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Abstract—Disease diagnostics using proteomic patterns is a
new platform that is developed to detect early-stage cancer.
Proteomic pattern analysis uses the overall pattern to diagnose
disease states without the need to identify the components within
the pattern. The patterns are generated from Mass Spectrometry
(MS) data, and an algorithm is developed to decipher the
patterns within the mass spectrometry data to discriminate
between serum taken from healthy and cancer-affected
individuals.

There is need for cancer biomarkers with more accurate
diagnostic capability. Use of MS is such a technique. Mass
spectrometry data of the human serum consist of intensities of
various ions present in the sample. A typical sample can have
about 15000 different ions present. A very important question
then is which ions are the best classifiers.

We have used an information-theoretical concept, information
gain, to measure how well a given attribute separates the
training examples according to the target classification. The
method measures the drop in the entropy of the system caused
by selecting a particular attribute. The lower the drop, the better
the attribute. Our algorithm first selects the attributes with
highest information gain and then classifies the diseased and
healthy data based on these attributes using Support Vector
Machines (SVM). The method achieves very strong performance.

IndexTerms- Mass spectrometry, proteomics, entropy,
information gain, SVM.

I. INTRODUCTION

Disease diagnostics using proteomic patterns [1] has
recently been developed as a diagnostic tool which does not
rely on the identification of the proteins detected. The ability
to discriminate patterns from serum acquired from healthy
individuals, from serum of cancer-affected individuals is the
most important aspect of this technique. Proteomic pattern
diagnostics is a type of pattern diagnostics based on the
analysis of a huge amount of data to find disease patterns in
the proteins expressed. Serum proteomic signatures from mass
spectrometry data are used as a diagnostic classifier of
proteomic signatures from high dimensional MS data.

Such an approach has given very promising results in
detection of early stage cancer [10]. The blood proteome is
changing constantly as a consequence of the perfusion of

organ systems. Small peptide fragments are removed from the
actual disease organ and are contained in the blood serum.
These fragments contain low molecular weight molecules
which exist below the range of detection of conventional
techniques. As a result researchers have turned to mass
spectrometry that exhibits optimal performance in the low
mass range [6], [9].

MS is a powerful analytical tool for determining masses of
bio-molecules in a complex sample mixture. Such a technique
is used to identify compounds. Detection of compounds can
be accomplished with very minute quantities. This means that
compounds can be identified at very low concentration in
chemically complex mixtures. Experimental conditions that
effect the molecular composition of a sample will also affect
its mass spectrum. Mass spectrometry is used to test for the
presence of different kinds of molecules, and the presence of
such molecules may indicate an enzymatic change, a disease
state or a certain cell type condition.

Mass spectrometry data consists of a set of m/z values (m is
the atomic mass and z is the charge of the ion) and the
corresponding relative intensities of all molecules present
with that m/z ratio. The mass spectrometry data of a chemical
sample thus is an indication of presence or absence of the
actual molecules. The data might therefore be used to predict
the presence of a disease condition and distinguish it from a
sample taken from a healthy individual or any other living
organism in general with a circulatory system.

Since the mass spectrometry data consist of intensities of
thousands of molecules in a sample, it cannot be analysed
manually. Computational methods such as artificial neural
networks (ANN) should be suitable to do such an analysis. In
two earlier papers we have shown that use of ANN techniques
are suitable, for instance, to classify between eukaryotic or
prokaryotic cells [4], [5]. However, in this paper we want to
study how SVM can be used to perform an analysis to
discriminate between different types of cancers.

The database used consists of individuals suffering from
either ovarian or prostatic cancer, in addition to healthy
persons. A problem when using a MS technique is how to
select the most suitable attributes from a database of about
15000 attributes, to train the network. In this paper we have
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used an information-theoretic measure based on the entropy
concept to discriminate between the most important attributes
[7].

II. ENTROPY AND INFORMATION GAIN

Given a collection S, containing positive and negative
examples of some target concept, the entropy S relative to this
boolean classification is defined by

Entropy(S) = - p+log2p+ - p_log2 p_ (1)

where p+ is the proportion of positive examples in S and p- is
the proportion of negative examples in S.

In (1) we have defined entropy for boolean classification.
For a general case, if the target attribute can take on n
different values, the entropy of S relative to a n-wise
classification would be

Entropy(S) = -�
=

n

i 1

pi log2pi (2)

where pi is the proportion of S belonging to class i. The
entropy concept in (2), characterises the impurity of an
arbitrary collection of examples, can now be used to define
another important concept in information theory, the
information gain.

The information gain measures the expected reduction in
entropy. Given the entropy as a measure of the impurity in a
collection of training examples, we now define a measure of
effectiveness of an attribute in classifying the training data.
The information gain simply measures the expected reduction
in the entropy caused by partitioning the examples according
to this attribute. More precisely, the information gain,
Gain(S,A) of an attribute A, relative to a collection of
examples S, is defined as

Gain(S,A) = Entropy(S) -�
=

n

i 1

Entropy(Svi) (3)

where v1,v2,......vn is the set of all possible values of attribute
A, Svr is the subset of S for which the attribute A has the
value vr i.e., Svr = {s ε S | A(s) = vr}.

In the above representation, the first term is just the
entropy of the original collection S, and the second term is the
expected value of the entropy after S is partitioned using
attribute A. The expected entropy described by the second
term is simply the sum of the entropies of each subset Svr,
weighted by the fraction of examples |Svr| / |S| that belong to
Svr. Gain(S,A) is therefore the expected reduction in entropy
caused by knowing the value of attribute A. An important
point to note is that the above representation cannot be used if
the attribute A is continuous-valued.

A. Incorporating the Continuous-Valued Attributes

Our initial definition of information gain restricts the
attributes to take on a discrete set of values. This restriction

can easily be removed so that continuous valued decision
attributes can be incorporated. This can be accomplished by
dynamically defining new discrete values attributes that
partition the continuous attribute value into a discrete set of
intervals. In particular, for a attribute A that is continuous-
valued, the algorithm can dynamically create a new boolean
attribute Ac that is true if A < c and false otherwise. The
choice of the threshold c is based on the maximum
information gain achieved.

Once the best classifying attributes have been selected the
SVM can be used to train the data based on these selected
attributes.

III. SVM THEORY

SVM is a computationally efficient learning technique that
is now being widely used in pattern recognition and
classification problems [2]. This approach has been derived
from some of the ideas of statistical learning theory regarding
controlling the generalization abilities of a learning machine
[11], [12].

In this approach the machine learns an optimum hyper-
plane that classifies the given pattern. By use of kernel
functions, the input feature space by applications of a non-
linear function can be transformed into a higher dimensional
space where the optimum hyper-plane can be learnt. This
gives a flexibility of using one of many learning models by
changing the kernel functions.

A. SVM Classifier

The basic idea of a SVM classifier is illustrated in Fig.1.
This figure shows the simplest case in which the data vectors
(marked by 'X' s and 'O' s) can be separated by a hyper-plane.
In such a case there may exist many separating hyper-planes.

Fig. 1. Support Vector Machines classification defined by a linear hyper-
plane that maximizes the separating margins between the classes.
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Among them, the SVM classifier seeks the separating hyper-
plane that produces the largest separation margins.

In the more general case, in which the data points are not
linearly separable in the input space, a non-linear
transformation is used to map the data vectors into a high-
dimensional space (called feature space) prior to applying the
linear maximum margin classifier. To avoid the potential
pitfall of over-fitting in this higher dimensional space, a SVM
uses a kernel function in which the non-linear mapping is
implicitly embedded. A function qualifies as a kernel function
if it satisfies the Mercer's condition [11].

With the use of a kernel function, the discriminant function
in a SVM classifier has the following form :

f(x) = �
=

N

i 1

αiyi K(xi, x) + b (4)

where K(-,-) is the kernel function, xi are the support vectors
determined from the training data, yi is the class indicator (e.g.
+1 and -1 for a two class problem) associated with each xi , N
is the number of supporting vectors determined during
training, α is the Lagrange multiplier for each point in the
training set and b is a scalar representing the perpendicular
distance of the hyper-plane from origin..

Support vectors are elements of the training set that lie
either exactly on or inside the decision boundaries of the
classifier. In essence, they consist of those training examples
that are most difficult to classify. The SVM classifier uses
these borderline examples to define its decision boundary
between the two classes.

B. The SVM Kernel Functions

The kernel function plays a central role of implicitly
mapping the input vectors into a high dimensional feature
space, in which better separability is achieved. The most
commonly used kernel functions are the polynomial kernel
given by :

K(xi, xj) = (xi
Txj + 1)p , where p > 0 is a constant (5)

or the Gaussian radial basis function (RBF) kernel given by

K(xi, xj) = exp ( -||xi-xj||
2/2σ2 ) (6)

where σ > 0 is a constant that defines the kernel width. Both
of these kernels satisfy the Mercer’s condition mentioned
above.

IV. SVM TRAINING

In the experiments we have used databases from the NIH
and FDA Clinical Proteomics Program Data Bank [8]. The
data set consisted of different m/z values and their intensities.
Each of the above databases is divided into healthy and

diseased sets. The files in each of these datasets are comma
delimited. The above algorithm helps us to find the best
attributes for classification of diseased and healthy samples.

Since the m/z values are continuous, we need to find a ‘c’
for each of the entropy calculations. This value is decided
based on the maximum information gain achieved. Once this
value is found, we can use the same method as we used to
handle the entropy calculation for discrete values. A table is
then prepared for all the m/z attributes versus the reduction in
entropy they bring about. This table relates the usefulness of
each attribute.

Once the best attributes are found we use the LIBSVM
toolbox [3] to classify the spectrums into diseased and healthy
categories, based on only those attributes. We see that using
this method we can reduce the number of attributes needed for
classification of diseased versus healthy sample. In previous
experiments using SVM one selects 7-8 attributes randomly
and use these for classification [10]. Our method makes the
whole process more organised and also gives better results.

During the training phase the variables in the kernel
function and the regularization parameter C have to be
determined. The training samples were divided into m equal
subsets of equal size and a methodology based on one-versus
one was used in the classification regime. The experiments
were done with various parameters settings. The model with
the best generalization, e.g least error, was then selected.

V. EXPERIMENTS AND RESULTS

Once the best attributes have been estimated we used these
attributes for SVM classification. We performed the training
of SVM using the best 5 attributes followed by the best 4
attributes and so on. Finally, we train the SVM using only the
best attribute. The results have been summarized in table 1
given underneath.

Accuracy % C = 1 C = 100 C = 500

Best 5 99.2 100 100

Best 4 99.2 100 100

Best 3 99.2 100 100

Best 2 98.8 100 100

Best 1 96.8 97.6 98.1

Table 1. SVM performance classification of the 1-5 best attribute values.

From table 1 we see that perfect classification is achieved
by using only 3-5 attributes. In [10], 7-8 attributes are selected
randomly and used for classification. By use of the method
presented in this paper we are able to give priority to the
different attributes, based on their information gain, which
gives optimal classification.

The columns in table 1 denote the performance of the SVM
classifier at various values of the cost parameter C. The larger
the value of C, the better the classification. The rows denote
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the performance in percent, dependent on the number of
attributes taken for training of the SVM. We see that a larger
number of attributes give a higher accuracy.

VI. CONCLUSION

Proteomic pattern diagnostics represents a new paradigm
for disease detection. This type of analysis requires only a
small amount of blood from which MS spectra are generated.
The most promising aspects with such an analysis are a very
high throughput because the MS spectra can be determined in
very short time. In such an analysis the pattern itself,
independent of the identity of the proteins, is the
discriminator. This may be done before the identity of the
proteins is determined.

The MS platform is promising to use for cancer
diagnostics. By use of MS one can generate complex
proteomic spectra from an extreme small volume of blood in
short time. Combined with nano-technology this platform can
generate new tools, created at the intersection between
proteomics and the nano-technology.

In such a future perspective we might also introduce nano-
harvesting agents into the blood serum that are able to
diagnose on the fly, based on the MS data taken. Such nano-
particles with their diagnostics cargo, can communicate
remotely with a computer, and the status of the blood serum
may be checked to reveal the signatures of these biomarkers.

In this paper we have developed a new method that predicts
the best attributes to be used to classify the most appropriately
disease attributes. Once these attributes have been determined,
using the concept of information gain, we can train a SVM
network for classification of cancer vs. non-cancer samples.

A very high classification accuracy (100%) is obtained in
the experiments using the best 5 attributes for training of the
SVM. This result is superior to previously applied methods
such as ANN and probabilistic classification [10], as far as we
know.
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