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Real-Time Learning Capability of Neural Networks
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Abstract—In some practical applications of neural networks,
fast response to external events within an extremely short time
is highly demanded and expected. However, the extensively used
gradient-descent-based learning algorithms obviously cannot sat-
isfy the real-time learning needs in many applications, especially
for large-scale applications and/or when higher generalization
performance is required. Based on Huang’s constructive network
model, this paper proposes a simple learning algorithm capable
of real-time learning which can automatically select appropriate
values of neural quantizers and analytically determine the pa-
rameters (weights and bias) of the network at one time only. The
performance of the proposed algorithm has been systematically
investigated on a large batch of benchmark real-world regression
and classification problems. The experimental results demonstrate
that our algorithm can not only produce good generalization
performance but also have real-time learning and prediction
capability. Thus, it may provide an alternative approach for the
practical applications of neural networks where real-time learning
and prediction implementation is required.

Index Terms—Backpropagation (BP), extreme learning ma-
chine, feedforward networks, generalization performance, -NN,
real-time learning, real-time prediction.

I. INTRODUCTION

THE widespread popularity of multilayer feedforward
networks in many fields is mainly due to their ability 1) to

approximate complex unknown nonlinear mappings directly
from the input training samples [1]–[8] and 2) to form disjoint
decision regions with arbitrary shapes and to determine un-
known classes [9]. Whether neural networks can have real-time
learning capability is still a challenging and open question. A
neural network system is called a real-time learning system
if it can finish a learning procedure with good generalization
performance for a new application within expected fast re-
sponse time defined by external requirements. This expected
response time could be any reasonable time for an application
users can wait. It could be microseconds, milliseconds, or even
seconds. Real-time learning capability of neural networks is
highly expected whenever a new application is faced, where a
new knowledge map has to be built.

Iterative searching methodology has been widely used in the
learning algorithms of neural networks [10], e.g., backpropaga-
tion (BP) algorithm [11] and its variants [12]–[19]. Since the
parameters of the network are updated gradually in each itera-
tion, the learning is apparently time consuming, especially for
applications with large-scale observations and/or high accuracy
expectation. It is not surprising that this kind of learning algo-
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rithm may spend hours on training and may also face trivial
issues such as learning parameters (learning epochs, learning
rate, etc.), stopping criteria, and/or local minima. Thus, these
learning algorithms may face unexpected difficulties in time-
critical applications.

Therefore, an alternative algorithm that can implement real-
time learning is highly demanded by time-critical applications
and fast changing environments, and can be widely used in
human–computer interface, unmanned aerial vehicles, robotics,
tracking and navigation, meteorology, geographical information
processing, expert systems, intelligent networking, etc. Even
for offline applications, speed is still a need, and a real-time
learning algorithm that reduces training time and human effort
to nearly zero would always be of considerable value.

Some researchers have proposed constructive methods for
multilayer feedforward networks that can learn the observations
just in one iteration. For instance, Huang and Babri [20] show
that a single-hidden layer feedforward neural networks (SLFNs)
with at most hidden neurons and with almost any nonlinear
activation function can learn distinct observations with zero
error. However, the number of hidden neurons required there is
too large, especially for large-scale applications, which cannot
be supported by the computational capabilities of most current
ordinary computers.

Although many applications can be implemented by both
SLFNs and two-hidden layer feedforward neural networks
(TLFNs) [9], TLFNs may be more powerful than SLFNs
in most cases [1], [21], [22]. Huang [1] proved in a novel
constructive method that a TLFN can learn any distinct
samples with any arbitrarily small error with at most

hidden neurons, which remarkably
reduces the space complexity of a network especially for
large-scale problems and makes it feasible to implement
large-scale systems in an ordinary computer. In this method,
the observations are divided into several groups, and each
group is learned by a common standard TLFN. Furthermore,
this trained common standard TLFN and some additional
neuron quantizers are combined to form a special nonconven-
tional TLFN, which can finally represent all observations with
arbitrarily high accuracy (small error). Huang’s network1 has
several features.

1) It has larger first hidden layer and narrower second hidden
layer, which comprises a standard TLFN and several
neuron quantizers, each linking to the input layer and one
or several neurons in the second hidden layer only.

2) All the weights of the connections linking the input layer
to the first hidden layer can be simply pre-fixed, and most
of them can be assigned randomly.

1For the sake of convenience, Huang’s constructive network model [1] is ab-
breviated as “Huang’s network” in the context of this paper.
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Fig. 1. Huang’s network.

3) The weights of the connections linking the first hidden
layer and second hidden layer can be determined analyt-
ically at one time, instead of the conservative iterative ad-
justment method popularly adopted in most neural network
learning algorithms nowadays.

4) The weights of the connections linking the second hidden
layer and the output layer can be simply analytically deter-
mined and remain as a constant value .

5) It may be trained by only adjusting weight size factor or
and quantizer factors and so as to optimize gener-

alization performance.
Huang [1] also analyzes that a good generalization performance
may be achieved by the network.

During our latest study, the results of some experiments show
that the generalization performance of the original constructive
method may not be very stable. And the appropriate way to
adjust the quantizer factors and in Huang’s network are
not provided yet. In this paper, an appropriate method to esti-
mate the suitable value for the quantizer factors and are
proposed. Further, an improved learning algorithm for Huang’s
network is suggested, which can finish training procedure with
good generalization performance for many applications within
seconds or milliseconds. Thus, it may be able to provide an
alternative approach for some practical real-time learning ap-
plications. Extensive experiments on different types of bench-
mark real problems have been done to systematically evaluate
the performance (learning and prediction speeds and general-
ization performance) of the proposed algorithm. The experi-
mental results show that our proposed algorithm can not only
produce good generalization performance but also have real-
time learning and prediction capability.

This paper is organized as follows. Section II provides a re-
view on Huang’s constructive network model [1]. Based on
Huang’s constructive method, an appropriate parameters selec-
tion method and the proposed new algorithm are given in Sec-

tion III. The comprehensive and comparative experimental re-
sults are shown in Sections IV and V. Conclusions are given in
Section VI. The meanings of the notations and symbols used in
this paper are the same as those in Huang [1].

II. REVIEW OF HUANG’S CONSTRUCTIVE NETWORK MODEL

A. Basic Structure of Huang’s Network

It has been shown [1] that Huang’s network with sig-
moid activation function can approx-
imate arbitrary distinct samples , where

and ,
with arbitrarily small error. As shown in Fig. 1, Huang’s
network has larger first hidden layer and narrower second
hidden layer, which consists of a standard TLFN and neuron
quantizers in the first hidden layer, each linking to the input
layer and second hidden layer of the sub-TLFN, where is a
user-defined constant indicating how many neuron quantizers
are used in the network. There are neurons in
the first hidden layer and neurons in the second hidden
layer in its standard sub-TLFN. Each neuron quantizer consists
of two sigmoidal neurons called -type neuron and -type
neuron, respectively. -type neuron and -type neuron of the

th quantizer are denoted as neuron and neuron . The
th neuron quantizer only links to the th neuron group

in the second hidden layer, , each group
consisting of neurons. The training of Huang’s network
mainly consists of two phases: 1) determination of weights and
bias of standard sub-TLFN and 2) determination of weights
and biases of neural quantizers.

B. Determination of Weights and Bias of Standard Sub-TLFN

One of the major features of Huang’s network is that weight
linking the th neuron in the first hidden layer of the sub-

TLFN to all the input neurons and bias of the th neuron in
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the first hidden layer of the sub-TLFN ( ,
) can be chosen randomly. Since all the given are dis-

tinctive, a vector can be almost randomly chosen such that
are all different [1], [20]. Without loss of

generality, assume that the index is reindexed such that

(1)

For simplicity, consider to be an integral multiple of user-
defined positive integer . The finite inputs are separated
into groups consisting of input vectors each. These
input vector groups are denoted as

(2)

where .
Randomly choose the weight of the connection linking the

input to the th neuron of the first hidden layer of the sub-TLFN
and the bias of the th neuron of the first hidden layer of the
sub-TLFN, , .

Define matrix as

(3)

where denotes the weight vector connecting the th neuron
in the first hidden-layer of the sub-TLFN to the th neuron group

( neurons) in the second hidden layer, ,
. can be determined as

(4)

Matrix , , is defined in (5), as shown at the
bottom of the page, and matrix , , is defined
in (6), as shown at the bottom of the page, where and
weight size factor can be chosen any value to make

(7)

All the weights of connections linking to the output layer are set
to , and bias of the output neuron is set as 0.5 .

C. Determination of Weights and Biases of Neural Quantizers

As shown in Fig. 1, the weights of connections linking the in-
puts to neuron and neuron can be chosen as

and , respectively, where parameter
is called a quantizer factor by Huang [1] and should be large
enough. That is, all the weights of connections linking the in-
puts to all -type neurons can be chosen as and all the
weights of connections linking the inputs to all -type neurons
chosen as . The biases and of neuron
and neuron are simply analytically calculated as

(8)

and

(9)

Quantizer factor can be chosen large enough such that for any
input within input vector group , , only the
outputs of both neurons and are almost zero while one
of the outputs of neurons and of each neural quantizer
is almost one, where . In other words, can be chosen
large enough such that for each input vector group , only the
output of the th neural quantizer consisting of neurons and

is almost zero, and the outputs of the other quantizers
are almost one.

All the weights of the connections linking these 2 neu-
rons and to their corresponding second hidden-layer
neurons are chosen a same value , where parameter

is also called a quantizer factor by Huang [1] and can be set
large enough such that the input to the th neuron group in
the second hidden layer from neurons and ( th quan-
tizer) has small values for any input within input vector
group and large negative values for any input within
other vector groups , , and . and
can be made arbitrarily large and small, respectively, by setting

(5)

(6)



4 IEEE TRANSACTIONS ON NEURAL NETWORKS

Fig. 2. Original output of pth neural quantizer of Huang’s network.

quantizer factors and sufficiently large. goes to negative
infinity and goes to zero (see Fig. 2).

Seen from the above review, in Huang’s network, the weights
(matrix) of the connections linking the first hidden layer of
the sub-TLFN to the second hidden layer can be analytically
calculated, while all the rest parameters (weights and biases) of
Huang’s network can be randomly preassigned (e.g., and )
or pre-fixed (e.g., ). One may only adjust the quantizer fac-
tors and which may affect the weights of the neurons of
each quantizer. In many applications Huang’s network may be
fast enough to learn new stimuli from and response to external
events within an expected short time. It is capable of real-time
learning of new knowledge in large-scale time-critical applica-
tions; thus, Huang’s constructive method and an appropriate es-
timation of quantizer factors can form a real-time learning algo-
rithm (RLA).

III. PROPOSED REAL-TIME LEARNING ALGORITHM

A. Improved Biases Selection of Neural Quantizers

During the latest study, it is found that the originally pro-
posed selection [1] of biases of neurons and [see (8)
and (9)] can be further improved in order to make the gener-
alization performance of Huang’s network much more stable.

It is guaranteed that by the originally proposed selection of bi-
ases of neurons and , any training input vector will
be always within only one of groups , the output of one
and only one neural quantizer is almost zero, and the outputs
of the rest neural quantizers are almost one. Thus, the training
error can be made arbitrarily small using the originally pro-
posed biases selection (refer to Section II-C for detailed dis-
cussions). However, when a testing input vector happens to
satisfy

, the outputs of two
neural quantizers would be almost one, instead of one neural
quantizer only, which causes the testing error to be possibly
larger and affects the generalization performance of the network
[see Fig. 3(a)].

To prevent this worse case happening and to achieve a better
generalization performance, the selection of the biases and

of neural quantizers can be improved as shown in (10) and
(11) at the bottom of the page. By this bias selection of neural
quantizers, the probability that a testing input vector happens
to make should
be zero. Thus, for any testing input vector , the output of one
and only one neural quantizer is almost zero and the outputs of
the rest neural quantizers are almost one, which improves the
generalization performance of the network [see Fig. 3(b)].

if

if .
(10)

if

if .
(11)



HUANG et al.: REAL-TIME LEARNING CAPABILITY OF NEURAL NETWORKS 5

Fig. 3. Outputs of two contiguous neural quantizers. (a) Using previous selection of b and b there may exist a big gap not covered by both contiguous
quantizers. (b) Using improved selection criteria, in theory the size of the gap not covered by both contiguous quantizers becomes zero.

B. Appropriate Weights Selection of Neural Quantizers

In order to determine the weights of neurons and ,
one only needs to determine appropriate values for quantizer
factors and . In fact, quantizer factors and are the only
parameters to be estimated for Huang’s network. In this sec-
tion, an appropriate method to estimate the suitable values of
the quantizer factors and is proposed. These values can be

decided based on Theorem III.3. Two lemmas are needed to de-
rive Theorem III.3.

Lemma III.1: Given an arbitrarily small positive value
, there exists a constant
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such that when , , , the corre-
sponding output of neuron satisfies

if
if

(12)

Proof: It can be proved in three cases.
Case 1: when and .
According to (10), since

(13)

to make , should satisfy

, and , , then should
satisfy

(14)

Since obviously we have

we can set
such that when (14) holds.

Case 2: when and .
According to (10)

Similarly, to make , should satisfy

(15)

However, obviously we have

(16)

Thus, we can set
such that when (15) holds.

Case3: when . Similarly, according to (10), to make
, should satisfy

(17)

However, obviously we have

(18)

thus, we can set
such that when (17) holds.

According to Cases 1–3, finally we can set

when , , , and any vector
satisfying , the corresponding output

of neuron , , satisfies (12). This
completes the proof.

Similarly, we have the following lemma.
Lemma III.2: Given an arbitrarily small positive value
, there exists a constant

such that when , , , the corre-
sponding output of neuron satisfies

if
if

(19)

Proof: The proof is linearly similar to the proof of
Lemma III.1.

From Lemmas III.1 and III.2, we have the following theorem.
Theorem III.1: Given an arbitrarily small positive value

, there exists a constant

such that when , , , the output
of th neural quantizer satisfies

if
if

(20)
Proof: Set as
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According to Lemma III.1 when , the output
of neuron satisfies

if
if

(21)

and according to Lemma III.2, when , the output
of neuron satisfies

if
if

(22)

Thus, when , , , the output
of th neural quantizer satisfies (20).

Remark 1: Theorem III.1 actually states, consistent with the
design concept of Huang’s network [1], that when the quantizer
factor , the output of one and only one neural quantizer
is near to zero and the outputs of the rest are near to one. is
the lower bound of the quantizer factor . Now, we can further
determine the appropriate value for quantizer factor . For the
sake of simplicity and convenience, we can consider the single
output case first.

Theorem III.2: Give arbitrarily small positive value ,
the quantizer factors and can be set as

(23)

(24)

such that , , the output of
Huang’s network for single output case satisfies

(25)

where denotes the th row of the matrix.
Proof: According to Theorem III.1, set as

(26)

the output of the th neural quantizer satisfies

if
if

where is a small positive value which will be decided later.
Let denote the actual output of th neuron

in the second hidden layer for the corresponding input
, and . Since

, we have

Hence, if we can make

(27)

and

(28)

then (25) can be satisfied. Since
we have

(29)

where , then (27) can be
transformed into

(30)

[In fact, (29) and (30) are valid as long as is close
enough to instead of , .]

Since , we have

then we have

(31)

From Theorem III.1, we know
. Hence, if we can make

(32)

then (27) can be satisfied.
To satisfy (28), if for any from 1 to and , there exists

a to make

(33)

(28) can be satisfied. Since , (33) is simply equivalent
to

(34)

that is

(35)

(36)

[In fact, (35) and (36) are valid as long as is close
enough to instead of , .]
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Since

if can satisfy

(37)

then (28) can be satisfied. Considering (32) and (37), should
be chosen such that

(38)

Thus, can be simply chosen as shown in (39) at the bottom of
the page. Furthermore, seen from (37), can be simply chosen
as

(40)

and from (26) we have

(41)

This completes the proof.
Remark 2: Observe from the proof of Theorem III.2 that there

is a tradeoff of quantizer factor . As reviewed in Section II-C,
quantizer factor cannot be set too small. In fact, the lower
bound of has been given in (36). Although Huang [1] requires

large enough, as shown in (32), there is also an upper bound
on , meaning cannot be set too large either. If is set too
large, the actual outputs of all the neurons in the second hidden
layer may be nearly zero and all the output may be inhibited.
Thus, Theorem III.2 gives an appropriate value for quantizer
factor .

Theorem III.2 can be easily extended to the multioutput case:

TABLE I
SPECIFICATIONS OF SMALL REAL-WORLD REGRESSION PROBLEMS

Theorem III.3:
Given arbitrarily small positive value , the quantizer

factors and can be set as

(42)

(43)

such that , , the output of
Huang’s network satisfies

(44)

Proof: According to Theorem III.2, replacing with
, we can set

(45)

(39)
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(46)

, we have

where denotes the output of the th output neuron of Huang’s
network. Then we have

Remark 3: Theorem III.3 gives a proper way to estimate the
quantizer factor and based on the given goal of error .

C. Determination of Weight

In Huang’s constructive method, the weight of sub-TLFN
is determined as

(47)

Huang [1] proved that the is invertible when the number
of neurons in the first hidden layer of sub-TLFN is , which
means that the total number of hidden neurons is
2 . However, 2 hidden neurons may still be
large for some problems, especially for those with large training
set. In fact, zero training error is not required in real applications.
Huang et al. [23] has the following result for SLFNs.2

Theorem III.4: [23] For an SLFN with the activation function
in the hidden layer, given any constant

, there always exists an integer such that an
SLFN with hidden neurons and with randomly chosen input
weights and hidden biases can learn distinct observations
with a training error less than .

Actually, the validity of this theorem is obvious; otherwise
one can simply choose . However, may not be
invertible when . In this case, for SLFNs, the weights
linking the hidden layer and output layer can be calculated by
the Moore–Penrose generalized inverse [25], [26]. Hence, in the
proposed new learning algorithm, the weights can be calcu-
lated as follows:

(48)

where is the Moore–Penrose generalized inverse of
. Proofs of Theorems III.2 and III.3 do not require

invertible. Seen from all (29), (30), (35), and (36), which actu-
ally use , needs only to be close enough to
instead of the strict condition , .
According to Theorem III.4, Theorems III.2 and III.3 are valid
for some appropriate number . The number of

2One may refer to Huang et al. [24] for the rigorous proof of the universal
approximation capability of such SLFNs with random hidden nodes.

neurons in the first hidden layer of sub-TLFN no longer needs
to be but some appropriate number which can be set by
users. Thus, it can help eliminate overfitting in noisy data sets.

D. Proposed Real-Time Learning Algorithm

Based on Huang’s constructive method (see Section II) and
the estimation on quantizer factors (Theorem III.3), a simple
RLA can be proposed as follows.

The Proposed RLA Algorithm

Input:
1) Given N arbitrary distinct samples

(xi; ti), where xi = [xi1; xi2; . . . ; xin]
T 2 Rn and

ti = [ti1; ti2; . . . ; tim]T 2 Rm.
2) Given the expected learning accuracy � < 0.
3) Given the number of groups L.
4) Given the number of neurons K of the first

hidden layer of the sub-TLFN.

Learning procedure of RLA

step 1: Sorting and grouping inputs.
a) Random choose vector w 2 R

n and
reindex i of inputs such that
w � x1 < w � x2 < . . . < w � xN.

b) Group sorted inputs into L groups V (p),
p = 1; . . . ; L

V (p) = xijw � x(p�1)N=L+1 w � xi w � xpN=L (49)

step 2: Determination of weights and bias
of standard sub-TLFN.
a) Randomly choose the weights wi and

biases bi, i = 1; . . . ; K, where K N=L
is the number of neurons in the first
hidden layer of sub-TLFN and it is set
by user.

b) Choose C = amaxi=1;...;N;j=1;...;m jtij j, a can be
any positive value larger than 2.

c) Calculate matrix ���(p) = [�
(p)
1 ; . . . ; �

(p)
K ]T :

���(p) = H
(p)

y
T

(p) (50)

step 3: Determination of weights and bias
of neural quantizers.
a) Set the quantizer factor T and U as

T =
2 ln 2U=mini=1;...;N ln

(C+�=
p
m�2t )(C+2t )

(C��=pm+2t )(C�2t )
� 1

minj=1;...;N�1(w � xj+1 �w � xj)
(51)

U = ln
2
p
mCL

�
� 1 + max H

(p)
q � �(s)

1

+ min
i=1;...;N

ln
(C + �=

p
m� 2tij)(C + 2tij)

(C � �=
p
m+ 2tij)(C � 2tij)

(52)

b) Set the weights wA and wB of the
connections linking the input layer to
neurons A(p) and B(p), p = 1; . . . ; L, as

wA = T �w
wB = �T �w: (53)

c) Set the biases of neurons A(p) and B(p),
p = 1; . . . ; L as shown in (54) and (55) at
the bottom of the next page
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TABLE II
PERFORMANCE COMPARISON OF RLA AND BP ON SMALL REAL-WORLD REGRESSION PROBLEMS: TESTING ROOT MEAN SQUARE ERROR (RMSE)

AND ITS STANDARD DEVIATION (DEV), TRAINING AND TESTING TIME (SECONDS), AND NETWORK ARCHITECTURES

d) Set the weights wAB of the connections
linking neurons A

(p) and B
(p) to the

second hidden layer as

wAB = �U (56)

Remark 4:
Observe that the basic algorithm of Huang’s network [1] has

the same form as the new proposed RLA algorithm except that
for the basic algorithm 1) the number of neurons of the first
hidden layer of the sub-TLFN was set instead of some
appropriate number less than , and thus of (50) was
always a square matrix; 2) and are manually predefined
by users instead of automatically computed as in (51) and (52);

and 3) the biases of neurons and were set according
to (8) and (9) instead of (54) and (55). In RLA, the limitation
that the number of neurons of the first hidden layer of the
sub-TLFN is equal to (number of training data in each
group ) has been removed. Setting to some appropriate
number less than can not only improve the generalization
performance by preventing RLA from overfitting in noisy data
sets but also further reduce the network complexity of Huang’s
network.

Remark 5: The proposed algorithm requires very small
memory in computation. 1) Huang’s network is not a fully-con-
nected standard TLFN. It is a sparse network and it has small
number of trainable parameters. 2) The matrix functions
in (50) share and are computed from a single common

if

if
(54)

if

if
(55)
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TABLE III
SPECIFICATIONS OF MEDIUM TO LARGE REAL-WORLD REGRESSION PROBLEMS

TABLE IV
PERFORMANCE COMPARISON OF RLA AND BP ON MEDIUM TO LARGE REAL-WORLD REGRESSION PROBLEMS: TESTING RMSE

AND ITS STANDARD DEVIATION (DEV), TRAINING AND TESTING TIME (SECONDS), AND NETWORK ARCHITECTURES
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TABLE V
SPECIFICATIONS OF REAL-WORLD CLASSIFICATION PROBLEMS

matrix , instead of separated ma-
trices stored in the memory. The matrix functions ,

, share and are computed from a single common
matrix as defined in (5) as well. The algorithm spends

most of its learning time in the matrix computation of and .
However, in applications, these two matrices are normally not
very large, and the computation is very simple and extremely
fast. Thus, in general, the algorithm can provide a seconds or
milliseconds learning solution to many applications, including
large-scale complex systems.

IV. BENCHMARKING WITH REAL-WORLD

REGRESSION PROBLEMS

Numerous real-world regression data sets from the UCI Ma-
chine Learning Repository [27] have been tested to verify the
performance of the proposed algorithm. All the simulations are
conducted in MATLAB 6.5 environment on an ordinary PC with
Pentium 4 3.0E and 1 GB RAM. Two algorithms, i.e., the pro-
posed RLA and BP learning algorithm, are compared on regres-
sion problems. Levenberg–Marquardt (LM) learning algorithm
[18] is used on behalf of BP, as it is known as one of the fastest
variants of BP. SLFNs are trained by BP to learn the data sets.
The number of hidden neurons of the SLFN is gradually in-
creased for each data set. The results reported in this paper are
averaged over 50 trials of simulations for each case. The training
and testing sets are randomly regenerated before each trial of

simulation. The results listed here are those with the best mean
generalization performance. The same process takes place when
using the RLA. Different number of groups and number of
hidden neurons in the sub-TLFN are also gradually increased
and the network architecture of RLA shown in different tables
is therefore denoted by . We simple set for
all cases. Cross-validation is used in the training of BP to avoid
overfitting, and the training time of BP shown in this paper has
excluded the time spent on cross-validation. If cross-validation
time is considered, the total time spent on training BP would be
much longer than the training time shown in this paper. Learning
parameter of the LM learning algorithm [18] is divided by
some factor after each successful step (reduction in perfor-
mance function) and is multiplied by only when a tentative
step would increase the performance function. As done usually
(see MATLAB HELP), the initial value of is set to 0.001 and

is set to 10. Maximum learning epochs for BP is set to 1000.
In fact, the maximum learning epochs and the target accuracy

are not reached in all cases because BP is early stopped by
cross-validation so that overfitting can be avoided.

A. Small Real-World Regression Problems

Some small regression data sets (with less than 1000 total
instances) are tested here. The specifications of these data set
are listed in Table I. As observed from Table II, RLA wins
over the BP on most of the data sets in terms of testing accu-
racy and obtains a much shorter training time on all the data sets.
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TABLE VI
PERFORMANCE COMPARISON OF RLA AND BP ON SMALL TO MEDIUM REAL-WORLD CLASSIFICATION PROBLEMS: SUCCESSFUL CLASSIFICATION RATE ON

TESTING DATA AND ITS STANDARD DEVIATION (DEV), TRAINING AND TESTING TIME (SECONDS), AND NETWORK ARCHITECTURES

The proposed RLA shows its real-time learning and predic-
tion capability on these data sets. In some data sets like Auto
Price,Pyrimidines, etc., the training time of RLA is even less
than 0.001 s.

B. Medium to Large Real-World Regression Problems

The performance of RLA is also tested on some medium to
large regression data sets. The specifications of these data sets
are listed in Table III. As observed from Table IV, RLA achieves
the shorter training time and the higher testing accuracy in most
data sets as expected. RLA still can complete the training pro-
cedure within 1 s for most of these medium to large regression
problems.

TABLE VII
PERFORMANCE COMPARISON BETWEEN RLA AND BP ON A LARGE

CLASSIFICATION APPLICATION—HANDWRITTEN LETTER RECOGNITION:
SUCCESSFUL CLASSIFICATION RATE ON TESTING DATA AND ITS

STANDARD DEVIATION (DEV), TRAINING AND TESTING TIME

(SECONDS), AND NETWORK ARCHITECTURES

V. BENCHMARKING WITH REAL-WORLD

CLASSIFICATION PROBLEMS

The data sets for classification are also selected from the UCI
Machine Learning Repository [27]. The experimental settings
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TABLE VIII
PERFORMANCE COMPARISON BETWEEN RLA AND BP ON A VERY LARGE CLASSIFICATION APPLICATION—FOREST COVER TYPE PREDICTION: SUCCESSFUL

CLASSIFICATION RATE ON TESTING DATA AND ITS STANDARD DEVIATION (DEV), TRAINING AND TESTING TIME (SECONDS), AND NETWORK ARCHITECTURES

of classification problems are the same as regressions. In addi-
tion, the performance of RLA and nearest neighbor ( -NN)
algorithm are discussed in Section V-E.

A. Small to Medium Classification Problems

The performance of RLA and BP is compared on ten small
to medium classification data sets which have less than 10 000
instances. The specifications of these data sets are listed in
Table V, and the simulation results are shown in Table VI. In
terms of testing accuracy, the performances of the both algo-
rithms are very close in almost all the data sets, though RLA
is slightly better than BP. Observed from Table V, RLA learns
hundreds of times faster than BP in most cases. RLA learns
6700 times than BP in the Image Segment case. It can be seen
that the prediction time spent by RLA is very short as well.

B. Large Classification Application: Letter Recognition

The data set with 16 input attributes and 26 class labels was
constructed by Slate [27]. The objective is to classify each of a
large number of black and white rectangular pixel displays as
one of the 26 capital letters of the English alphabet. The char-
acter images produced were based on 20 different fonts, and
each letter within these fonts was randomly distorted to pro-
duce a file of 20 000 unique images. For each image, 16 nu-
merical attributes were calculated using edge counts and mea-
sures of statistical moments which were scaled and discretized
into a range of integer values from 1 to 15 (see [28]). Either
training set or testing set has 10 000 instances. As observed from
Table VII, the successful classification rate on testing data ob-
tained by RLA is more than 93%, which is much higher than
the testing accuracy obtained by BP. The best testing accuracy
obtained by BP through cross-validation method is just above
85%. The best testing accuracy obtained by Frey and Slate [29]
using other methods is only a little over 80%, which is much
lower than the testing accuracies obtained by RLA and BP.

TABLE IX
PERFORMANCE COMPARISON BETWEEN RLA AND BP ON A CLASSIFICATION

APPLICATION REQUIRING REAL-TIME LEARNING—SPAM EMAIL PREDICTION:
SUCCESSFUL CLASSIFICATION RATE ON TESTING DATA AND ITS STANDARD

DEVIATION (DEV), TRAINING AND TESTING TIME (SECONDS),
AND NETWORK ARCHITECTURES

C. Very Large Classification Application: Forest Cover Type
Prediction

This is an extremely large complex classification problem
with seven classes. The forest cover type for a 30 30 m cell
was obtained from the U.S. Forest Service (USFS) Region
2 Resource Information System data. It has 581 012 total
instances and 54 attributes for each instance. As usually done
in the literature [30]–[32], it was modified as a binary classifi-
cation problem where the goal was to separate class 2 from the
other six classes. One hundred thousand instances are used as
training data and the rest of the 481 012 instances are used for
testing. As observed from Table VIII, the successful prediction
rate obtained by RLA is above 92%. Single SVM [30] and
SVM modular network [30] spent 480.23 and 25.7 min on
training and obtained 89.897% and 89.74% prediction rates,
respectively, which are similar to BPs. Hard probabilistic mix-
ture of SVM with 20 SVM experts and an MLP gater with 150
hidden neurons spent 291 min on training and obtained 91.07%
prediction rate for this case (see [31, Table 5]). SVM [32],
[30] and SVM modular network [30] need more than 30 000
support vectors (SVs), which is much larger than the hidden
neurons required by RLA and BP. Thus, SVM needs much
longer prediction testing time ( 3.5 h) than BP and RLA.

D. Application Requiring Real-Time Learning: Spam Emails
Prediction

This data set consists of spam emails and nonspam emails.
Classifiers are used to predict whether an incoming email is
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TABLE X
PERFORMANCE COMPARISON OF RLA AND k-NN ON REAL-WORLD CLASSIFICATION PROBLEMS

spam or not. Sometimes some new types of spam and on-spam
emails may be indicated by users explictly; in this case, the clas-
sifiers should be able to online learn the new spam and nonspam
emails patterns as fast as possible such that it is able to recognize
and ban the spam emails from the upcoming emails. There are
4601 instances, and each instance has 57 attributes. In the simu-
lations, 3000 randomly selected instances compose the training
set and all the rest are used for testing. As shown in Table IX, the
RLA achieves good testing accuracy at very fast learning speed
( 1 s); however, BP needs to spend 4641.9 s on learning, which
is not realistic in such a practical real-time application.

E. Comparison Between RLA and -NN Algorithm

RLA is also compared with -nearest neighbor approach
( -NN) on these real-world classification applications. Like
the other two algorithms, the parameter of -NN is also
gradually increased to search for the best generalization per-
formance. Table X shows the comparison between RLA and

-NN on all these classification problems. In this experiment,
the testing accuracy achieved by -NN is worse than RLA.
Its testing/prediction time is much longer than the other two
algorithms especially on the data sets having large numbers of
testing data. For example, the forest-type prediction problem
which has 100 000 training data and 481 012 testing data, the
testing time of -NN can be as long as 26 h, which is more than
one day. Single SVM spent more than 3.5 h on predicting such
a large number of unknown testing data [30].

VI. CONCLUSION

Based on our previous theoretical work [1], an extremely fast
learning algorithm has been proposed for Huang’s network in
this paper. Three improvements have been made in the proposed
new algorithm. 1) New selection criteria for the biases of neural
quantizer has been proposed to improve the generalization per-
formance. 2) An automatic method to select the appropriate
values of the quantizer factors and has been introduced.
In fact, the lower bound of and lower and upper bounds of
have been derived and given in this paper (see Remarks 1 and
2 for details). 3) Hidden output matrix need not be invertible
and the MP generalized inverse of is introduced, so that the
number of neurons in the first hidden layer of sub-TLFN can

be set to some appropriate number smaller than and thus
the network architecture can be further shrinked. The proposed
RLA algorithm has been successfully tested on many bench-
marking data sets of different types. Huang’s network is trained
in a simple efficient one-time way instead of gradient-based
and/or iterative methods: 1) all the weights of the connections
linking the input layer to the first hidden layer of the sub-TLFN
are randomly generated; 2) all the biases of the first hidden neu-
rons of the sub-TLFN are also randomly generated; 3) all the
rest parameters (weights and biases) of Huang’s network can
be simply analytically computed based on a small size of first
hidden output matrix of the sub-TLFN. Huang’s network [1] is a
sparse TLFN and needs small memory for computation. Thus,
RLA can implement many large-scale systems in an ordinary
PC.

Since the proposed RLA algorithm for Huang’s network is
purely based on analytical method, it outperforms the other con-
ventional gradient-based and/or iterative approaches without re-
quiring stopping criterion and avoiding hidden local minima is-
sues. Local minima problem existing in conventional learning
algorithms make networks almost incapable of learning in some
applications.

The performance evaluation of the proposed RLA has been
systematically investigated in this paper. Seen from the simu-
lation results on many real-world regression and classification
problems, the RLA can not only reach good generalization
performance but also provide very short learning and prediction
time in many cases, which may be within most users’ expected
time in many applications. In other words, the proposed RLA
algorithm or Huang’s network would provide real-time alterna-
tive solutions to time-critical applications. Thus, the proposed
RLA algorithm may be a good candidate to the applications
1) which have large training samples and require high learning
accuracy/generalization performance and/or high learning
speed and 2) where the application patterns and environments
change fast and long time learning is not allowed. Even for
those applications where long training time is allowed, the
proposed RLA can be used and tried as the first choice since
almost zero-time “effort” needs to be made for this trial. If
the performance is accepted, tedious time-consuming trials of
other algorithms can be prevented.
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