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Abstract

In this paper, a procedure for construction of quadratic Lyapunov–Krasovskii functionals for linear time-delay systems is proposed. It
is shown that these functionals admit a quadratic low bound. The functionals are used to derive robust stability conditions.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that there are several di5cult aspects
in the application of the Lyapunov–Krasovskii approach to
the stability analysis of uncertain time-delay systems. One
of them is a lack of e5cient algorithms for constructing the
corresponding Lyapunov–Krasovskii functionals. The com-
mon practice consists in exploiting various reduced type
functionals, see review papers, Dugard and Verriest (1997)
and Kharitonov (1999). However, there is no guarantee that
any of such reduced type functionals is really suitable for a
particular time delay system under consideration.
An interesting numerical scheme for the construction of

full size Lyapunov–Krasovskii functionals has been pro-
posed in Gu (1997). The scheme is based on the LMI
technics.
Some general expressions for quadratic functionals for

linear systems with one delay have been proposed in
Repin (1965), Datko (1971) and Infante and Castelan
(1978).
In Juang (1989) some of the results have been extended to

the case of general linear time-delay systems. It has been
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shown there that the functionals admit a local cubic bound.
The functionals are quite appropriate for the stability anal-
ysis of a given time-delay system, but they become inad-
equate when one is addressing to the stability analysis of
uncertain time-delay systems. This is mainly because of the
fact that the functionals are such that their time derivative
includes only terms which depend on the present state of the
system. The problem is that for the robust stability analysis
one needs functionals for which the time derivative includes
also terms which depend on past states of the system.
In this paper, we propose a procedure for construction of

quadratic functionals, whose time derivative includes terms
which depend on the past states of the system and show how
one can use such functionals for the robust stability analysis
of time-delay systems.
It is also shown in the paper that these functionals admit

a quadratic low bound in contrast with the functionals pro-
posed in Juang (1989), for which only a local cubic bound
has been derived.

2. Basic facts

In this section, some useful basic results are given. We
consider the time-delay system with concentrated delays

dx(t)
dt

= A0x(t) +
m∑
j=1

Ajx(t − hj): (1)
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Here A0; A1; : : : ; Am are constant n × n matrices and
0¡h1¡ · · ·¡hm = h are positive delays.

De�nition 1. System (1) is said to be exponentially stable
if there exist �¿ 0 and 
¿ 1 such that for every solution
x(t; �) of the system with initial function �(�), �∈ [−h; 0],
the following condition holds:

‖x(t; �)‖6 
‖�‖he−�t ; ∀t¿ 0:

Here ‖�‖h=max�∈[−h;0] ‖�(�)‖. For simplicity we will call
an exponentially stable system just stable.

The following equivalent of the Cauchy formula for so-
lutions of system (1) will be used later on.

Theorem 1 (Bellman & Cooke, 1963). Let n × n matrix
function K(t) satisfy the equation

d
dt
K(t) = A0K(t) +

m∑
j=1

AjK(t − hj); t¿ 0

with the initial condition: K(0)=E, and K(t)=0 for t ¡ 0
(E is the identity matrix). Then for t¿ 0

x(t; �) =K(t)�(0)

+
m∑
j=1

∫ 0

−hj
K(t − hj − �)Aj�(�) d�: (2)

Corollary 2. Matrix K(t) satis;es also the equation

d
dt
K(t) = K(t)A0 +

m∑
j=1

K(t − hj)Aj; t¿ 0: (3)

Matrix K(t) is known as the fundamental matrix of sys-
tem (1). It follows from the deKnition that every column of
K(t) is a solution of system (1), so if the system is stable
then the matrix also satisKes the inequality

‖K(t)‖6 
e−�t for all t¿ 0: (4)

Lemma 3. Let system (1) be stable, then for every n × n
constant matrix W the matrix

U (�) =
∫ ∞

0
K�(t)WK(t + �) dt (5)

is well de;ned for all �∈R.

Now, we introduce some useful properties of U (�).

Remark 1. If W is a symmetric matrix then U (−�) =
U�(�), for all �¿ 0.

Proof. By deKnition

U (−�) =
∫ ∞

0
K�(t)WK(t − �) dt:

Taking into account the fact that K(t− �)= 0, for t ∈ [0; �),
we obtain that

U (−�) =
∫ ∞

�
K�(t)WK(t − �) dt

=
(∫ ∞

0
K�(�)WK(�+ �) d�

)�
= U�(�):

In particular, U (0) is a symmetric matrix.

Remark 2. Matrix U (�) is such that

−W =U (0)A0 + A�
0 U (0)

+
m∑
j=1

[U�(hj)Aj + A�
j U (hj)]:

Proof. From (3)

d
dt
(K�(t)WK(t))

=K�(t)WK(t)A0 + A�
0 K

�(t)WK(t)

+
m∑
j=1

[K�(t)WK(t − hj)Aj

+A�
j K

�(t − hj)WK(t)]:

Integrating both sides of the equality from 0 to ∞ one con-
cludes that

−W =U (0)A0 + A�
0 U (0)

+
m∑
k=1

[U�(hk)Ak + A�
k U (hk)]:

Remark 3. Matrix U (�) satisKes the equation

d
d�
U (�) = U (�)A0 +

m∑
k=1

U (�− hk)Ak; �∈ [0; h]:

Proof. The statement can be proved by direct
calculations.

3. Lyapunov–Krasovskii functionals

Given deKnite positive n × n matrices W0; W1; : : : ; Wm;
R1, R2; : : : ; Rm. Let ’(�) be a continuous initial function
on [− h; 0]. Consider the functional

w(�(·)) =��(0)W0�(0) +
m∑
k=1

��(−hk)Wk�(−hk)

+
m∑
k=1

∫ 0

−hk

��(�)Rk�(�) d�: (6)
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We are looking for the Lyapunov–Krasovskii functional
v(�(·)) such that

dv(x(t + ·; ’))
dt

∣∣∣∣
(1)

=−w(x(t + ·; ’)):

If system (1) is stable then the functional really exists and
can be written as

v(’(·)) =
∫ ∞

0
w(x(t + ·; ’)) dt:

Many papers are addressed for the construction of
Lyapunov–Krasovskii functionals for (1), but usually only
special reduced type functionals have been studied. In this
section, it is shown how one may Knd full size function-
als and how these functionals can be used for the stability
analysis of uncertain time-delay systems.
Functional v(�(·)) may be decomposed into 2m + 1

components. Each of them corresponds to one of the
2m+ 1 summands on the right-hand side of (6).
We start with the summand

w0(�(·); W0) = ��(0)W0�(0):

The corresponding component of v(�(·)) can be deKned as

v0(�(·); W0) =
∫ ∞

0
w0(x(t + ·; �); W0) dt

=
∫ ∞

0
x�(t; �)W0x(t; �) dt:

Using expression (2) one can write the component as

v0(�(·); W0)

=��(0)U0(0)�(0)

+
m∑
k=1

2��(0)
∫ 0

−hk

U0(−hk − �)Ak�(�) d�

+
m∑
k=1

m∑
j=1

∫ 0

−hk

��(�2)A�
k

×
[∫ 0

−hj
U0(�2 − �1 + hk − hj)Aj�(�1) d�1

]
d�2:

Here matrix U0(�) is deKned as

U0(�) =
∫ ∞

0
K�(t)W0K(t + �) dt:

In order to compute v0(�(·); W0) one has to know the matrix
function U0(�) for �∈ [− h; h].
We now address the component of v(�(·)) which corre-

sponds to the integral term

wk(�(·); Rk) =
∫ 0

−hk

��(�)Rk�(�) d�:

The component can be expressed as

vk(�(·); Rk) =
∫ ∞

0
wk(x(t + ·; �); Rk) dt

=
∫ ∞

0

(∫ 0

−hk

x�(t + �; �)Rkx(t + �; �) d�

)
dt:

Changing the integration order in the double integral one
comes to the following expression

vk(�(·); Rk) =
∫ 0

−hk

[∫ 0

�
��(s)Rk�(s) ds

+
∫ ∞

0
x�(s; �)Rkx(s; �) ds

]
d�

and therefore

vk(�(·); Rk) = hkv0(�(·); Rk)

+
∫ 0

−hk

(hk + �)��(�)Rk�(�) d�:

The component of v(�(·)), which corresponds to the delay
term

wm+j(�(·); Wj) = ��(−hj)Wj�(−hj)

is

vm+j(�(·); Wj) =
∫ ∞

0
x�(t − hj; �)Wjx(t − hj; �) dt:

This equality allows us to rewrite vm+j(�(·); Wj) as

vm+j(�(·); Wj) = v0(�(·); Wj) +
∫ 0

−hj
��(�)Wj�(�) d�:

Now, gathering all components together, we obtain that

v(�(·)) = v0

(
�(·); W0 +

m∑
k=1

(Wk + hkRk)

)

+
m∑
k=1

∫ 0

−hk

��(�)[Wk + (hk + �)Rk ]�(�) d�:

The value of the functional for the trajectory segment is

v(x(t + ·))
= x�(t)U (0)x(t)

+
m∑
k=1

2x�(t)
∫ 0

−hk

U (−hk − �)Akx(t + �) d�

+
m∑
k=1

m∑
j=1

∫ 0

−hk

x�(t + �2)A�
k
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×
∫ 0

−hj
U (�1 − �2 + hk − hj)

×Ajx(t + �1) d�1 d�2

+
m∑
k=1

∫ 0

−hk

x�(t + �)[(hk + �)Rk +Wk ]

× x(t + �) d�; (7)

where

U (�) =
∫ ∞

0
K�(t)

[
W0 +

m∑
k=1

(Wk + hkRk)

]
K(t + �) dt:

Theorem 4. Let system (1) be stable. Given de;nite posi-
tive n×nmatricesW0; Wk ; Rk ; k=1; 2; : : : ; m, the functional
(7) satis;es the condition
d
dt
v(x(t + ·; ’))

∣∣∣∣
(1)

=−w(x(t + ·; ’)):

Proof. The statement may be checked by direct calcula-
tions.

Theorem 5. For some �¿ 0 functional (7) admits the
quadratic low bound

�‖’(0)‖26 v(’(·)):

Proof. Let us deKne the functional

v(�)(’(·)) = v(’(·))− �‖’(0)‖2:
Then
d
dt
v(�)(x(t + ·; ’)) =−w(�)(x(t + ·; ’))

=−w(x(t + ·; ’))− 2�xT(t; ’)

×
[
A0x(t; ’) +

m∑
k=1

Akx(t − hk ; ’)

]
:

It follows from (6) and our assumption that all matrices
Wk and Rk are positive deKnite that, for a su5ciently small
�¿ 0,

w(�)(x(t + ·; ’))¿ 0 for all t¿ 0:

So

v(�)(’(·)) =
∫ ∞

0
w(�)(x(t + ·; ’)) dt¿ 0

and therefore v(’(·))¿ �‖’(0)‖2.

4. Robust stability

Assume now that matrices A0, Ak are perturbed as follows:

Ak  Ak + �k; k = 0; 1; : : : ; m

and consider the perturbed system

dy(t)
dt

= (A0 + �0)y(t) +
m∑
k=1

(Ak + �k)y(t − hk): (8)

Let the original system (1) be stable. Now our aim is to
derive conditions under which the perturbed system remains
stable. To this end we will use functional (7) constructed
for the original system.
The derivative of v(�(·)) along trajectories of system (8)

is
d
dt
v(y(t + ·))

∣∣∣∣
(8)

=− w(y(t + ·))

+ 2[�0y(t) +
m∑
k=1

�ky(t − hk)]�

×

U (0)y(t) +

m∑
j=1

∫ 0

−hj
U�(hj + �)Ajy(t + �) d�


 :

Let the only information available about matrices �0 and �k

be that they are constant and satisfy the condition

��
k Hk�k6  kE; k = 0; 1; : : : ; m; (9)

where Hk are deKnite positive matrices and  k are given
positive numbers. Then, using the inequality

2a�b6 a�Ha + b�H−1b

which holds for arbitrary deKnite positive matrix H , one can
easily arrive at the following upper bound for the derivative
d
dt
v(y(t + ·))

∣∣∣∣
(8)

6− y�(t)

[
W0 −  0

!

(
1 +

m∑
k=1

hk

)
E

− !U (0)

(
m∑
k=0

H−1
k

)
U (0)

]
y(t)

−
m∑
j=1

m∑
k=0

∫ 0

−hj
y�(t + �)[Rj − !ATj U (hj + �)

×H−1
k U�(hj + �)Aj]y(t + �) d�

−
m∑
k=1

y�(t − hk)


Wk −  k

!


1 +

m∑
j=1

hj


E




×y(t − hk):

Here it is assumed that H = (1=!)Hj, j = 0; 1; : : : ; m.

The next theorem follows directly from this inequality.

Theorem 6. Let system (1) be stable. Then system (8) re-
mains stable for all perturbations satisfying (9) if there
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exist de;nite positive matrices W0; Wk ; Rk ; k = 1; 2; : : : ; m,
and a positive value !, such that

• W0¿!
∑m

k=0 U (0)H−1
k U (0) +  0!−1(1 +

∑m
j=1 hj)E,

• Rk ¿!ATk U (hk + �)(
∑m

j=0 H
−1
j )U�(hk + �)Ak , for all

�∈ [− h; 0]; k = 1; 2; : : : ; m,
• Wk ¿ k!−1(1 +

∑m
j=1 hj)E, k = 1; 2; : : : ; m.

Remark 4. If the theorem conditions are satisKed, then ma-
trices �k , k=0; 1; : : : ; m, may be time varying and even may
depend on y(t), y(t− hj), j=1; 2; : : : ; m. The only assump-
tion one does really need is that they are continuous with
respect to these arguments and satisfy to (9) for all values
of the arguments.

Proof. In fact, for some �¿ 0 and 
¿ 0 functional v(’)
satisKes the inequalities

�‖’(0)‖26 v(’)6 
‖’‖2h: (10)

Along the trajectories of the perturbed system (8) the deriva-
tive of the functional is

d
dt
v(yt)

=− ∼
w(yt) =−w(yt)

+ 2

[
�0y(t) +

m∑
k=1

�ky(t − hk)

]�

×

U (0)y(t) +

m∑
j=1

∫ 0

−hj
U�(hj + �)Ajy(t + �) d�


 :

If matrices �k , k = 0; 1; : : : ; m, depend on t and (or) on
y(t − hk), k = 0; 1; : : : ; m, but satisfy inequalities (9), then
there exists j¿ 0 such that

∼
w(’)¿ jw(’): (11)

Conditions (10) and (11) imply that the zero solution of the
perturbed system (8) is globally asymptotically stable.

Example 1. Consider the system

ẋ(t) =

(
0 1

−1 −2

)
x(t) +

(
0 0

−1 1

)
x(t − 1):

The system is stable because all zeros of the characteristic
quasipolynomial of the system have negative real parts. For
W0 =W1 = R1 = E the components of U (�), �∈ [0; 1], are
given in Fig. 1.
If we assume that H0 = H1 = E then direct calculations

show that all conditions of Theorem 6 are fulKlled when

 0¡ 1:3× 10−4 and  1¡ 1:5× 10−4:

Fig. 1. Matrix U components.

5. Case m = 1

Some speciKc peculiarities of the case of systems with
one delay

ẋ(t) = A0x(t) + A1x(t − h); (12)

will be discussed in the section.
The matrix U (�) satisKes now the equation

U ′(�) = U (�)A0 + U (�− h)A1; for �¿ 0 (13)

and the additional condition

W + U (0)A0 + A�
0 U (0) + U�(h)A1 + A�

1 U (h) = 0:

In order to deKne a particular solution of (13) one needs
to know the corresponding initial matrix function $(�),
�∈ [ − h; 0]. Such initial matrix function for U (�) is not
given explicitly, but Remark 1 provides su5cient informa-
tion for construction of U (�). In fact, the remark shows
that the required solution of (13) possesses some symmetry
property with respect to the point �=0. Using this property
one can replace the delay term in the right-hand side of (13)
as follows:

U ′(�) = U (�)A0 + U�(h− �)A1; for �∈ [0; h]:

DiOerentiating the last equation one arrives at the equation

U ′′(�) = [U (�)A0 + U�(h− �)A1]A0

− [U (�)A0 + U�(h− �)A1]�A1:

Substituting here the delay term U�(h− �)A1 by the corre-
sponding expression from (13), and collecting similar terms,
one obtains the second-order ordinary diOerential matrix
equation (see, Juang, 1989)

U ′′(�) =U ′(�)A0 − A�
0 U

′(�)

+A�
0 U (�)A0 − A�

1 U (�)A1: (14)
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The following theorem shows that the construction of
matrix U (�) is reduced to the search of a particular solution
of Eq. (14).

Theorem 7. Matrix U (�) is a solution of the second-order
ordinary di=erential equation (14) which satis;es the fol-
lowing additional conditions

• U ′(0) + [U ′(0)]T =−W ,
• U ′(0) = U (0)A0 + U�(h)A1.

Proof. The proof follows directly from the previous manip-
ulations.

It is well known that the general solution of (14) de-
pends on two free matrices which deKne initial conditions
C0 =U (0) and C1 =U ′(0). Matrix C0 should be symmetric
because of Remark 1. Therefore, it contains n(n + 1)=2
free components, and additionally there are n2 free compo-
nents of matrix C1. In total there exist N =n2+(n(n+1)=2)
free scalar parameters. For these parameters the theorem
deKnes the same number of scalar linear relations, n(n+1)=2
of the relations are given in the Krst condition, and the
second condition provides the remaining n2 relations. So,
in general, there exists only one solution of (14) which
satisKes these conditions. This solution is the required
matrix U (�).

Remark 5. It is interesting to mention the fact that the spec-
trum set of equation (14) is symmetric with respect to the
imaginary axis.

Remark 6. Matrix function U (�) which satisKes the theo-
rem conditions may exist even if system (12) is not stable.

6. Conclusions

In this paper, some explicit expressions for the full size
Lyapunov–Krasovskii functionals are obtained along with
some robust stability results based on the use of the func-
tionals.
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