Language to logic mapper to logic model checker

Colin James III info@cec-services.com ESMC Colorado Springs

What is automated reasoning.

- This goal is to obtain logical proof of sentences.
- The motivation is to validate the requirement documents of a product before its manufacture.
- The economic benefit avoids mistakes before manufacture, because defects are costly to fix.
- The approach is two-fold:
 - 1. Input from the language to logic mapper (LLM)
 - 2. Output from the logic model checker (LMC)

Language to logic mapper (LLM)

- What is natural language?
 - What fits in sentences is parts of speech (POS).
- POS are abstract groups of:
 - Noun, Verb, Modifier (NVM).
 - The modifier is an adjective and adverb.
- POS approach ignores grammatical distinctions
 - A subject, object, or direct object is still a "Noun".

POS by stemmer lookup table (LUT)

- Public domain list of POS: 180K English words
 - POS are further grouped into three logical groups.
 - 3 Nouns as singular, plural, pronoun
 - 5 Verbs as in-transitive, participle, gerund, conjunction
 - 4 Modifiers as adjective, adverb, preposition, article
 - Ignored are nominatives and interjections.
- Uses sequential access to the word list:
 - Searches on average for $\frac{1}{2}$ of the list;
 - Avoids overhead of a sorted list for binary search;
 - Prompts for a word not found, to add it to the list.

Some POS are ambiguous.

- The stemmer may be several POS.
 - "free" as such is noun, verb, adjective, and adverb.
- The *alias lemma* is defined as the unique POS sequence pattern from adjacent stemmers.
- The *pseudo lexeme* := *alias lemma* + stemmer.
 - Example 1: Tango is leaders and followers.
 - Pattern is Tango verb nouns, hence chunked as Nvn.
 - Example 2: Leaders and followers **tango**.
 - Pattern is nouns **tango**, hence chunked as nV.

Generic disambiguation of POS

- LET m = modifier; **N** = noun; **V** = verb
- Pattern format: mmNmmmVmmmN.
- "mmN" is adverb adjective Noun or adjective adjective Noun
- "Nmm" is Noun adjective adjective or Noun adverb adjective
- "*mm*V" is adverb adverb Verb
- "Vmm" is Verb adverb adverb

The ambiguous pattern options

- "holidays very warm ended": Nmm_V
 - "very warm" as adverb adjective modifies the Noun
- "holidays very early begin": N_mmV
 - "very early" as adverb adverb modifies the Verb
- "ended very early holidays": Vmm_N
 - "very early" as adverb adverb modifies the Verb
- "begin very warm holidays": V_mmN
 - "very warm" as adverb adjective modifies the Noun

The ambiguous option choice

- Adverb adjective is before or after Nouns
 - mmN: adverb adjective Noun "very warm holidays"
 - Nmm: Noun adverb adjective "holidays very warm"
- Adverb adverb is before or after Verbs
 - mmV: adverb adverb Verb
 - Vmm: Verb adverb adverb

"very early ended"

"ended very early"

What is logic model checker (LMC).

- Jan Łukasiewicz invented logic Ł4 but did not:
 - Find all combinations of the logical models; or
 - Find academic acceptance of his 4-valued system.
- Garry Goodwin (UK) and I (USA) fixed Ł4:
 - Variant Ł4 (V Ł4) uses 5 logical models; and
 - A 4-valued logic system of {F,N,C,T} and {U,I,P,E}.
- Meth8 logic model checker implements this.
 - We claim this *recent advance* in mathematical logic.

Example 1 of Meth8

Gödel-Löb Axiom

Meth8 is U.S. Patent Pending.

© 2016 by Colin James III

Variant Ł4 (VŁ4)

- Uses two sets of 4-valued logic for 5 models
- Validated when all models True and Evaluated

CTCT	UEUE	EEEE	PEPE	IEIE
Model 1	Model 2.1	Model 2.2	Model 2.3.1	Model 2.3.2

• \Box (\Box **p** \rightarrow **p**) \rightarrow \Box **p** The Gödel-Löb axiom (GL)

The necessity of *choice*, as always implying *a choice*, implies always *a choice*.

- This is suspicious with only one valid model of five.
- If GL fails, then so does Zermelo Fraenkel set theory and axiom of choice (ZFC) as the basis of mathematics.

What GL wished it was in words.

The necessity of *no choice*, as always implying *a choice*, is equivalent to always *a choice*.

•
$$\Box(\Box p \rightarrow \sim p) \leftrightarrow \Box \sim p$$

The necessity of *choice*, as always implying *no choice*, is equivalent to always *no choice*.

•
$$\Box(\Box p \rightarrow p) \leftrightarrow \Box(p \lor \sim p)$$

[3]

[1]

[2]

The necessity of *choice*, as always implying *a choice*, is equivalent to always *a choice* or *no choice*.

TTTT	EEEE	EEEE	EEEE	EEEE
Model 1	Model 2.1	Model 2.2	Model 2.3.1	Model 2.3.2

Meth8 is U.S. Patent Pending.

Example 2 of Meth8

Appendix

Karl Popper's proof of God

Meth8 is U.S. Patent Pending.

© 2016 by Colin James III

How to map POS to logical symbols.

- Nouns are literals for
 - Propositions lower case {p,q,r,s} in 16 table-values
 - Theorems upper case {A,B,C,D} in 256 table-values
- Verbs are connectives assigned {&+-<=>@\} for
 - { and, or, nor, not imply, equivalent, imply, xor, nand}
- Modifiers are operators assigned as { ~#% } for negation and modal necessity / possibility:
 - Adjectives as { not, necessary, possible }
 - Adverbs as { never, necessarily, possibly }

How to prove a sentence.

- A sentence is a proof table of logical values, eg:
 - "A floor of the factory has robots and computers."
 - "[Possibly] <u>a</u> floor [and necessarily] of <u>the</u> factory [is] robots <u>and</u> computers."

Model 1 Model 21 Model 2.2 Model 2 3 1 Model 232 TTTC TTCC 티ㅋㅋㅋ 민귀귀귀 EEEE EEEE EEEP EEEP ТЯЭЛ ТЯЯЯ **ΤΤΤΤ ΓΓΓΓΝ** ㅋ미미미 미ㅋㅋㅋ EEEP τιτιτ ТЯЛЯ UUUP EEEE UUUU

- Valid: **TTTT** in Model 1 and **EEEE** in Models 2.
 - Which models above are validated?

How to fix a sentence to prove it.

- "[Possibly] <u>a</u> floor [and necessarily] of <u>the</u> factory [is] robots <u>and</u> computers." (%p & #q) = (r & s).
- Rewrite logical expression: "The facts of necessity of the factory and possibility of a floor implying both possibly a floor and necessarily the factory, which combined with the facts of robots and computers implying both robots and computers, implies that *possibility of a floor and necessity of the factory is equivalent to robots and computers*."
- ((((#q=#q)&(%p=%p))>(%p&#q))&(((r=r)&(s=s))>(r&s)))
 >((%p & #q) = (r & s)), for valid all models.

Model 1	Model 2.1	odel 2.1 Model 2.2		Model 2.3.2	
TTTT TTTT	EEEE EEEE	EEEE EEEE	EEEE EEEE	EEEE EEEE	
TTTT TTTT	EEEE EEEE	EEEE EEEE	EEEE EEEE	EEEE EEEE	

[2]

Example 3 of Meth8

How to fix a sentence: Proof for God is time

Meth8 is U.S. Patent Pending.

© 2016 by Colin James III

Conjecture for God is time

If God knows that past, present, and future are true [and that past implies present, implies future],

then:

God as past implies God as present, implies past as present;

or

God as past implies God as future, implies past as future;

or

God as present implies God as future, implies present as future

{or past as present implies past as future, implies present as future}.

Meth8 is U.S. Patent Pending.

Proof for God is time

LET:
$$p = God; q = past; r = present; and s = future$$

[also, t = time = q & r & s].

In Meth8 logic model checker script:

Meth8 is U.S. Patent Pending.

© 2016 by Colin James III

Tips to fix a sentence to prove it.

- The technique of completeness & satisfiability
 - Rewrite the logical expression to recheck mapping
- The technique of expansion
 - Make sentences more descriptive
 - Divide sentences into simpler descriptive parts
- The technique of contraction
 - Abstract sentences into general, generic content
 - Build sentences with higher informational content
- Technical writing aid from proposals and grants

Sentences (S) to paragraphs (P)

- S1: nouns A, B, verb "is" =; S1 means (A=B).
- S2: nouns A, B, verb "and" &; S2 means(A&B).
 - P1 is S1 then S2, P1: S1>S2 means (A=B)>(A&B).
 The implication connective ">" is inserted between S1 and S2 based on the reason that S2 follows S1 in logical sequence.
 - In words, "S1 implies S2", that is, "If S1, then S2."
 - ("S1 as True implies S2 as False" is not allowed.)
 - Sentence order is important.
- Subsequent Pn imply requirements documents.

Summary

- Automated reasoning is achieved by mapping language to logic and by checking logic models.
 - Sentences use a word LUT for POS of stemmers.
 - Disambiguate pseudo lexemes from alias lemmas.
 - Map POS groups to symbols by logical expression.
- Sentences are validated by five logical models.
- Consecutive sentences imply a valid paragraph.
- Sequential paragraphs imply a valid document.

Now ask me a difficult question I may not know.

info@cec-services.com

Meth8 is U.S. Patent Pending.

Colin James III

 $\ensuremath{\mathbb{C}}$ 2016 by Colin James III

Appendix

Karl Popper's proof of God

Meth8 is U.S. Patent Pending.

© 2016 by Colin James III

Meth8 on Karl Popper proof Ex(Gx)

Demarcation between science and metaphysics (1972)

- "Science is testable and falsifiable, but metaphysics is not." So, prove the *arch-metaphysical assertion* that "There is a personal spirit named God who is omnipresent, omnipotent, omniscient."
 - Once asserted it's not disprovable (Fischer P=1) per Carnap.
- If morality is non physicalistic, then not the moral Christian God.
- However, this counter example proves *morality is physicalistic*:
 - When the existentialist utters "I ought to" conscience is invoked, and the moral imperative is asserted. Thus Ex(Gx) becomes a moral God.
 - What forms of monotheism exist other than Orthodox Christianity?
 - Baha'i, Judaism, Muhammadanism
 - By what reasons do they admit they are not truthful?
 - No avatar; Revelation ceased; Impersonal contradictory rules

 $\ensuremath{\mathbb{C}}$ 2016 by Colin James III

Meth8 scripts: Popper predicates 1

Meth8 scripts for a,b,c,d as p,q,r,s	Predicates	Descriptions	
1: p&q	1: Pos(a,b)	1: a occupies a position in region b	
2: (p&q)>r;	2: Put(a,b,c)	2: <i>a</i> can put thing <i>b</i> into position <i>c</i>	
3: p&q	3: Utt(a,b)	3: <i>a</i> makes the utterance <i>b</i>	
4: p&q	4: Ask(a,b)	4: <i>a</i> is asked the truth of <i>b</i>	
5: (%p&#q)>(p&#q);</td><td>5: Opos(a)=((Ea)(b)Pos(a,b)>(b)Pos(a,b))</td><td>5: <i>a</i> is omnipresent</td></tr><tr><td>6: ((%p&#q)>#r)>((p&#q)>#r);</td><td>6: Oput(a)=((Ea)(b)(c)Put(a,b,c)>(b)(c) Put(a,b,c))</td><td>6: <i>a</i> is omnipotent</td></tr><tr><td>7: (p&q)>(p&q);</td><td>7: Th(a,b)=(Ask(a,b)>Utt(a,b))</td><td>7: a thinks b</td></tr><tr><td>8: (p&%q)>(p&%q);</td><td>8: Thp(a)=(Eb)Th(a,b)</td><td>8: <i>a</i> is a thinking person</td></tr><tr><td>9: (((p&%q)>(p&%q))&~(p&#q)) V(p&#q);</td><td>9: Sp(a)=(Thp(a)&((b)~Pos(a,b))VOpos(a))</td><td>9: <i>a</i> is a (personal) spirit</td></tr><tr><td>10: (q&r)>((p&(q&r))>(p&(q&r)));</td><td>10: Knpos(a,b,c)=(Pos(b,c)>Th(a,"Pos(b,c)")</td><td>10: <i>a</i> knows that <i>b</i> is in position <i>c</i></td></tr><tr><td>11: (q&r)>s)>((p&((q&r)>s)) >(p&((q&r)>s)));</td><td>11: Knput(a,b,c,d)=(Put(b,c,d)> Th(a,"Put(b,c,d)")</td><td>11: <i>a</i> knows that <i>b</i> can put <i>c</i> into position <i>d</i></td></tr><tr><td>12: ((q&r)>(q&r))&((p&((q&r) >(q&r)))>(p&((q&r)>(q&r))));</td><td>12: Knth(a,b,c)=(Th(b,c)&Th(a,"Th(b,c)"))</td><td>12: a knows that b thinks c</td></tr><tr><td>Meth8 is U.S. Patent Pending.</td><td>© 2016 by Colin James III</td><td>All rights reserved. 25</td></tr></tbody></table>			

Meth8 scripts: Popper predicates 2

Meth8 scripts for *a*,*b*,*c*,*d* as p,q,r,s

- 13: ((((p&q)>(p&q))&(p@r))&
 (~((r&q)>(r&q)))=~(((p&q)>(p&q))
 &((r&((p&q)>(p&q)))>(r&((p&q)>(p&q)))
 g))));
- 14: (p&q) > (p&q)) & (q=q);

15: (p& #q) > (p& #q) > (q=q);

16: (#q=#q) > (((p&q) > (p&q)) & (q=q);

17: ((p&#q)&((p&#q)>#r)=(((#q=#q)>(((p&q)>(p&q))&(q=q))))&(((p&#q)>(p&#q))>(q=q)));

18: ((((%p&#q)>(p&#q))&(((%p&#q)>
#r)>((p&#q)>#r)))>((#q=#q)>
(((p&q)>(p&q))&(q=q)))&
((((p&#q)>(p&#q))>(q=q))&((((p&
%q)>(p&%q))&(p&#q))>(q=q))&((((p&
%q)>(p&%q))&(p&#q)))&((r&q))&((r&q)>
(((((p&q)>(p&q))&(p&q))&((r&q))>
(r&q))))=~(((p&q)>(p&q))&((r&((p&q)>(p&q))))))));

Predicates

13: Unkn(a)=Th(a,b)&(a≠c)& ~Th(c,b))=~Knth(c,a,b))

14: Kn(a,b)=Th(a,b)&T(b), where T(b) means b is true

15: Verax(a) = ((b)Th(a,b)>T(b))

16: Okn(a)=(b)T(b)>Kn(a,b)

17: (Opos(a)&Oput(a))=(Okn(a) &Verax(a))

18: Ex(Gx)=(((Opos(a)&Oput(a)) >Okn(a))&((Verax(a)&Unkn(a))& Sp(a)))

Descriptions

13: *a* is unfathomable: *a* thinks b and *a* is not *c* and *c* does not think *b* is equivalent to *c* does not know that *a* thinks *b*.

14: *a* knows the fact *b*

15: a is truthful

16: a is omniscient

17: *a* as omnipresent and *a* as omnipotent is equivalent to *a* as omniscient and a as truthful

18: There exists a personal spirit named God whose omnipresence and omnipotence implies omniscience, and who is truthful and unfathomable.

Meth8 validation tables: Popper 3

Table fragments for two of the four rows

(The designated truth values are \mathbf{T} and \mathbf{E} .)

Expression	Model 1	Model 2.1	Model 2.2	Model 2.3.1	Model 2.3.2
18-5. Validated	TTTT TTTT	EEEE EEEE	EEEE EEEE	EEEE EEEE	EEEE EEEE
4. (p&q);	FFFT FFFT	UUUE UUUE	UUUE UUUE	UUUE UUUE	UUUE UUUE
3. (p&q);	FFFT FFFT	UUUE UUUE	UUUE UUUE	UUUE UUUE	UUUE UUUE
2. (p&q)>r;	TTTF TTTF	EEEU EEEU	EEEU EEEU	EEEU EEEU	EEEU EEEU
1. (p&q);	FFFT FFFT	UUUE UUUE	UUUE UUUE	UUUE UUUE	UUUE UUUE