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Abstract— A large class of problems requires real-time pro-
cessing of complex temporal inputs. These are difficult tasks for
state-of-the-art techniques, since they require capturing complex
structures and relationships in massive quantities of low preci-
sion, ambiguous noisy data. A recently-introduced Liquid-State-
Machine (LSM) paradigm provides a computational framework
for applying a model of cortical neural microcircuit as a core
computational unit in classification and recognition tasks of real-
time temporal data. We extend the computational power of
this framework by closing the loop. This is accomplished by
applying, in parallel to the supervised learning of the readouts, a
biologically-realistic reward-based learning within the framework
of the neural microcircuit (NM). This approach is inspired by
neurobiological findings from ex-vivo multi-cellular electrical
recordings and injection of dopamine to the neural culture.
We show that by closing the loop we obtain a much more
effective performance with the new Co-Evolutionary Liquid
Architecture. We illustrate the added value of the closed-loop
approach to liquid architectures by executing, as an example, a
speech recognition task.

I. I NTRODUCTION

Of the various alternatives, large, random, vastly connected
cortical networks are the best candidates for a core of
biologically-motivated computational architectures. Moreover,
even a relatively simple model composed of 100 leaky-
integrate-and-fire neurons connected by dynamic synapses
with stochastic heterogeneous parameters has an interesting
computational power in a domain of parallel processing
of temporal noisy data in real-time. A new computational
paradigm, called Liquid-State-Machine (LSM), recently pre-
sented by [1], provides a theoretical basis for applying a model
of neural microcircuit to generic computational tasks. The
LSM system is composed of two parts: (1) Liquid - a model
of neural microcircuit is used as a ”reservoir” of complex
dynamics to transform the input time seriesu(.) into ”liquid
states”x(t). (2) Readout - memory-less function which maps
the liquid statex(t) at timet onto the outputv(t). Readout may
be implemented by a simple one-layer network of perceptron,
trained by linear algorithm to build a function mapping liquid-
states onto desired outputs. It was shown [2] by the means of
simulations that such a system is computationally effective
in executing parallel tasks of recognition and classification
of temporal data. In the framework of computational LSM,
a neural microcircuit is used as an efficient generic filter
transforming different temporal inputs into significantly differ-
ent liquid states. The task-dependent part is executed by the
readout after being trained by supervised-learning algorithm

to map these states onto predefined output. Turning back
to neurobiological facts, the plasticity and learning ability
of real cortical networks should not be neglected in the
biologically-motivated computational framework. A feedback
from the environment drives the learning process in neuro-
biological systems and allows the success in tasks varying
in time rather than being predefined. In this study we extend
LSM computational framework to a closed-loop setup wherein
feedback from the environment drives the learning process
of the computational core liquid unit - Neural Microcircuit
(NM). However, it is not a straightforward task to define a
learning algorithm to such a large and randomly constructed
network, therefore an inspiration from neurobiological findings
is required again. We use two neurobiological paradigms for
implementing the learning of the NM - Reward based learning
[3] and Dopamine induced learning by dispersion mechanism
[4]. The learning process of the NM is composed of two stages
- the exploration of various states of NM and the recognition of
the appropriate one. In the proposed closed-loop framework,
this biologically-motivated learning of the NM is done in
parallel to the supervised learning of the readout, i.e. there
is a co-evolutionary learning process of NM and readout until
the best performance of the overall system is reached.

II. N EURAL M ICROCIRCUIT AS A GENERIC

COMPUTATIONAL UNIT

The neocortex is characterized by precise structure of
columns and layers. Within neocortical layers neurons are
mapped into each other, where anatomical and physiological
properties are unique for each type of pre- and post-synaptic
combination. However remarkable morphological, electro-
physiological and spatial stereotypy exists in these networks,
in addition to very stereotypical connectivity and patterning
of synaptic connections between neighboring cells. This clear
stereotypy exists across different regions of the brain, suggest-
ing that there is a generic template of microcircuit and that all
neocortical microcircuits are merely subtle variations of that
common microcircuit template. Such templates could subserve
the apparent omnipotent functional capacity of the neocortical
microcircuitry [5]. A computational model of generic neural
microcircuit is inherently endowed with powerful and ver-
satile information processing capabilities. We used a similar
model to [2], composed of a 3-dimensional recurrent network
of 135 Leaky-Integrate-and-Fire (LIF) neurons with random
connectivity, and similarity to generic cortical microcircuit,



20% of the neurons are randomly chosen to be inhibitory and,
accordingly, 80% excitatory. The probability of connection
between two neurons depends on the distance between them
according to,

C · exp(D(i, j)/λ2,

whereinλ andC are parameters that determine the average
number of connections for a certain Euclidean distance D
between the neuroni and neuronj. This connectivity character-
ization by primary local connections and a few longer connec-
tions is biologically realistic. Long range connections will be
incorporated, and their functional effects on the computational
properties of the network will be investigated within a context
of a different study. Random, heterogeneous parameters of NM
model fit neurobiological data from rat somatosensory cortex
[2]. Synaptic short-term plasticity of the NM is implemented
by dynamic synapses in which the amplitude of each post-
synaptic-current depends on the spike train that is impinging
on the synapse [6], and causes facilitation and depression
processes. The model was implemented using CSIM simulator
[7].

III. L EARNING BY DISPERSION

Learning process drives a neural microcircuit to a desired
state defined by configuration of sets of associations between
stimuli and responses. This dynamical process begins with
exploration of various network’s states through modification
of neuronal correlations. Two mechanisms which may be
responsible for changing neuronal correlations are driving
stimuli and neuromodulation by dopamine. Experiments on
ex-vivo culture have shown [8], [4] that both mechanisms en-
hance changes in neuronal correlations by dispersing existing
correlations, i.e. decorrelating previously acquired correlated
activity. It is assumed that both mechanisms that cause decor-
relation (dispersion) are mediated by a biophysical jittering
of the synaptic strengths at polysynaptic level. This has led
to the idea of modeling both mechanisms by what Eytan
and Marom [10] coined as ”Dispersing Mechanism”. The
second phase of learning, the recognition, is responsible for
”freezing” the NM state by stopping the exploration process.
In recent years, a major effort was devoted to mapping of
the behavioral concept of reward to neural mechanisms that
change the functionality of a given NM based on its past
performance [9]. The regulation of exploration process, driven
by dopamine neuromodulation, is enabled by reward predic-
tion error (RPE) signals. Dopamine neurons appear to emit
RPE signal, as they are activated by rewards that are better
than predicted, uninfluenced by rewards that occur exactly
as predicted and depressed by rewards that are worse than
predicted [9]. Learning by reward can occur by associating
a stimulus or an action with a reward [3]. The learning is a
function of RPE, defined by Schultz as a scalar difference in
value (magnitude x probability) between a delivered (DR) and
a predicted reward (PR):

RPE = DR− PR = f(error in task)

We apply a constant delivered reward, i.e. p(DR)=1, as long
as there is any success in task execution. The predicted reward
is a function of the system’s previous success in executing the
task, i.e. PR=f(success in task execution). Since the perfor-
mance of the system at the beginning of learning is lower
than 100%; the predicted reward is lower than the delivered;
dopamine neurons should be activated and emit dopamine
to the system. We implement a feedback mechanism based
on this reward mechanism in our Co-Evolutionary Learning
of Liquid Architecture. According to this ”exploration and
recognition” paradigm the dopamine jitters network’s formed
associations and thus enables state transition across the NM
states space. In other words, the mechanism of jittering the
synaptic efficacies, discovered by Eytan and Marom, is instru-
mental in avoiding trapping into a fixed point. When the best
state dictated by the environment is found, the system reaches
the recognition phase, and by stopping the dopamine emission,
network’s associations are ”frozen”. A mathematical model of
this process, in which the synaptic efficacies are randomly
jittered by regulation of RPE is formulated by:

∆W = ψ(W0 ·K · PRE)

wherein ψ is uniformly distributed between positive and
the negative values of the argument,W0 is the previous value
of the synaptic strength,K is a constant, and∆W is the
change in the strength of the synapse. The model illustrates
exploration and recognition processes, by dispersion of the
NM synaptic strengths, regulated by the success in achieving
the task of the overall system.

IV. CO-EVOLUTIONARY LEARNING IN A CLOSED-LOOP

FRAMEWORK

We propose a new closed-loop liquid architecture based on
a NM as a core computational unit. The components of the
system, illustrated in Fig.1, are NM, Readout function and a
Decorrelator. In the open-loop setup the system is equivalent
to recently-proposed general theoretical model, called Liquid-
State-Machine [1]. LSM presented a convenient framework
for neural computations in real time for rapidly-time-varying
continuous input functions. NM stores information about past
inputs with high dimensional dynamics in its internal per-
turbations. Different input streams to the microcircuit cause
different internal sates (liquid states) of the system and enable
the inputs to be separated. Liquid states of the NM are read
by memoryless Readout. Readout is trained by supervised
learning algorithms to transform high-dimensional transient
liquid states of the NM onto desired outputs. After the Readout
learns to define a needed class of equivalence, it can perform
the learned task on novel inputs. The separation property (SP)
requirement of the NM for functionality of LSM framework
was illustrated in [2]. Within LSM framework the learning
process is applied to the readout only, while the function
of the NM as a generic filter is not changed. We propose
an extended closed loop framework in which we apply to
NM a previously-described learning-by-dispersion, driven by
a feedback from the environment. The overall framework is



described in Fig. 1. Time-varying stimuli from the environment
excite NM with a continuous input stream(Pi(t)). At any
time t0, the internal liquid state of the microcircuit(Qi(t0))
holds a substantial amount of information about recent inputs
Pi(t < t0). Memoryless readout neurons are trained to map
liquid statesQi(t0) onto discrete predefined valuesj. Discrete
value j is a decision/action of the system in its environment.
If the system succeeds in the task, i.e.i=j for classification
task, reward signal is sent by the environment to the system.
Reward signals, injected by the environment, are determined
by system’s performance and activate the Decorrelator by
setting the value of RPE. Decorrelation mechanism modifies
the NM synaptic strengths according to previously defined
algorithm and drives the exploration phase of learning.

Fig. 1. Closed-loop liquid architecture implemented in a classification task
of time-varying inputs. NM is composed of 135 LIF neurons. Time-varying
stimuli Pi(t) are transformed by NM onto liquid states,Qi(t), defined as
firing patterns of NM at timet0. Readout neurons are trained by supervised
learning to identify the input applied to the system by transforming NM liquid
states onto discrete valuej. A feedback on system’s performance is sent by the
environment in form of reward signals to determine the RPE. Decorrelation,
regulated by RPE, enables the co-evolution of the Readout and NM until a
desired performance is obtained

During the exploration of NM states, the Readout is trained
by supervised learning to transform the new formed liquid
states onto system’s output. When system’s performance is
sufficient, RPE is low, the recognition phase is reached and
NM state is ”frozen” by stopping the dispersion of the synaptic
strengths. We applied this co-evolutionary learning of the liq-
uid architecture in general computational task of classification
time varying stimuli. Randomly generated Poisson spike trains
were injected to the system with a certain noise. Analysis of
system’s performance in a closed-loop versus an open-loop
setup will be described in the next section.

V. COMPUTATIONAL ANALYSIS OF THE CLOSED-LOOP

FRAMEWORK

The added value of a closed-loop setup is examined in
a general computational task of classification of a Poisson
spike train. The error-in-task of the open-loop setup remains
almost constant, since the optimal performance of the system
is reached after the first supervised learning of the Readout is
completed. In a closed-loop setup, in parallel to the supervised
learning of the Readout, we apply a learning-by-dispersion of
the NM. This co-evolutionary learning, of NM and Readout,
generates an exploration process until the optimal performance

of an overall system is obtained. The learning curve of a
closed-loop versus an open-loop setup is illustrated in Fig.
2.

Fig. 2. Learning curve of a closed-loop(1) versus open-loop(2) setup
implemented in classification task of time-varying stimuli

As the computational results depicted in Fig.2 indicate, the
curve of co-evolutionary learning in a closed-loop setup does
not converge gradually to the optimal point, since there is noa-
priori knowledge of such a point. Various states of the NM are
explored. This type of exploration is manifested by ”jumps”
characteristic of the learning curve. The exploration continues
until a sufficient performance is obtained, at which time the
NM state is ”frozen”. The experimental results indicate that an
optimal learning curve is achieved at a certain reward strategy,
as indeed predicted by equation (3).
It has been proposed that extensive computational capabilities
are achieved by systems whose dynamics is neither chaotic
nor ordered, but somewhere in between order and chaos.
Computation on the edge of chaos of randomly connected re-
current neural networks in the domain of real-time processing
was analyzed in [14]. Two types of dynamics, ordered and
chaotic, in the proposed NM model, are illustrated in Fig.
3. Ordered dynamics is characterized by strong correlation
of NM response at given time, to the input presented to the
NM at the same time. There is no fading-memory in ordered
systems, thus separation of temporal inputs is not efficient.
Chaotic systems are driven by their internal dynamics with low
correlation to the inputs, thus the extraction of the information
from NM liquid-states about the applied inputs is not efficient
as well.

Fig. 3. NM ordered(1) and chaotic(2) response to the stimulus. Identical
stimulus (depicted above) applied to the NM in both, ordered and chaotic,
dynamical states.

There is an optimal dynamical behavior of the NM from
computational viewpoint, wherein the NM holds substantial



information about past stimuli. This dynamics is characterized
by rich excitability relative to ordered state, and strong corre-
lation to the stimuli relative to chaotic state. Co-evolutionary
learning changes NM dynamical behavior by modifying its
synaptic strengths during the exploration process. Fig. 4 de-
picts NM response to the stimuli at the beginning of explo-
ration process versus its response after the optimal NM state
was obtained. The change in response illustrates a transition
of NM state from ordered to more chaotic. In fact, this co-
evolutionary learning drives NM dynamics towards the edge
of chaos. The rise of NM excitability, resulted from transition
to more chaotic state, plays an important role in system’s
robustness to noise. Excitability rise of NM is manifested
by rich responses to stimuli, in terms of firing rate and
number of firing neurons, and thus provides the Readout more
information about past stimuli. This robustness of liquid states
to noise results in robustness to noise of the overall system.

Fig. 4. Pre-learning(1,2) versus post-learning(3,4) NM response to stimuli
illustrates a rise in NM excitability.

The closed-loop architecture exhibits superior performance,
compared with the open-loop, insofar as the signal-to-noise
ratio (SNR) is concerned. As the data depicted in Fig. 5
illustrates, the SNR of the closed-loop setup is by far lower
than that characteristic of the open-loop setup.

Fig. 5. Error-in-task for a closed-loop(bright bars) and open-loop(dark
bars) setups versus noise in input.

Whereas the error increases with noise level in the open-
loop, as expected, in the closed-loop it even decreases, until at
a certain noise level this advantage of the closed-loop breaks
down. This abrupt shift in performance is due to a network’s
phase transition to a chaotic state, which results from satura-
tion by the reward. This phenomenon should be checked and
confirmed in ex-vivo experiments on tissue culture such as
those reported in [4].

VI. V OICE RECOGNITION TASK

Co-evolutionary learning of liquid architecture was applied
in a well-studied computational benchmark task for which data
had been made publicly available - a speech recognition task
[11]. The dataset consists of 500 input files: the words ”zero”,
”one”, ”two”, . . . , ”nine” are spoken by 5 different speakers,
10 times by each speaker. The task was to construct a network
of I&F neurons that could recognize each of the spoken words.
The waveforms of the input sound were preprocessed by
performing Fourier transform. Each of the frequency bands
was composed of one or more of the following three events:
onset (the start of the phase of significant energy), offset
(the end of this phase), and peak (the first maximum of
energy). The entire waveform is normalized to have maximum
amplitude of 0.7, the sampling rate used in this case is 12000
samples/sec. The running average power and its second deriva-
tive are subsequently used in identification of events in the
sound’s spectrogram. This sound preprocessing converts the
sound signal into a spatiotemporal sequence of events, suitable
for recognition. Monosyllabic words are encoded into such
sequences by retrieving features in different frequency bands
in their spectrogram. Finally, sound waveform is converted
into a list of 40 single events that are converted in turn into
their respective times of occurrence [13]. Internet competition
was publicized on this dataset for finding a network with the
best classification performance. The best performance in this
competition exhibited an error of 0.15, and was accomplished
by a network with 800 pools of neurons [12]. The same task
was solved by Maass, Natchlaeger and Markram in 2002 [2]
using LSM framework with 145 I&F neurons. The average
error in this classification task, achieved by this network, was
0.14. We tested the co-evolutionary learning of the liquid ar-
chitecture on the same task and the same dataset. A randomly
chosen subset of 300 input files was used for training and
the other 200 for testing. A previously described, randomly
generated NM was implemented in a co-evolutionary learning
of a closed-loop setup. The average error in this classification
task, achieved by this closed-loop system, was 0.06.

VII. D ISCUSSION

Liquid architectures embed interesting computational learn-
ing features in NM model. These emerging architectures are
motivated by neurobiological findings obtained in experiments
with neural culture [4], [8], [10]. The common component
of these liquid architectures is a core computational unit
implemented by a generic heterogeneous model of NM. The
proposed feedback mechanism adds a significant computa-
tional power to liquid architectures, illustrated for example
in our simulations comparing the performance of the open
and a closed-loop as a function of a noise level. Liquid
architecture exhibit a broad spectrum of solutions obtained
under the condition of an identical task, manifested by its
internal parameters. Co-evolutionary learning, illustrated in
this study, provides a robust mechanism that exploits this
computational feature, by randomly exploring the states space.
A feedback mechanism regulates the exploration process until



a sufficient solution is obtained. Converging the ideas of liquid
architecture, feedback mechanism and learning by exploration
reveals a powerful paradigm for real-time, parallel computa-
tion in a rapidly varying environment.
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