
  
Abstract—This paper deals with an improved approach for 
estimation of generator rotor speed in power systems. We 
propose a hybrid speed estimator, which combines classical 
approach, based on a mathematical model of the electrical 
machine, with AI-based approach, implemented by an artificial 
neural network (ANN). The classical estimation model processes 
the machine stator voltages and currents and provides 
intermediary information on the generator speed. The ANN 
component acts as a function approximator, mapping the 
intermediary speed components to a more reliable estimation of 
the generator speed. Multi-layer feedforward ANNs are used 
for this purpose. Data for training the ANN are obtained 
through off-line simulations of a generator operating in a two-
machine model. After ANN design and training, the 
performance of the hybrid estimator is tested with simulated 
on-line measurements in a wide range of operating conditions. 
Results obtained with the hybrid estimator are compared 
against those provided by a classical mathematical model-based 
estimator and an AI-based estimator. 

Index Terms -- Artificial neural networks, dynamic security 
assessment, rotor speed estimation, synchronous machine, 
transient stability. 

I. INTRODUCTION 
HE development of power systems and the increasing 
demand for energy quality, and lower costs continuously 

stimulate the investigation of new control techniques to 
enhance power system stability. This is more so since 
economic considerations push the operation of power 
systems closer to their stability limits. 
 Accurate information about synchronous generators speed 
is necessary to realize high-performance dynamic security 
assessment and control of power system. In recent years, 
speed-sensorless control methods of electrical machines, 
using the estimated speed instead of the measured speed, are 
attracting increased interest. This solution seems to be an 
efficient alternative to the traditional speed sensors, resulting 
in increased robustness and reliability, increased simplicity, 
reduced costs, and decreased maintenance requirements 
[1],[2].  Vas [2] classifies the speed estimators used in 
speed sensorless drives as "classical" and "artificial 
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intelligence-based" (AI) types. In general, the classical 
approaches utilize a mathematical model of the electrical 
machine and also require the knowledge of some machine 
parameters. The most popular types of model-based speed 
estimators are the model reference adaptive system (MRAS) 
and observer based estimators (Kalman filter, Luenberger 
observer) [2], [3]. 
 Unlike the classical models, the AI-based speed estimators 
can describe the non-linear behavior of the machine without 
requiring a mathematical model or any machine parameters. 
The artificial neural networks and fuzzy-neural networks are 
trainable dynamical systems capable to estimate input-output 
functions by learning from experience with numerical and, 
sometimes, linguistic sample data. They are model-free 
estimators [4]. Moreover, they have the advantages of fast 
parallel computation and fault tolerance characteristics. The 
intense research in this field demonstrated that the AI-based 
speed estimators can lead to improved performance, being 
robust to parameter variation, adaptive and easy to extend, 
and not computationally demanding [2], [3], [5]-[10].  
However, practical applications of the AI-based 
implementations in speed estimators are still scarce, 
underpinning the need for more research in this area. In 
contrast to the classical "knowledge-based models", the 
traditional view of artificial neural networks (ANN) is that of 
"black-box models", i.e. models that are obtained only from 
data, and that not include any analysis of the non-linear 
dynamical system [11]. Moreover, the performance of the 
ANN estimator greatly depends on the training set, making 
the selection of data crucial. 
In this paper, we propose a speed estimator which intends to 
combine the best characteristics of the two approaches: the 
legibility of knowledge-based models and the flexibility of 
training from experimental data. A hybrid system was 
generated by associating an existing mathematical-based 
model with an artificial neural network. It was designed to 
estimate the rotor speed of a synchronous generator. First, 
the structure of the hybrid speed estimator is presented. 
Then, the operation of the classical model and the 
development methodology of the ANN-based component are 
described. Finally, an analysis of the estimator performance 
is carried out. Simulation results, obtained using a wide 
range of operating conditions, are shown to illustrate the 
validity of the proposed solution.  
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II. STRUCTURE OF THE HYBRID SPEED ESTIMATOR 
Figure 1 shows the structure of the proposed hybrid speed 

estimator. It consists of two components: a classical 
estimation model (named pre-processor) and an intelligent 
system, implemented by an ANN. 

The pre-processor performs an initial estimation of the 
synchronous machine (SM) speed, from the instantaneous 
values of stator voltages and currents (Vabc, Iabc). Using a 
mathematical model of the machine, the pre-processor 
provides two intermediary values of the speed (ωLF, ωHF). 
These signals represent the input of the intelligent system 
(ANN), which acts as a function approximator. The final 
estimated speed (ωe) is obtained at the output of the ANN.  

 

 
 

Fig. 1.  Structure of hybrid speed estimator 
 
Design considerations for the two components of the 

hybrid system are presented in the following sections. 
Estimator development and performance analysis were 
carried out using Matlab/Simulink computing environment, 
together with associated toolboxes. 

III. CLASSICAL MODEL DESCRIPTION 
The pre-processor represents the "classical" component of 

our hybrid estimator. It has the role to pre-process the 
measured signals (stator voltages and currents) and to 
provide intermediary information on the SM speed. The pre-
processor was designed as a mathematical model-based 
estimator, based on the generator electro-mechanical 
equations. 

Two components of the rotor speed are obtained at the 
output of the pre-processor: a low-frequency component 
(ωLF), calculated from the voltage equation, and a high-
frequency component (ωHF), deduced from the electrical 
power. 

First, the positive-sequence components of voltage and 
current (Vp, Ip) are calculated. By applying the Clarke 
transformation for measured three-phase quantities (Va, Vb, 
Vc; Ia, Ib, Ic), we obtain: 
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The transformation is the same for the case of the three-
phase current (Id, Iq). 

The stator space vectors are defined as complex quantities, 

having Vd and Vq (or Id and Iq) as rectangular coordinates: 

( )2; qdpqdp jIIijVVv +=+=
The positive-sequence components (Vp, Ip) are then obtained 
by applying the DFT (Discrete Fourier Transformation) on 
the voltage and current space vectors. 

The synchronous machine is represented by a simplified 
model, generally used in transient stability studies, called the 
classical generator model [12]: 

( )3''
pqp IjXVEE +=∠= δ

where E' is the constant internal voltage, Vp is the generator 
terminal voltage, Xq is the q-axis reactance, and Ip is the 
generator terminal current. 

Having calculated the positive-sequence components (Vp, 
Ip), and knowing the value of Xq, the rotor speed can be 
approximated as: 

( )4)()(
dt

tdt syn
δωω +=

where ωsyn is the synchronous speed [12].  

A low pass filter is then applied to eliminate the noise, 
generating the low-frequency speed component (ωLF). The 
high-frequency speed component, ωHF, is obtained by 
integrating the electrical power from the equation that 
determines rotor dynamics (in per-unit system): 

( )52 em PP
dt
dH −=ω

where H is the inertia constant, Pm is the mechanical power 
supplied by the prime mover minus mechanical losses, Pe is 
the electrical power output of the generator plus electrical 
losses. 

The Pm factor is considered constant in equation 5. This 
approximation is valid since it is known that during a 
transient event the mechanical power changes are negligible. 
So, we can see that the ωHF speed component is 1/2H times 
the integral of the electrical power.  

A low pass filter and a high pass filter were designed for 
the two speed components, in order to minimize the delays 
and to reduce the differences between real speed and 
estimated speed.  

A reliable speed estimator was developed based on this 
approach. It is able to provide a good estimation of SM 
speed during the steady-state, but also during the transient. 
The low-frequency speed component calculated from stator 
voltage characterizes the slow phenomena. The high-
frequency speed component deduced from the electric power 
led to the improvement of the estimation precision, in 
particular in the presence of fast phenomena.  

However, this classical estimator is based on a 
mathematical modeling of the synchronous machine that 
implies several assumptions: machine excitation is constant, 
machine losses, saturation, and saliency are neglected, etc. 
All these assumptions impose some limit to the system 
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performance. In addition, a priori knowledge of some 
machine parameters is required by the simple equations (3, 
5). More detailed generator model aiming to improved 
accuracy would require proper machine parameter 
identification.  

By associating an AI-based technique to the classical 
estimator, we expect to improve its stability and robustness 
and to obtain a more effective speed estimator, which does 
not rely on knowledge of any machine parameters. 

IV. DEVELOPMENT OF ANN COMPONENT 
The role of the AI-based system is to map the two speed 

components (ωLF, ωHF) provided by the pre-processor to a 
reliable estimation of the generator rotor speed. For this 
purpose, we use multi-layer feedforward ANN, which views 
estimation as a “curve-fitting” problem.  

The multi-layer feedforward networks are indisputably the 
most used ANN in applications [13, 14, 15]. It has been 
shown that they are universal approximators [16], i.e. the 
multi-layer feedforward networks are capable to approximate 
any measurable function in a very precise and satisfactory 
manner, if a sufficient number of hidden neurons are used. 
However, there are a number of practical concerns, as the 
selection of training data, the choosing of network 
architecture, the time complexity of learning, the ability of 
network to generalize. The main steps followed in the ANN 
development are presented in this section.  

A. Data base generation 
The selection of the appropriate data for the ANN training 

and testing is very important factor for its performance. The 
training data must represent all possible transient and steady-
state characteristics of the synchronous machine under 
consideration. Moreover, a reliable speed estimator should 
have an extremely good generalization, being able to provide 
good estimates in any condition and independent of power 
system behavior. However, it is difficult to include all 
particular characteristics of the system in the training set. 
The most significant patterns must be carefully selected in 
order to obtain the best estimation capabilities. 

Figure 2 depicts the power system model used to generate 
the ANN data base. The system was implemented using the 
SimPowerSystems tool in the Simulink environment [17]. 
This simplified model is very helpful in the study of transient 
stability of multi-machine systems. It enables us to simulate 
the dynamic behavior of a synchronous generator to different 
disturbances.  
A 1000 MW hydraulic generation plant (machine M1) is 
connected to a load center through a long 500 kV, 700 km 
transmission line. The load center is modeled by a 5000 MW 
resistive load. The load is fed by the remote 1000 MW plant 
and by a local generation of 5000 MW (machine M2). The 
system has been initialized so that the line carries 950 MW, 
which is close to its Surge Impedance Loading (SIL = 977 
MW). The two machines are equipped with identical 

'Turbine and Regulator' subsystems, which include the 
Hydraulic Turbine and Governor (HTG), the Excitation 
system and the Power System Stabilizer (PSS). Appendix I 
lists the machine model parameters used in simulation for 
data base generation. 
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Fig. 2.  Simulink diagram of two-machine power system used for data base 
generation 
Only the behavior of the synchronous machine M1 was 
considered in the development of the data base. 
Instantaneous values (in p.u.) of stator voltages and currents 
(Vabc1, Iabc1) and of the rotor speed (ωM1) are recorded at each 
simulation. Then, the intermediate speed components ωLF, 
ωHF are obtained using the pre-processor system.  

An experimental design procedure involving extensive 
simulation studies was applied in order to obtain efficient 
training data and to avoid redundant information. At each 
design step, new scenarios were simulated to reproduce the 
system behavior. To analyze the efficiency of the selected 
patterns, a neural network was trained with data acquired 
after each step.  

First, small-signal stability of the power system was 
considered. Different small disturbances were simulated, by 
setting pulse changes in voltage reference (Vref1) and in 
power reference (Pref1) of generator M1. The pulses had 
magnitudes between 5% and 20% and durations from 6 to 24 
cycles.  

Then, power system behavior under large disturbances 
was simulated. Following a large perturbation, the system is 
either transiently stable, reaching a new equilibrium state, or 
instable, resulting in a run-away or run-down situation. The 
contingencies considered are different types of short-circuit 
applied at bus B1: single line-to-ground fault, line-to-line 
fault, double line-to-ground fault and balanced three-phase 
fault. The faults were released by self-clearance, having 
durations chosen between 1 and 20 cycles. Stable and 
unstable cases were included in the data base.  

Afterward, to develop the robustness and the 
generalization capacity of the speed estimator, changes in 
machine parameters were considered in data base selection. 
A methodical analysis was performed to study the influence 
of various parameters on the generator behavior, under 
different contingencies. As a result of this analysis, all the 
simulations, including small and large disturbances, were 
performed for three different values of machine inertia 
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constant: H = 2 pu-s, H = 3.7 pu-s and H = 6 pu-s.  
Some additional simulations were carried out for values of 

H different from 2, 3.7 and 6 (but also located in range [2, 
6]). This data was used only for ANN testing. 

A sampling interval of 5 ms was used in all simulations 
carried out in data base development. The duration of each 
simulation was selected to give a balance of transient and 
steady-state information. The final data base contains 
219817 samples, acquired in 327 simulations. It is composed 
of two sets: 
- A training data set, including ∼72% of the available data 

(236 simulations, i.e. 158849 samples), developed to 
design and train the ANN. 

- A testing data set, including ∼28% of the acquired data 
(91 simulations, i.e. 60968 samples), built to test the 
ANN. 
Tables I and II summarize the distribution of simulations 

carried out in data base generation for training and testing 
set, respectively. 

 
TABLE I 

DISTRIBUTION OF SIMULATIONS IN GENERATION OF TRAINING 
DATA SET 

 
Small signal Large disturbances (faults at bus B1) 

line-to-gnd 
faults 

line-to-line 
faults 

double line-to-
gnd faults 

three-phase 
faults 

Inertia 
cst. ∆Vref1 ∆Pref1 

stable instable stable instable stable instable stable instable
H=2 25 8 9 4 4 5 5 5 4 7 

H=3.7 25 8 10 3 10 4 7 4 5 6 

H=6 25 8 13 1 9 3 6 4 4 5 
  

TABLE II 
DISTRIBUTION OF SIMULATIONS IN  GENERATION OF TESTING 

DATA SET 
 

Small signal Large disturbances (faults at bus B1) 
line-to-gnd 

faults 
line-to-line 

faults 
double line-to-

gnd faults 
three-phase 

faults 
Inertia 

cst. ∆Vref1 ∆Pref1 

stable instable stable instable stable instable stable instable
H=2 6 2 3 1 1 1 2 1 1 1 

H=3.7 6 2 3 1 4 2 3 3 2 3 
H=6 6 2 5 0 3 1 2 1 1 1 
H≠2, 
3.7, 6 3 2 3 1 2 2 2 2 2 2 

  
After the data base was created, the inputs (ωLF, ωHF) and 

targets (ω) were normalized to lie in the interval [0, 1]. 

B. ANN design 
The Neural Network Toolbox from Matlab was used to 

design, train and test the feedforward ANN.  
The ANN design is a complex iterative process, based on 

trial and error method. Its purpose is to determine the 
optimal architecture of the neural network (e.g. number of 
inputs, number of hidden layers, and number of hidden 
neurons) and to choose the optimal training parameters (e.g. 
performance goal, learning rate, numbers of epochs to train, 
minimum performance gradient, etc). 
Only the training data base has been used in the design 
process. In order to get the best network performance, a 
division of the available data into two subsets was 

performed. The first subset is the training set, which is used 
for computing the gradient and updating the network weights 
and biases. Several different backpropagation training 
algorithms were experienced, like Levenberg-Marquardt, 
scaled conjugate gradient, and BFGS quasi-Newton. The 
second subset is the validation set, which is used to prove the 
network generalization capability. The choice of the 
validation subset is very important. The validation data 
should be representative of all points in the training subset. 
The error on the validation set is monitored during the 
training process. When the network begins to overfit the 
data, the error on the validation set will typically begin to 
rise. When the validation error increases for a specified 
number of iterations, the training is stopped, and the weights 
and biases at the minimum of the validation error are 
returned [18].  

Additionally, multiple runs of the training/validation 
experiment were performed in order to avoid random 
influences (e.g. weight initialization, specific division of 
data, and sequence of training data) [19]. The computation of 
multiple runs also gives a better estimate of the network 
performance. This technique consists in repeating several 
times the training/validation of each ANN, using various 
configurations of the data base. For this purpose, three 
different configurations of the training and validation subsets 
were generated. For each configuration, the 
training/validation process was repeated five times, the data 
in the two subsets being initially well shuffled.  

A large number of neural networks with one and two 
hidden layers were experienced at this stage. Topologies 
with different number of inputs, and one and two hidden 
layers were considered. Some typical examples are presented 
in table III. 

 
TABLE III 

DESIGN RESULTS FOR VARIOUS ANN ARCHITECTURES 
 

Training MSE Validation MSE ANN inputs ANN 
architecture mean variance mean variance 

ωLF(k), ωHF(k) 2-5-1 9.76×10-6 2.32×10-13 1.06×10-5 1.64×10-12 
H, ωLF(k), ωHF(k) 3-7-1 9.59×10-6 1.29×10-12 1.01×10-5 5.03×10-12 
ωLF(k-1), ωLF(k), 
ωHF(k-1), ωHF(k) 4-10-1 4.24×10-6 1.18×10-14 4.39×10-6 1.54×10-14 

ωLF(k-5), ωLF(k), 
ωHF(k-5), ωHF(k) 4-10-1 5.38×10-6 1.21×10-12 5.67×10-6 1.44×10-12 

ωLF(k-1), ωLF(k), 
ωHF(k-1), ωHF(k) 

4-6-4-1 5.30×10-6 7.09×10-13 5.51×10-6 7.7×10-13 

H, ωLF(k-1), ωLF(k), 
ωHF(k-1), ωHF(k) 5-7-4-1 4.17×10-6 6.29×10-14 4.36×10-6 7.03×10-14 

ωLF(k-2), ωLF(k-1), 
ωLF(k), ωHF(k-2), 
ωHF(k-1), ωHF(k) 

6-14-1 3.69×10-6 3.5×10-14 3.86×10-6 4.26×10-14 

  
As a measure of performance in the training/validation 

process, two statistical indexes were computed for each 
ANN topology: 
- The mean of MSE: 
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Where, MSE is the mean squared error between the true and 
the estimated rotor speed, N = 15 is the number of runs of 
each experiment. 
- The variance: 
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After considerable studies, a 4-10-1 ANN topology was 
selected. It provides a satisfactory balance between accuracy 
level, convergence speed, and network complexity. The 
ANN has 4 inputs, representing the present and past values 
of the intermediary speed components provided by the pre-
processor: ωLF(k-1), ωLF(k), ωHF(k-1), ωHF(k). The hidden 
layer contains 10 neurons, and the activation function is the 
hyperbolic tangent sigmoid. The output layer contains a 
single linear neuron, which provide the actual value of the 
rotor speed: ω(k). 

C. ANN training and testing 
The entire training data set (including both training and 

validation subsets) was used for learning the selected ANN 
with now optimized parameters. ANN 4-10-1 was trained 
using the Levenberg-Marquardt algorithm, which provides 
the fastest convergence and very accurate learning. The 
network was trained for 200 epochs using a mean squared 
error index of 3.5×10-6 as performance goal. 

 Then, the network was finally tested with the remaining, 
never before used testing set, which contains ∼28% of the 
acquired data base, i.e. 60968 samples. As a measure of 
performance, the mean relative error (MRE) between the true 
and estimated rotor speed was computed in the testing stage. 

 In order to avoid random influences on learning 
convergence and to obtain a better estimate of the ANN 
performance, multiple runs of the training/testing experiment 
were computed. The 232 contingencies in the training set 
were well shuffled before training, to enhance randomness of 
the data and minimize sequential bias effect. The process 
was repeated 15 times. After each training/testing cycle, the 
neural network parameters were saved, as well as the MRE 
over the 60968 testing patterns. When a new model provided 
a smaller MRE, it replaced the previous best model. Mean 
and variance of testing errors on the 15 runs of the 
experiment were calculated: µMRE = 1.64×10-4, σ2 = 
1.73067×10-11. The ANN retained at the end of the 
training/testing process is characterized by a performance 
index MRE = 1.6×10-4. 

V. PERFORMANCE ANALYSIS OF HYBRID SPEED 
ESTIMATOR 

To analyze the performance of the hybrid estimator in 
online conditions, the estimator was used to provide the 

speed feedback signal in a simulated closed-loop PID 
governor system associated to a synchronous generator. The 
simulations were carried out using Simulink environment. 

Figure 3 shows the Simulink block diagram of the hybrid 
estimator. The Vabc, Iabc sensor system measures the 
instantaneous values of the stator voltages and currents of the 
synchronous machine, which are the inputs of the classical 
pre-processor system. Data acquired in all real-time 
environments is noise corrupted. Contributing factors include 
excitation system AC to DC rectification process, 
quantization errors in sensors, surrounding electromagnetic 
interference, etc.  [20]. To investigate the effect of noise on 
the estimator performance, uniformly distributed noise in the 
range [-0.1, 0.1] is added to voltage and current signals.  

The classical pre-procesor model requires some 
parameters  
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Fig. 3.  Simulink block diagram of hybrid speed estimator 

 
of synchronous machine: the inertia constant H and the 
quadrature axis subtransient reactance Xq

". Constant values 
of these parameters were used by the pre-processor in all 
simulations: H = 3.7 pu-s; Xq

" = 0.243 pu. The unit delay 
system normalizes data and generates present and past values 
of the two intermediary speed components, producing the 
appropriate ANN input signals. The 4-10-1 artificial neural 
network trained in Matlab was converted in a Simulink block 
(ANN). 

Performance analysis was performed by comparing the 
results provided by the hybrid estimator to those obtained 
using a classical mathematical model and an AI-based 
estimator. In the classical approach, the speed is computed 
by simply adding the two components provided by the pre-
processor system (ωLF, ωHF). The AI-based estimator is 
implemented by a simple feedforward neural network that 
estimates the speed directly from machine stator voltages and 
currents. The ANN was created using the existing data base. 
A similar trial and error based methodology as described in 
section IV was applied to design, train, and test the ANN-
based estimator. A final network with 12-30-1 architecture 
was selected. The ANN inputs are the sampled values of the 
real and imaginary parts of positive sequence components of 
stator voltage and current, at three successive instants: 
Vp_re(k-2), Vp_re(k-1), Vp_re(k), Vp_im(k-2), Vp_im(k-1), 
Vp_im(k), Ip_re(k-2), Ip_re(k-1), Ip_re(k), Ip_im(k-2), 
Ip_im(k-1), Ip_im(k). The hidden layer contains 30 neurons 
using the tangent sigmoid activation function. The output 
neuron is linear and provides the present value of the speed.  

 Extensive simulation studies have been carried out to 
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investigate the performance of the speed estimators 
incorporated in the closed-loop governor system of a 
synchronous generator. Various scenarios not used in the 
data base generation were simulated, including different 
disturbances, deviation of machine parameters, different 
types of synchronous generators, and various power system 
topologies. Some typical results are presented in the 
following sections. 

 For illustration purposes, the evolution of actual and 
estimated rotor speed is plotted for different circumstances. 
The actual values of the rotor speed are those extracted 
directly from the synchronous machine Simulink model. The 
estimated speed values are obtained using the classical, the 
AI-based, and the hybrid estimators. For comparison, the 
mean relative error (MRE) between the actual and the 
estimated speed was computed for the three types of 
estimators. 

A. Two-machine test system 
The first tests have been carried out by simulating the 

estimators operation in the two-machine power system model 
used in data base generation stage. Performance of the three 
estimators to a small disturbance is exemplified in figure 4. 
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Fig. 4.  Actual and estimated speed of generator M1 - small disturbance 

 
A 12.5% magnitude-pulse was applied for 7.5 cycles to 

the voltage reference of M1 (Vref1). Estimator robustness to 
machine parameter changes was also investigated in this 
simulation, by varying the inertia constant and the direct axis 
subtransient reactance of the two machines (H = 3.55 pu-s, 
Xd

" = 0.35 pu). The three estimators were successively used 
to estimate the speed of generator M1. It can be seen from 
figure 4 that all three systems provide a quite satisfactory 
estimation of the rotor speed, but better accuracy was 
obtained using the proposed hybrid estimator.«The errors 
computed for the three models prove this remark: MREhybrid 
= 6.60×10-5, MREclassical = 2.23×10-4, MREAI-based =2.20×10-4. 

Figure 5 presents a stable response to a large perturbation, 
i.e. a double line-to-ground fault at bus B1, cleared in 5.5 

cycles. Changes in inertia constant and quadrature axis 
subtransient reactance were also considered: H = 3.1pu-s, Xq

" 
= 0.29 pu. The performance of the three estimators is 
characterized by the following errors: MREhybrid = 1.42×10-4, 
MREclassical  =   8.91×10-4, MREAI-based   =   3.62×10-4. The 
proposed hybrid system outperforms the classical and AI-
based approaches. Figures 4 and 5 illustrate that the classical 
estimator is characterized by a phase error during speed 
oscillations. 
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Fig. 5.  Actual and estimated speed of generator M1 – large disturbance, 
stable case 
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Fig. 6.  Actual and estimated speed of generator M1 - large disturbance, 
instable case 

An unstable case is illustrated in figure 6. A three-phase to 
ground fault was simulated at bus B1 for 12.5 cycles. New 
values of inertia constant and quadrature axis subtransient 
reactance were considered: H = 2.7pu-s, Xq

" = 0.15 pu. 
Again, better tracking of M1 rotor speed was obtained when 
using the hybrid estimator. For comparison, the estimation 
errors were calculated: MREhybrid = 2×10-3, MREclassical = 
4.3×10-3, MREAI-based = 3.7×10-3. 

Disturbances occurring in different locations of the two-
machine power system were also simulated in the test stage. 
Remember that only contingencies at the machine M1 side of 
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the transmission line (bus B1) have been considered in data 
base generation. Figure 7 shows the results of M1 speed 
estimation in the case of an 8-cycle, single line-to-ground 
fault simulated at bus B3. The performance of the three 
estimators is characterized by the following errors: MREhybrid 
= 1.65×10-4, MREclassical = 2.36×10-4, MREAI-based = 4.3×10-3. 
These show a degraded performance of the AI-based 
estimator in comparison with that of the hybrid and the 
classical estimators. 
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Fig. 7.  Actual and estimated speed of generator M1 - disturbance applied 
at bus B3 
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Fig. 8.  Actual and estimated speed of generator M2 - disturbance applied 
at bus B1 
The three estimators were also tested to provide the speed of 
the M2 generator in the two-machine power system. It 
should be noted that only the behavior of the M1 generator 
was considered in the development of the data base. Again, 
the AI-based estimator cannot provide correct speed 
estimation. In contrast, the classical and the hybrid 
estimators continue to give a satisfactory performance. As an 
example, results obtained with these two estimators for M2 
generator speed in the case of a 6.75-cycle line-to-line fault 
simulated at bus B1 are shown in figure 8. Different inertia 

constants of the two generators were also considered in this 
simulation: HM1 = 4.05 pu-s, HM2 = 3 pu-s. The errors 
indicate that both classical and hybrid estimators predict 
accurately the speed of M2 generator, but the AI-based 
estimator fails: MREhybrid = 3.5×10-5, MREclassical = 4.36×10-5, 
MREAI-based = 1.25×10-2. 

B. Four-machine test system 
Subsequently, the performance of the three estimators was 

analyzed by simulating their closed-loop response in other 
Simulink models, representing different topologies of power 
systems. As expected, the AI-based estimator did not give 
satisfactory results, since the ANN has only been trained 
using the two-machine power system model. On the other 
hand, it should be noted that the hybrid and the classical 
estimators are able to generalize, and can provide quite 
accurate estimates of the speed for different types of 
synchronous generators in various power system topologies. 

For illustration purposes, the performance of the classical 
and hybrid estimators in a four-machine two-area test system 
is presented. The power system consists of two fully 
symmetrical areas linked together by two 230 kV lines of 
220 km length (figure 9). This system was specifically 
designed in [21], [22] to study low frequency 
electromechanical oscillations in large interconnected power 
systems. Each area is equipped with two identical round 
rotor generators rated 20 kV/900 MVA. The synchronous 
machines have identical parameters, except for inertias 
which are H = 4.5 pu-s in area 1 and H = 6.175 pu-s in area 2 
(see appendix II). Thermal plants having identical speed 
regulators are further assumed at all locations.  
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Fig. 9.  Simulink diagram of four-machine two-area power system used for 
estimator performance analysis 

The three estimators were succesivelly used to provide the 
speed of the four machines. A variety of tests were 
performed, including small and large perturbations, and the 
use of three types of power system stabilizers (MB-PSS, 
Delta w PSS, and Delta Pa PSS).  

Figures 10 to 13 illustrates the results obtained using the 
classical and the hybrid estimators in the case of a three-
phase fault cleared in 8 cycles by opening the brakers Brk1 
and Brk2. MB-PSS with simplified settings (IEEE Std 
421.5) was used in this simulation to maintain the system 
stability. It can be seen that the two models provide quite 
satisfactory estimation of the speed for all generators: 
MREhybrid = 1.65×10-4, MREclassical = 1.3×10-4 (machine M1), 
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MREhybrid=1.96×10-4, MREclassical = 1.62×10-4 (machine M2), 
MREhybrid = 1.96×10-4, MREclassical  = 2.09×10-4 (machine 
M3),  MREhybrid = 1.86×10-4, MREclassical = 2.54×10-4 
(machine M4). It should be noted the excellent performance 
of the hybrid estimator in conditions very different from 
those used in the development of the ANN. 
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Fig. 10.  Actual and estimated speed of generator M1 - three-phase fault at 
line 1 
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Fig. 11.  Actual and estimated speed of generator M2 - three-phase fault at 
line 1 

 

VI. CONCLUSION 
This paper presented a novel approach to speed estimation 

of synchronous generator. The proposed estimator has hybrid 
architecture, combining a classical mathematical-based 
model of synchronous machine with a multi-layer 
feedforward artificial neural network. The paper has 
considered the design and performance analysis of the hybrid 
speed estimator. The performance was evaluated by 
incorporating the estimator in generator closed-loop 
governor system and simulating a wide range of operating 

conditions, including different disturbances, deviation of 
machine parameters, different types of synchronous 
generators, and various power system topologies. Results 
provided by the hybrid estimator were compared to those 
obtained using the classical mathematical-based estimator 
only and the AI-based estimator, respectively. 
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Fig. 12.  Actual and estimated speed of generator M3 - three-phase fault at 
line 1 
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Fig. 13.  Actual and estimated speed of generator M4 - three-phase fault at 
line 1 

 From the studies carried out it is concluded that the 
proposed approach is able to provide accurate estimates of 
generator rotor speed in a wide range of operating 
conditions, different from those used to train the ANN 
component. The hybrid estimator is stable, robust to 
deviations in machine parameters and noise. It outperforms 
the approach based on the use of artificial neural network 
only. While the hybrid estimator provided satisfactory 
response over the entire test range, the AI-based estimator 
failed outside the region implied by the training data. 

 Furthermore, the test results showed that the hybrid 
estimator is able to improve the performance of the classical 
mathematical-based model. In many tests, the hybrid 
estimator exhibit significant decrease in the amplitude and 
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phase estimation errors.  A significant advantage of the 
hybrid approach lies in its independence on knowledge of 
any machine parameters. It should also be noted that the 
hybrid estimator is easily adaptable to new operating 
conditions by adding new representative examples in the 
training data base of the ANN component.  

 Finally, the simulation study confirmed that the 
proposed hybrid approach has potential to improve the 
performance of generator speed estimation in dynamic 
security assessment and control of power systems. 

VII. APPENDIX 
APPENDIX I 
Parameters of the two 13.8 kV, 60 Hz synchronous 

generators in the power system model used for data base 
generation: 
Pole pairs: p = 32 
Inertia constant (pu-s): H = 3.7 
Reactances (pu): Xd = 1.305; X'd = 0.296; X''d = 0.252; Xq = 0.474;    
                            X''q = 0.243; Xl = 0.18 
Time constants (s): T'd = 1.01; T''d = 0.053;  T''qo = 0.1 
Stator resistance (pu): Rs = 2.8544×10-3 

 
APPENDIX II 
Parameters of the four 20 kV/900 MVA, 60 Hz round 

rotor generators of the power system model used in 
performance analysis: 
Pole pairs: p = 4 
Inertia constant (pu-s): H = 4.5 (Area 1), H = 6.175 (Area 2) 
Reactances (pu): Xd = 1.8; X'd = 0.3; X''d = 0.25; Xq = 1.7; X'q = 
0.55; X''q = 0.25; Xl = 0.2 
Time constants (s): T'd0 = 8; T''d0 = 0.03;  T'q0 = 0.4;  T''qo = 0.05 
Stator resistance (pu): Rs = 2.5×10-3 
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