Language

to logic mapper to logic model checker

Colin James III
info@cec-services.com

ESMC
Colorado Springs

What is automated reasoning.

- This goal is to obtain logical proof of sentences.
- The motivation is to validate the requirement documents of a product before its manufacture.
- The economic benefit avoids mistakes before manufacture, because defects are costly to fix.
- The approach is two-fold:
- 1. Input from the language to logic mapper (LLM)
- 2. Output from the logic model checker (LMC)

Language to logic mapper (LLM)

- What is natural language?
- What fits in sentences is parts of speech (POS).
- POS are abstract groups of:
- Noun, Verb, Modifier (NVM).
- The modifier is an adjective and adverb.
- POS approach ignores grammatical distinctions
- A subject, object, or direct object is still a "Noun".

POS by stemmer lookup table (LUT)

- Public domain list of POS: 180K English words
- POS are further grouped into three logical groups.
- 3 Nouns as singular, plural, pronoun
- 5 Verbs as in-transitive, participle, gerund, conjunction
- 4 Modifiers as adjective, adverb, preposition, article
- Ignored are nominatives and interjections.
- Uses sequential access to the word list:
- Searches on average for $1 / 2$ of the list;
- Avoids overhead of a sorted list for binary search;
- Prompts for a word not found, to add it to the list.

Some POS are ambiguous.

- The stemmer may be several POS.
- "free" as such is noun, verb, adjective, and adverb.
- The alias lemma is defined as the unique POS sequence pattern from adjacent stemmers.
- The pseudo lexeme := alias lemma + stemmer.
- Example 1: Tango is leaders and followers.
- Pattern is Tango - verb - nouns, hence chunked as Nvn.
- Example 2: Leaders and followers tango.
- Pattern is nouns - tango, hence chunked as nV.

Generic disambiguation of POS

- LET $m=$ modifier; $\mathbf{N}=$ noun; $\mathbf{V}=$ verb
- Pattern format: $m m \mathbf{N} m m m \mathrm{Vmmmm}$.
- " $m m \mathbf{N}$ " is adverb adjective Noun or adjective adjective Noun
- "Nmm" is Noun adjective adjective or Noun adverb adjective
- "mmV" is adverb adverb Verb
- "Vmm" is Verb adverb adverb

The ambiguous pattern options

- "holidays very warm ended": Nmm_V
- "very warm" as adverb adjective modifies the Noun
- "holidays very early begin": N_mmV
- "very early" as adverb adverb modifies the Verb
- "ended very early holidays": Vmm_N
- "very early" as adverb adverb modifies the Verb
- "begin very warm holidays": V_mmN
- "very warm" as adverb adjective modifies the Noun

The ambiguous option choice

- Adverb adjective is before or after Nouns
- mmN: adverb adjective Noun "very warm holidays"
- Nmm: Noun adverb adjective "holidays very warm"
- Adverb adverb is before or after Verbs
- mmV: adverb adverb Verb
- Vmm: Verb adverb adverb
"very early ended"
"ended very early"

What is logic model checker (LMC).

- Jan Łukasiewicz invented logic $Ł 4$ but did not:
- Find all combinations of the logical models; or
- Find academic acceptance of his 4-valued system.
- Garry Goodwin (UK) and I (USA) fixed Ł4:
- Variant $Ł 4$ (VŁ4) uses 5 logical models; and
- A 4-valued logic system of $\{F, N, C, T\}$ and $\{U, I, P, E\}$.
- Meth8 logic model checker implements this.
- We claim this recent advance in mathematical logic.

Example 1 of Meth8

Gödel-Löb Axiom

Variant Ł4 (VŁ4)

- Uses two sets of 4-valued logic for 5 models
- Validated when all models True and Evaluated

CTCT	UEUE	EEEE	PEPE	IEIE
Model 1	Model 2.1	Model 2.2	Model 2.3.1	Model 2.3.2

- $\square(\square \mathbf{p} \rightarrow \mathbf{p}) \rightarrow \square \mathbf{p} \quad$ The Gödel-Löb axiom (GL)

The necessity of choice, as always implying a choice, implies always a choice.

- This is suspicious with only one valid model of five.
- If GL fails, then so does Zermelo - Fraenkel set theory and axiom of choice (ZFC) as the basis of mathematics.

What GL wished it was in words.

- \quad ($\square \sim \mathbf{p} \rightarrow \mathbf{p}) \leftrightarrow \square \mathbf{p}$

The necessity of no choice, as always implying a choice, is equivalent to always a choice.

- $\square(\square \mathbf{p} \rightarrow \sim \mathbf{p}) \leftrightarrow \square \sim p$

The necessity of choice, as always implying no choice, is equivalent to always no choice.

- $\square(\square p \rightarrow p) \leftrightarrow \square(p \vee \sim p)$

The necessity of choice, as always implying a choice, is equivalent to always a choice or no choice.

TTtT	EEEE	EEEE	EEEE	EEEE
Model 1	Model 2.1	Model 2.2	Model 2.3.1	Model 2.3.2

Example 2 of Meth8

Appendix

Karl Popper's proof of God

How to map POS to logical symbols.

- Nouns are literals for
- Propositions lower case $\{p, q, r, s\}$ in 16 table-values
- Theorems upper case \{A,B,C,D\} in 256 table-values
- Verbs are connectives assigned \{\&+-<=>@\}\} for
- \{ and, or, nor, not imply, equivalent, imply, xor, nand\}
- Modifiers are operators assigned as \{ \#\# \} for negation and modal necessity / possibility:
- Adjectives as \{not, necessary, possible \}
- Adverbs as \{never, necessarily, possibly \}

How to prove a sentence.

- A sentence is a proof table of logical values, eg:
- "A floor of the factory has robots and computers."
- "[Possibly] a floor [and necessarily] of the factory [is] robots and computers."
- (\%p \& \#q) = (r \& s).

Model
TTTC TTCC
TTTC FFFN EEEU UUUE EEEE UUUU EEEP UUUI EEEI UUUP

- Valid: тTTT in Model 1 and eeee in Models 2.
- Which models above are validated?

How to fix a sentence to prove it.

- "[Possibly] a floor [and necessarily] of the factory [is] robots and computers." (\%p \& \#q) = (r \& s).
- Rewrite logical expression: "The facts of necessity of the factory and possibility of a floor implying both possibly a floor and necessarily the factory, which combined with the facts of robots and computers implying both robots and computers, implies that possibility of a floor and necessity of the factory is equivalent to robots and computers."
- (((\#q=\#q)\&(\%p=\%p))>(\%p\&\#q))\&(((r=r)\&(s=s))>(r\&s))) $>((\% \mathrm{p} \& \# q)=(\mathrm{r} \& \mathrm{~s}))$, for valid all models.

Model 1	Model 2.1		Model 2.2		Model 2.3 .1	Model 2.3 .2
TTTT TTTT	EEEE EEEE	EEEE EEEE	EEEE EEEE	EEEE EEEE		
TTTT TTTT	EEEE EEEE	EEEE EEEE	EEEE EEEE	EEEE EEEE		

Example 3 of Meth8

How to fix a sentence: Proof for God is time

Conjecture for God is time

If God knows that past, present, and future are true [and that past implies present, implies future],
then:
God as past implies God as present, implies past as present;
or
God as past implies God as future, implies past as future;
or
God as present implies God as future, implies present as future
\{or past as present implies past as future, implies present as future\}.

Proof for God is time

LET: $p=$ God; $q=$ past; $r=$ present; and $s=$ future [also, $\mathrm{t}=\mathrm{time}=\mathrm{q} \& \mathrm{r} \& \mathrm{~s}]$.

In Meth8 logic model checker script:

$$
\begin{aligned}
& (\mathrm{p} \&((((\mathrm{q}=\mathrm{q}) \&(\mathrm{~s}=\mathrm{s})) \&(\mathrm{r}=\mathrm{r})) \\
& \quad[\& \quad(((\mathrm{q}=\mathrm{q})>(\mathrm{s}=\mathrm{s}))>(\mathrm{r}=\mathrm{r})))]) \\
& > \\
& (\quad((((\mathrm{p}=\mathrm{q})>(\mathrm{p}=\mathrm{r}))>(\mathrm{q}=r)) \\
& +\quad(((\mathrm{p}=\mathrm{q})>(\mathrm{p}=\mathrm{s}))>(\mathrm{q}=\mathrm{s}))) \\
& +(((\mathrm{p}=r)>(\mathrm{p}=\mathrm{s}))>(r=\mathrm{s}))) \\
& \{+((\mathrm{q}=r) \&(\mathrm{r}=\mathrm{s})) \&(r=\mathrm{s}))\}) ; \text { Valid all models }
\end{aligned}
$$

Tips to fix a sentence to prove it.

- The technique of completeness \& satisfiability
- Rewrite the logical expression to recheck mapping
- The technique of expansion
- Make sentences more descriptive
- Divide sentences into simpler descriptive parts
- The technique of contraction
- Abstract sentences into general, generic content
- Build sentences with higher informational content
- Technical writing aid from proposals and grants

Sentences (S) to paragraphs (P)

- S1: nouns A, B, verb "is" =; S1 means (A=B).
- S2: nouns A, B, verb "and" \&; $S 2$ means(A\&B).
- $P 1$ is $S 1$ then $S 2, P 1: S 1>S 2$ means $(A=B)>(A \& B)$. The implication connective " $>$ " is inserted between S1 and S2 based on the reason that S2 follows S1 in logical sequence.
- In words, "S1 implies S2", that is, "If S1, then S2."
- ("S1 as True implies S2 as False" is not allowed.)
- Sentence order is important.
- Subsequent Pn imply requirements documents.

Summary

- Automated reasoning is achieved by mapping language to logic and by checking logic models.
- Sentences use a word LUT for POS of stemmers.
- Disambiguate pseudo lexemes from alias lemmas.
- Map POS groups to symbols by logical expression.
- Sentences are validated by five logical models.
- Consecutive sentences imply a valid paragraph.
- Sequential paragraphs imply a valid document.

Now ask me a difficult question I may not know.
Colin James III info@cec-services.com

Appendix

Karl Popper's proof of God

Meth8 on Karl Popper proof Ex(Gx)

Demarcation between science and metaphysics (1972)

- "Science is testable and falsifiable, but metaphysics is not." So, prove the arch-metaphysical assertion that "There is a personal spirit named God who is omnipresent, omnipotent, omniscient."
- Once asserted it's not disprovable (Fischer P=1) per Carnap.
- If morality is non physicalistic, then not the moral Christian God.
- However, this counter example proves morality is physicalistic: When the existentialist utters "I ought to" conscience is invoked, and the moral imperative is asserted. Thus Ex(Gx) becomes a moral God.
- What forms of monotheism exist other than Orthodox Christianity?
- Baha'i, Judaism, Muhammadanism
- By what reasons do they admit they are not truthful?
- No avatar; Revelation ceased; Impersonal contradictory rules

Meth8 scripts: Popper predicates 1

Meth8 scripts for a, b, c, d as p, q, r, s

1: p\&q;

2: (p\&q) $>$ r;

3: p\&q;
4: p\&q;
5: (\%p\&\#q) >(p\&\#q);

6: $((\% \mathrm{p} \& \# \mathrm{q})>\# r)>((\mathrm{p} \& \# q)>\# r)$;

7: (p\&q)>(p\&q);
8: $(p \& \% q)>(p \& \% q)$;
9: $(((p \& \% q)>(p \& \% q)) \& \sim(p \& \# q))$ $V(p \& \# q)$;

10: $(q \& r)>((p \&(q \& r))>(p \&(q \& r))) ;$

11: $(q \& r)>s)>((p \&((q \& r)>s))$
$>(p \&((q \& r)>s)))$;
12: ($(q \& r)>(q \& r)) \&((p \&((q \& r)$ $>(q \& r)))>(p \&((q \& r)>(q \& r)))) ;$

Predicates

1: $\operatorname{Pos}(a, b)$

2: Put(a,b,c)

3: Utt(a,b)
4: Ask(a,b)
5: $\operatorname{Opos}(a)=((E a)(b) \operatorname{Pos}(a, b)>(b) \operatorname{Pos}(a, b))$

6: Oput(a)=((Ea)(b)(c)Put(a,b,c)>(b)(c) Put(a,b,c))

7: $\operatorname{Th}(a, b)=(\operatorname{Ask}(a, b)>U t t(a, b))$
8: $\operatorname{Thp}(a)=(E b) \operatorname{Th}(a, b)$
9: $\operatorname{Sp}(\mathrm{a})=(\operatorname{Thp}(\mathrm{a}) \&((\mathrm{~b}) \sim \operatorname{Pos}(\mathrm{a}, \mathrm{b})) \mathrm{VOpos}(\mathrm{a}))$

10: $\operatorname{Knpos}(a, b, c)=(\operatorname{Pos}(b, c)>T h(a, " P o s(b, c) ")$

11: $\operatorname{Knput}(a, b, c, d)=(\operatorname{Put}(b, c, d)>$
Th(a,"Put(b,c,d)")
12: $\operatorname{Knth}(a, b, c)=(\operatorname{Th}(b, c) \& T h(a, " T h(b, c) "))$

Descriptions

1: a occupies a position in region b

2: a can put thing b into position c

3: a makes the utterance b
4: a is asked the truth of b
5: a is omnipresent

6: a is omnipotent

7: a thinks b
8: a is a thinking person
9: a is a (personal) spirit

10: a knows that b is in position c

11: a knows that b can put c into position d

12: a knows that b thinks c

Meth8 scripts: Popper predicates 2

```
Meth8 scripts for a,b,c,d as p,q,r,s
13: ((()(p&q)>(p&q))&(p@r))&
(~ ((r&q)>(r&q))))=~ (((p&q)> (p&q))
& ((r& ((p&q) > (p&q)) ) > (r& ( (p&q) > (p&
q)))));
14: ((p&q) > (p&q)) & (q=q);
15: ((p&#q) > (p&#q)) > (q=q);
16: (#q=#q)>(((p&q)>(p&q))& (q=q);
17: ((p&#q)&((p&#q)>#r)=
(((#q=#q) > (( (p&q) > (p&q)) & (q=q))))
& (( (p&#q) > (p&#q))>(q=q)));
18: ((((%p&#q) > (p&#q)) & (( (%p&#q) >
#r)>((p&#q)>#r)))>((#q=#q)>
(((p&q)>(p&q))&(q=q))))&
((( ( (p&#q) > (p&#q))> (q=q)) & (( ((p&
%q)>(p&%q))&~(p&#q))V(p&#q)))&
(((( (p&q) > (p&q))&(p@r))& (~ ((r&q)>
(r&q))))=~ (((p&q)>(p&q))&((r& ((p&
q) > (p&q) ) ) > (r&((p&q)>(p&q)))))));
```


Predicates

13: Unkn $(a)=\operatorname{Th}(a, b) \&(a \neq c) \&$
$\sim \operatorname{Th}(c, b))=\sim K n t h(c, a, b))$

14: $\mathrm{Kn}(\mathrm{a}, \mathrm{b})=\operatorname{Th}(\mathrm{a}, \mathrm{b}) \& \mathrm{~T}(\mathrm{~b})$, where $T(b)$ means b is true

15: $\operatorname{Verax}(a)=((b) \operatorname{Th}(a, b)>T(b))$

16: $\operatorname{Okn}(a)=(b) T(b)>K n(a, b)$
17: (Opos(a)\&Oput(a))=(Okn(a) \&Verax(a))

18: $\operatorname{Ex}(\mathrm{Gx})=(((\operatorname{Opos}(\mathrm{a}) \& O p u t(\mathrm{a}))$ >Okn(a))\&((Verax(a)\&Unkn(a))\& Sp(a)))

Descriptions

13: a is unfathomable: a thinks b and a is not c and c does not think b is equivalent to c does not know that a thinks b.

14: a knows the fact b

15: a is truthful

16: a is omniscient
17: a as omnipresent and a as omnipotent is equivalent to a as omniscient and a as truthful

18: There exists a personal spirit named God whose omnipresence and omnipotence implies omniscience, and who is truthful and unfathomable.

Meth8 validation tables: Popper 3

Table fragments for two of the four rows

Expression	Model 1	Model 2.1	Model 2.2	Model 2.3 .1	Model 2.3.2
18-5. Validated	TTTT TTTT	EEEE EEEE	EEEE EEEE	EEEE EEEE	EEEE EEEE
4. (p\&q);	FFFT FFFT	UUUE UUUE	UUUE UUUE	UUUE UUUE	UUUE UUUE
3. (p\&q);	FFFT FFFT	UUUE UUUE	UUUE UUUE	UUUE UUUE	UUUE UUUE
2. (p\&q)>r;	TTTF TTTF	EEEU EEEU	EEEU EEEU	EEEU EEEU	EEEU EEEU
1. (p\&q);	FFFT FFFT	UUUE UUUE	UUUE UUUE	UUUE UUUE	UUUE UUUE

