estimate of the input sampling distributions or ranges
of sampling areas. (Refer to [19] for details.)

For SGBP, the algorithm control parameters are network size,
learning rate and momentum constant, and they need to be ad-
justed depending on each problem. The only control parameter
to be selected for OS-ELM is the size of the network.

C. Activation Function Types

RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF use
only RBF nodes and SGBP uses only additive hidden nodes.
However, OS-ELM can work for both additive and RBF hidden
nodes. Unlike SGBP which is gradient–descent-based and
can only work for differentiable activation function, OS-ELM
can work for nondifferentiable activation functions as well. In
OS-ELM, feedforward networks with additive hidden nodes
and RBF networks have been unified in the sense that they can
be trained sequentially with the same learning algorithm.

V. PERFORMANCE EVALUATION OF OS-ELM

The performance of OS-ELM is evaluated on the benchmark
problems described in Table I which includes three regres-
sion applications (auto-MPG, abalone, California housing)
[24], three classification applications (image segment, satellite
image, DNA) [24] and one time series prediction application
[25]. OS-ELM is first compared with other popular sequential
learning algorithms such as SGBP, RAN, RANEKF, MRAN,
GAP-RBF, and GGAP-RBF in one-by-one learning mode and
then the performance evaluation of OS-ELM in chunk-by-chunk
learning mode is conducted. All the simulations have been con-
ducted in MATLAB 6.5 environment running on an ordinary PC
with 3.0 GHZ CPU. Both the Gaussian RBF activation function

and the sigmoidal additive
activation function
have been used in the simulations of ELM3 and OS-ELM. The
Gaussian RBF activation function is also used in the simula-
tions of RAN, RANEKF, MRAN, GAP-RBF, and GGAP-RBF
and the sigmoidal activation function used in SGBP. In our
simulations, the input and output attributes of regression ap-
plications are normalized into the range [0,1] while the input
attributes of classification applications are normalized into the
range [-1,1]. For both ELM and OS-ELM with additive hidden
nodes, the input weights and biases are randomly chosen from
the range [-1,1]. For both ELM and OS-ELM with RBF hidden
nodes the centers are randomly chosen from the range [-1,1].
The impact width is chosen from the range [0.2,4.2] for all
problems except for OS-ELM in image segment and DNA

3Source codes and some references of ELM can be found at www.ntu.edu.sg/
home/egbhuang/

cases. For these two cases in order to make nonsingular the
range should be [3, 11] and [20, 60], respectively.

A. Model Selection

The estimation of optimal architecture of the network and the
optimal learning parameters of the learning algorithm is called
model selection in the literature. It is problem specific and has
to be predetermined.

For OS-ELM, only the parameter of the optimal number of
hidden units needs to be determined. SGBP requires determina-
tion of the optimal number of the hidden units, learning rate, and
momentum constant. For RAN, RANEKF, MRAN, GAP-RBF,
and GGAP-RBF, control parameters including distance parame-
ters , impact factor adjustment parameter have
to be determined. For MRAN, the growing and pruning thresh-
olds need to be determined. For GGAP-RBF, the input sampling
distribution has to be estimated.

For the sake of simplicity, we mainly discuss the procedure of
selecting the optimal number of hidden nodes for the proposed
OS-ELM algorithm and SGBP. The procedure makes use of the
training and validation set methods. The training data set is sep-
arated into two nonoverlapped subsets: One for training and the
other for validation. The optimal number of hidden units is se-
lected as the one which results in the lowest validation error.
An example of model selection of optimal hidden unit number
for OS-ELM with sigmoidal activation function [OS-ELM (sig-
moid)] and SGBP is shown in Fig. 1 in auto-MPG case. In that
figure, the top two curves correspond to training and validation
error (averaged over 50 trials) for SGBP and the bottom two
curves are for OS-ELM (sigmoid). As observed from Fig. 1, the
lowest validation error is achieved when the number of hidden
nodes of OS-ELM (sigmoid) and SGBP are within the ranges
[15, 35] and [13, 24], respectively. Therefore, one can choose
the optimal hidden unit numbers for OS-ELM and SGBP (in
auto-MPG case) from these ranges. It can also be seen that RMS
error curves for OS-ELM are quite smooth compared to SGBP.
It implies that OS-ELM is less sensitive to the network size.
Fig. 2 details such behavior in a single trial for OS-ELM with
25 hidden units and for SGBP with 13 hidden units. In addition,
the number of training data for initialization has been taken
as for regression problems, for
classification problems, and for times series
problems where is the network size.

In our paper, the optimal number of hidden units for OS-ELM
and SGBP has been selected for all benchmark problems. The
optimal learning parameters for SGBP and the optimal control
parameters for the RAN-based sequential algorithms are also
selected.

IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON NEURAL NETWORKS

Fig. 1. Model selection for auto-MPG case.

Fig. 2. Learning evolution for auto-MPG case.

B. Performance Evaluation of OS-ELM: One-by-One Case

We first evaluate and compare the performance of the
proposed OS-ELM with other one-by-one learning mode
algorithms: SGBP, RAN, RANEKF, MRAN GAP-RBF, and
GGAP-RBF. For each problem, the results are averaged over
50 trials. The average training time, the average training and
testing RMSE for regression and time-series prediction appli-
cations and the average training and testing classification rate
for classification problems are shown.

1) Regression Problems: Three benchmark problems have
been studied here, viz.: auto-MPG, abalone, and California
housing [24]. The auto-MPG problem is to predict the fuel
consumption (miles per gallon) of different models of cars. The
abalone problem is the estimation of the age of abalone from
the physical measurements and the California housing problem
is to predict the median California housing price based on the
information collected using all the block groups in California
from the 1990 census. For all the problems studied here, the
training and testing data are randomly selected for each trial.

IE
EE

Pr
oo

f

LIANG et al.: FAST AND ACCURATE ONLINE SEQUENTIAL LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS 9

TABLE II
COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON REGRESSION APPLICATIONS

TABLE III
COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON CLASSIFICATION APPLICATIONS

Table II summarizes the results for regression problems in
terms of the training time, training RMSE, testing RMSE, and
the number of hidden units for each algorithm. The number
of hidden units for OS-ELM (sigmoid), OS-ELM (RBF), and
SGBP was determined based on the model selection procedure
while for RAN, RANEKF, MRAN, and GGAP-RBF it is gen-
erated automatically by the algorithms.

As observed from Table II, the performance of OS-ELM
(sigmoid) and OS-ELM (RBF) is similar to each other except
that OS-ELM (RBF) requires twice training time taken by
OS-ELM (sigmoid). Comparing with other algorithms, we
can see that the training time taken by both OS-ELMs and
SGBP is much less than RAN, RANEKF, MRAN, GAP-RBF,
and GGAP-RBF. However, out of all learning algorithms,
OS-ELMs obtained the lowest testing root-mean-square error
(RMSE).

2) Classification Problems: For classification studies,
three benchmark problems have been considered, viz.: image
segmentation, satellite image, and DNA [24]. The image seg-
mentation problem consists of a database of images drawn
randomly from seven outdoor images and consists of 2310
regions of 3 3 pixels. The aim is to recognize each region

into one of the seven categories, viz.: brick facing, sky, foliage,
cement, window, path, and grass using 19 attributes extracted
from each square region. Training and testing data sets are
randomly drawn from the database.

The satellite image problem consists of a database generated
from landsat multispectral scanner. One frame of landsat mul-
tispectral scanner imagery consists of four digital images of the
same scene in four different spectral bands. The database is a
(tiny) subarea of a scene, consisting of 82 100 pixels. Each
data in the database corresponds to a region of 3 3 pixels. The
aim is to classify of the central pixel in a region into the six cat-
egories, viz.: red soil, cotton crop, grey soil, damp grey soil, soil
with vegetation stubble, and very damp grey soil using 36 spec-
tral values for each region. The training and test sets are fixed
according to [24], but the order of training set is randomly shuf-
fled for each trial.

The database “Primate splice-junction gene sequences
(DNA) with associated imperfect domain theory” is known
as the DNA problem. Splice junctions are points on a DNA
sequence at which “superfluous” DNA is removed during the
process of protein creation in higher organisms. The aim of
the DNA problem is, given a sequence of DNA, to recognize

IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON NEURAL NETWORKS

TABLE IV
COMPARISON BETWEEN OS-ELM AND OTHER SEQUENTIAL ALGORITHMS ON MACKEY–GLASS TIME-SERIES APPLICATION

TABLE V
PERFORMANCE COMPARISON OF ELM AND OS-ELM ON REGRESSION APPLICATIONS

the boundaries between exons (the parts of the DNA sequence
retained after splicing) and introns (the parts of the DNA
sequence that are spliced out). This consists of three subtasks:
recognizing exon/intron boundaries (referred to as EI sites),
intron/exon boundaries (IE sites), and neither (sites). A given
sequence of DNA consists of 60 elements (called “nucleotides”
or “base-pairs”). The symbolic variables representing nu-
cleotides were replaced by three binary indicator variables,
thus resulting in 180 binary attributes. The training and test
sets are also fixed according to [24], but order of training set is
randomly shuffled for each trial. During our simulations, RAN
and RANEKF produced large number of hidden nodes for
problems, which resulted in system memory overflow or large
training time. It is also found that for these cases, it is difficult to
estimate input sampling distribution for GGAP-RBF algorithm.
For the problem satellite image and DNA, no study has been
done with GAP-RBF due to the complexity in estimating the
input sampling ranges of higher dimensional and binary input
cases. Thus, the results of some RAN-based algorithms could
not be provided for these cases. As observed from Table III,
OS-ELM achieves the best generalization performance with
extremely fast learning speed compared with MRAN. Although
SGBP complete training at fastest speed in these cases, its
generalization performance are much worse than OS-ELM.

3) Time-Series Prediction Problem: The need to time se-
ries prediction arises in many real-world problems such as de-
tecting arrhythmia in heartbeats, stock market indices, etc. One

of the classical benchmark problems in literature is the chaotic
Mackey–Glass differential delay equation given by Mackey and
Glass [25]:

(29)

for 0.2, 0.1, and 17. Integrating the equation over
the time interval by the trapezoidal rule yields

(30)

The time series is generated under the condition 0.3
for and predicted with 50 sample steps ahead
using the four past samples: , and

. Hence, the th input–output instance is

IE
EE

Pr
oo

f

LIANG et al.: FAST AND ACCURATE ONLINE SEQUENTIAL LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS 11

TABLE VI
PERFORMANCE COMPARISON OF ELM AND OS-ELM ON CLASSIFICATION APPLICATIONS

TABLE VII
PERFORMANCE COMPARISON OF ELM AND OS-ELM ON MACKEY–GLASS TIME SERIES-APPLICATION

In this simulation, and the training observations is
from 1 to 4000 and the testing observations from 4001
to 4500.

Performance comparison results are given in Table IV. For
this problem, SGBP is excluded because model selection pro-
cedure indicated that it is unsuitable for this application. The
validation errors were high even after trying on a wide number
of hidden units. As observed from Table IV, OS-ELMs achieves
the lowest training and testing RMSE as well as the training
time.

C. Performance Evaluation of OS-ELM: Chunk-by-Chunk

Tables V–VII show the performance comparison of ELM
implemented in the chunk-by-chunk learning mode. For the
chunk-by-chunk learning mode, we have considered both a
fixed chunk size of 20 as well as a randomly varying chunk size
between 10–30, indicated by in these tables. For the
purpose of comparisons, results of chunk size 1 and also the
chunk size of the entire training set (the original batch ELM)
have also been presented.

For regression problems, it can be seen from Table V that the
accuracies obtained by ELM and OS-ELM when implemented

in different chunk size modes using different activation func-
tions are nearly the same. This is consistent with the earlier the-
oretical analysis in Section III. As far as the training time is con-
cerned, the sequential operation of one-by-one takes the highest
time followed by the chunk of [10, 30], twnty-by-twenty, and fi-
nally the batch mode. This implies that the one-by-one sequen-
tial mode takes the longest while batch the shortest time and
any chunk mode operation falls in between. If the chunk size is
large, it approaches the time taken for batch mode operation.

Table VI shows similar results for the classification problems.
The classification accuracies for ELM and OS-ELM using dif-
ferent activation functions and training in the different modes
are similar. It can also be seen that the training time of OS-ELM
reduces with increase in the chunk size. For example, in the case
of satellite image problem, the training time reduces from 300
s (using one-by-one learning mode) to 20 s (using twnty-by-
twenty learning mode). One interesting exception to this is the
DNA problem. For this problem, the training time in the chunk
mode of twnty-by-twenty and [10,30] is even smaller than batch
mode. The reason for this is that: For the batch mode operation,
the training data set is large and needs more RAM space. When
this space exceeds a limit (for example, cache limit), the oper-
ations slow down. This has been verified by the actual experi-
ments executed on higher performance computers.

IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON NEURAL NETWORKS

Table VII shows the comparison results for time series predic-
tion problem. The prediction accuracies for ELM and OS-ELM
using different activation function and training in the different
modes are close to each other. It should also be noted that the
batch mode takes more time than the chunk mode which may
be due to the same reasons as seen in DNA problem.

In summary, the comparison results indicate that OS-ELM
can be implemented to suit the way the data arrives without
sacrificing the accuracy.

VI. CONCLUSION

In this paper, a fast and accurate online sequential learning
algorithm (OS-ELM) has been developed for SLFNs with both
additive and RBF hidden nodes in a unified way. Also, the algo-
rithm can handle data arriving or chunk-by-chunk with varying
chunk size. Apart from selecting the number of hidden nodes,
no other control parameter has to be chosen. Performance
of OS-ELM is compared with other well-known sequential
learning algorithms on real world benchmark regression, clas-
sification and time-series problems. The results indicate that
OS-ELM produces better generalization performance with
lower training time. Under the mild condition rank
the generalization performance of the OS-ELM approaches
that of the batch ELM.

ACKNOWLEDGMENT

The author would like to thank the anonymous Associate Ed-
itor and reviewers for their invaluable suggestions which have
been incorporated to improve the quality of the paper.

REFERENCES

[1] D. E. Rumellhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” Parallel Distribution Pro-
cessing: Explanations in the Microstructure of Cognition, vol. 1, pp.
318–362, 1986.

[2] S. Ferrari and R. F. Stengel, “Smooth function approximation using
neural networks,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24–38,
Jan. 2005.

[3] C. Xiang, S. Q. Ding, and T. H. Lee, “Geometrical interpretation and
architecture selection of {MLP},” IEEE Trans. Neural Netw., vol. 16,
no. 1, pp. 84–96, Jan. 2005.

[4] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear
activation functions,” IEEE Trans. Neural Netw., vol. 9, no. 1, pp.
224–229, Jan. 1998.

[5] G.-B. Huang, Y.-Q. Chen, and H. A. Babri, “Classification ability of
single hidden layer feedforward neural networks,” IEEE Trans. Neural
Netw., vol. 11, no. 3, pp. 799–801, May 2000.

[6] K. Z. Mao and G.-B. Huang, “Neuron selection for RBF neural network
classifier based on data structure preserving criterion,” IEEE Trans.
Neural Netw., vol. 16, no. 6, pp. 1531–1540, Nov. 2005.

[7] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, pp. 246–257, 1991.

[8] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedfor-
ward networks with a nonpolynomial activation function can approxi-
mate any function,” Neural Netw., vol. 6, pp. 861–867, 1993.

[9] T.-Y. Kwok and D.-Y. Yeung, “Objective functions for training new
hidden units in constructive neural networks,” IEEE Trans. Neural
Netw., vol. 8, no. 5, pp. 1131–1148, Sep. 1997.

[10] R. Meir and V. E. Maiorov, “On the optimality of neural-network ap-
proximation using incremental algorithms,” IEEE Trans. Neural Netw.,
vol. 11, no. 2, pp. 323–337, Mar. 2000.

[11] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
Lecture Notes Comput. Sci., vol. 1524, pp. 9–50, 1998.

[12] L. S. Ngia, J. Sjöberg, and M. Viberg, “Adaptive neural nets filter using
a recursive levenberg-marquardt search direction,” in Proc. Asilomar
Conf. Signals, Syst., Comput., Nov. 1998, vol. 1–4, pp. 697–701.

[13] V. S. Asirvadam, S. F. McLoone, and G. W. Irwin, “Parallel and sepa-
rable recursive Levenberg-Marquardt training algorithm,” in Proc. 12th
IEEE Workshop Neural Netw. Signal Process. , Sep. 2002, no. 4–6, pp.
129–138.

[14] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, pp. 213–225, 1991.

[15] V. Kadirkamanathan and M. Niranjan, “A function estimation ap-
proach to sequential learning with neural networks,” Neural Comput.,
vol. 5, pp. 954–975, 1993.

[16] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequental
learning scheme for function approximation using minimal radial
basis function (RBF) neural networks,” Neural Comput., vol. 9, pp.
461–478, 1997.

[17] L. Yingwei, N. Sundararajan, and P. Saratchandran, “Performance
evaluation of a sequental minimal radial basis function (RBF) neural
network learning algorithm,” IEEE Trans. Neural Netw., vol. 9, no. 2,
pp. 308–318, Mar. 1998.

[18] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An efficient se-
quential learning algorithm for growing and pruning RBF (GAP-RBF)
networks,” IEEE Trans. Syst., Man, Cybern., B Cybern., vol. 34, no. 6,
pp. 2284–2292, Nov. 2004.

[19] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57–67,
Jan. 2005.

[20] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in Proc.
Int. Joint Conf. Neural Netw. (IJCNN2004), Budapest, Hungary, July
25–29, 2004, vol. 2, pp. 985–990.

[21] G.-B. Huang and C.-K. Siew, “Extreme learning machine: RBF
network case,” in Proc. 8th Int. Conf. Control, Autom., Robot.,
Vis. (ICARCV 2004), Kunming, China, Dec. 6–9, 2004, vol. 2, pp.
1029–1036.

[22] G.-B. Huang, Q.-Y. Zhu, K. Z. Mao, C.-K. Siew, P. Saratchandran, and
N. Sundararajan, “Can threshold networks be trained directly?,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 187–191, Mar.
2006.

[23] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Real-time learning capa-
bility of neural networks,” IEEE Trans. Neural Netw., vol. 17, no. 4,
pp. 863–878, Jul. 2006.

[24] C. Blake and C. Merz, UCI Repository of Machine Learning Databases
Dept. Inf. Comp. Sci., Univ. California, Irvine, CA, 1998 [Online].
Available: http://www.ics.uci.edu/~mlearn/MLRepository.html

[25] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Science, vol. 197, pp. 287–289, 1977.

[26] G.-B. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE Trans. Neural Netw., vol. 14, no. 2,
pp. 274–281, Mar. 2003.

[27] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theorey and applications,” Neurocomput., 2006, to be published.

[28] S. Tamura and M. Tateishi, “Capabilities of a four-layered feedforward
neural network: Four layers versus three,” IEEE Trans. Neural Netw.,
vol. 8, no. 2, pp. 251–255, Mar. 1997.

[29] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its
Applications. New York: Wiley, 1971.

[30] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation
using incremental constructive feedforward networks with random
hidden nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892,
Jul. 2006.

[31] E. K. P. Chong and S. H. Żak, An introduction to optimization. New
York: Wiley, 2001.

[32] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. Balti-
more, MD: The Johns Hopkins Univ. Press, 1996.

[33] [AU: Please provide page range]G.-B.
Huang, N.-Y. Liang, H.-J. Rong, P. Saratchandran, and N. Sun-
dararajan, “On-line sequential extreme learning machine,” in IASTED
Int. Conf. Comput. Intell. (CI 2005), Calgary, AB, Canada, Jul. 4–6,
2005.

egbhuang
Note
add the following sentence before "Also": "The activation functions for additive nodes can be anybounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrablepiecewise continuous functions."

egbhuang
Note
Page number couldn't be found for this reference

IE
EE

Pr
oo

f

LIANG et al.: FAST AND ACCURATE ONLINE SEQUENTIAL LEARNING ALGORITHM FOR FEEDFORWARD NETWORKS 13

Nan-Ying Liang received the B.Eng. degree in
biomedical engineering from Jilin University,
Changchun, China, in July 2002. Currently, she is
working towards the Ph.D. degree at the School
of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore.

Her research interests include neural networks,
biomedical signal processing, and brain computer
interfaces.

Guang-Bin Huang (M’98–SM’04) received the
B.Sc. degree in applied mathematics and the M.Eng.
degree in computer engineering from Northeastern
University, Shenyang, P. R. China, in 1991 and 1994,
respectively, and the Ph.D. degree in electrical en-
gineering from Nanyang Technological University,
Singapore, in 1999. During undergraduate period, he
also concurrently studied in Wireless Communica-
tion Department at Northeastern University.

From June 1998 to May 2001, he worked as a
Research Fellow in Singapore Institute of Manu-

facturing Technology (formerly known as Gintic Institute of Manufacturing
Technology), Singapore, where he led/implemented several key industrial
projects. From May 2001, he has been working as an Assistant Professor at
the School of Electrical and Electronic Engineering, Nanyang Technological
University, Singapore. His current research interests include machine learning,
bioinformatics, and networking.

Dr. Huang is an Associate Editor of Neurocomputing and IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B:
CYBERNETICS.

P. Saratchandran (M’87–SM’96) received the
Ph.D. degree in the area of control engineering from
Oxford University, London, U.K.

He is an Associate Professor with the Nanyang
Technological University, Singapore. He has several
publications in refereed journals and conferences
and has authored four books titled Fully tuned RBF
networks for flight control (Kluwer: Norwell, MA,
2002), Radial Basis Function Neural networks with
sequential Learning (World Scientific: Singapore,
1999) Parallel Architectures for Artificial Neural

Networks (IEEE Press: Piscataway, NJ, 1998), and Parallel Implementations
of Backpropagation Neural Networks (World Scientific: Singapore, 1996). His
interests are in neural networks, bioinformatics, and adaptive control.

Dr. Saratchandran is an Editor for Neural Parallel and Scientific Computa-
tions. He is listed in the Marquis Who’s Who in the World and in the Leaders in
the World, International Biographics Centre, Cambridge, U.K.

N. Sundararajan (S’73–M’74–SM’84–F’96)
received the B.E in electrical engineering with
First Class Honors from the University of Madras,
Chepauk, Chennai, India, in 1966, the M.Tech.
degree from the Indian Institute of Technology,
Madras, India, in 1968, and the Ph.D. degree in
electrical engineering from the University of Illinois
at Urbana-Champaign, Urbana, in 1971.

From 1972 to 1991, he was working in the Indian
Space Research Organization, Trivandrum, India,
starting from Control System Designer to Director,

Launch Vehicle Design Group, contributing to the design and development of
the Indian satellite launch vehicles. He has also worked as a NRC Research
Associate at NASA - Ames, Moffett Field, CA, in 1974 and as a Senior
Research Associate at NASA-Langley, Hampton, VA, in 1981–86. From
February 1991, he has been working at the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore, first as an As-
sociate Professor (from 1991 to August 1999), and presently as a Professor.
He was a “Prof. I.G.Sarma Memorial ARDB Professor” (an endowed visiting
professor) from November 2002 to February 2003, at the School of Computer
Science and Automation, Indian Institute of Science, Bangalore, India. He
has published more than 130 papers and also four books titled Fully Tuned
Radial Basis Function neural networks for flight control (Kluwer: Norwell,
MA, 2001), Radial Basis Function Neural Networks with Sequential Learning
(World Scientific: Singapore, 1999) Parallel Architectures for Artificial Neural
Networks (IEEE Press: Piscataway, NJ, 1998), and Parallel Implementations
of Backpropagation Neural Networks (World Scientific: Singapore, 1996).
He is listed in Marquis Who’s Who in Science and Engineering, and Men of
Achievement, International Biographical Center, Cambridge, U.K. His research
interests are in the areas of aerospace control, neural networks, and parallel
implementations of neural networks.

Dr. Sundararajan is a an Associate Fellow of AIAA [AU: Please
define "AIAA"] and also a Fellow of the Institution of Engineers,
(IES) Singapore. He was an Associate Editor for IEEE TRANSACTIONS ON

CONTROL SYSTEMS TECHNOLOGY, IFAC Journal on Control Engineering
Practice (CEP), IEEE ROBOTICS AND AUTOMATION MAGAZINE, and for
Control-Theory and Advanced Technology (C-TAT), Japan. He was also a
member of the Board of Governors (BoG) for the IEEE Control System Society
(CSS) for 2005. He has contributed as a program committee member in a
number of international conferences and was the General Chairman for the 6th
International Conference on Automation, Robotics, Control, and Computer
Vision (ICARCV 2000) held in Singapore in December 2000.

egbhuang
Note
AIAA stands for: American Institute of Aeronautics and Astronautics

