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Abstract

Recently, a new learning algorithm for the feedforward neural network named the
extreme learning machine (ELM) has been proposed by Huang, et al, which can give
better performance than traditional tuning-based learning methods for feedforward
neural networks in terms of generalization and learning speed. In this paper, we first
extend the ELM algorithm from the real domain to the complex domain, and then
apply the fully complex extreme learning machine (C-ELM) for nonlinear channel
equalization applications. The simulation results show that the ELM equalizer sig-
nificantly outperforms other neural network equalizers such as the complex minimal
resource allocation network (CMRAN), complex radial basis function (CRBF) net-
work and complex backpropagation (CBP) equalizers. C-ELM achieves much lower
symbol error rate (SER) and has faster learning speed.

Key words: Feedforward neural networks, complex QAM equalization, complex
extreme learning machine, complex activation function, CMRAN, CRBF, CBP.

1 Introduction

In high speed digital communication systems, equalizers are used very often at
receivers to recover the original symbols from the received signals. Real-valued
neural network models such as feedforward neural networks, radial basis func-
tion (RBF) networks and recurrent neural networks have been successfully
used for solving equalization problems as neural networks are well suited for
non-linear classification problems [3]. Complex-valued neural networks have
attracted considerable attention in channel equalization applications in the
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past decade. Cha and Kassam [1] have proposed a Complex-valued Radial
Basis Function(CRBF) network which adopts the stochastic gradient learning
algorithm to adjust parameters. Compared with previously existing equalizers,
the CRBF equalizer is superior in terms of symbol error rate (SER). Jianping
et al [8] have developed a Complex-valued Minimal Resource Allocation Net-
work (CMRAN) equalizer. Applying the growing and pruning criterion, the
CMRAN equalizer realizes a more compact structure and obtains better per-
formance than CRBF and many other equalizers. However, it should be noted
that although the inputs and the centers of CRBF and CMRAN are complex-
valued, the basis functions still remain real-valued. In fact, as pointed out
by Kim and Adali [10], split-complex activation (basis) functions consisting
of two real-valued activation functions, one processing the real part and the
other processing the imaginary part, have been traditionally employed in these
complex-valued neural networks. Kim and Adali [10,9] have proposed an im-
portant complex neural network model - a fully complex multilayer perceptron
(MLP) which uses true complex-valued activation function. It has been rig-
orously proved [10] that with very mild condition on the complex activation
functions the fully complex MLPs can universally approximate any continuous
complex mappings. The corresponding fully complex backpropagation (CBP)
learning algorithm with fully complex activation function has also been suc-
cessfully used in communication applications [9].

Recently, a new learning algorithm for Single-hidden-Layer Feedforward Neural
network (SLFN) named the extreme learning machine (ELM) has been pro-
posed by Huang, et al[7,6]. Unlike traditional approaches (such as BP al-
gorithms) which may face difficulties in manually tuning control parameters
(learning rate, learning epochs, etc) and/or local minima, ELM avoids such
issues and reaches good solutions analytically. The learning speed of ELM is
extremely fast compared to other traditional methods. In this paper, we first
extend the ELM algorithm from the real domain to the complex domain where
the fully complex activation functions introduced by Kim and Adali [10] are
used. Similar to ELM, the input weights (linking the input layer to the hidden
layer) and hidden layer biases of C-ELM are randomly chosen based on some
continuous distribution probablity (such as uniform distribution probability
used in our simulations) and the output weights (linking the hidden layer to
the output layer) are then analytically calculated. The C-ELM is used for
equalization of a complex nonlinear channel with QAM signals. The simula-
tion results show that the C-ELM equalizer is superior to CRBF [1], CMRAN
[8] and CBP [9] equalizers in terms of symbol error rate (SER) and learning
speed. C-ELM also avoids local minima and all the difficulties in other schemes
such as tuning control parameters (learning rate, learning epochs, etc).

This paper is organized as follows. Section 2 presents the C-ELM algorithm.
Section 3 shows the performance comparison of C-ELM with the CRBF, CM-
RAN and CBP equalizers for a QAM channel equalization problem. Discus-
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sions and conclusions are given in Section 4.

2 Complex Extreme Learning Machine (C-ELM) Algorithm

Given a series of complex-valued training samples (zi,yi), i = 1, 2, · · · , N ,
where zi ∈ Cn and yi ∈ Cm, the actual outputs of the single-hidden-layer
feedforward network (SLFN) with complex activation function gc(z) for these
N training data is given by

Ñ

k=1

βkgc(wk · zi + bk) = oi, i = 1, · · · , N, (1)

where column vector wk ∈ Cn is the complex input weight vector connecting
the input layer neurons to the k-th hidden neuron, βk = [βk1,βk2, · · · , βkm]T ∈
Cm the complex output weight vector connecting the k-th hidden neuron and
the output neurons, and bk ∈ C is the complex bias of the k-th hidden neuron.
wk · zi denotes the inner product of column vectors wk and zi. gc is a fully
complex activation function.

The above N equations can be written compactly as

Hβ = O (2)

and in practical applications the number Ñ of the hidden neurons is usually
much less than the number N of training samples and Hβ = Y, where

H(w1, · · · ,wÑ , z1, · · · , zÑ , bi, · · · , bÑ )

=

⎡⎢⎢⎢⎢⎢⎣
gc(w1 · z1 + b1) · · · gc(wÑ · z1 + bÑ)

... · · · ...

gc(w1 · zN + b1) · · · gc(wÑ · zN + bÑ)

⎤⎥⎥⎥⎥⎥⎦
N×Ñ

(3)

β =

⎡⎢⎢⎢⎢⎢⎣
βT1
...

βÑ
T

⎤⎥⎥⎥⎥⎥⎦
Ñ×m

, O =

⎡⎢⎢⎢⎢⎢⎣
oT1
...

oTN

⎤⎥⎥⎥⎥⎥⎦
N×m

and Y =

⎡⎢⎢⎢⎢⎢⎣
yT1
...

yTN

⎤⎥⎥⎥⎥⎥⎦
N×m

(4)

The complex matrix H is called the hidden layer output matrix. Using the
analysis similar to that of ELM [6,7] and using the proof given in ([13] p.252
and [2] Theorem 2.1) we can easily show that the input weights wi and hid-
den layer biases bi of the SLFNs with complex activation functions (which
are infinitely differentiable) can be randomly chosen and fixed based on some

3

(accepted and in press,confidential and non-distributed)



continuous distribution probablity instead of been trivially tuned. 1 As ana-
lyzed by Huang et. al. [6,7] for fixed input weights wi and hidden layer biases
bi we can get the least-squares solution β̂ of the linear system Hβ = Y with
minimum norm of output weights β, which usually tend to have good gener-
alization performance: (Refer to Huang et. al. [4—7] for detailed analysis.)

The resulting β̂ is given by:
β̂ = H†Y (5)

where complex matrix H† is the Moore-Penrose generalized inverse (pp. 163-
169 of [11]) of complex matrix H. Thus, ELM can be extended from the real
domain to a fully complex domain in a straightforward manner. The three
steps in the fully complex ELM (C-ELM) algorithm can be summarized as:

Algorithm C-ELM: Given a training set ℵ = {(zi,yi)|zi ∈ Cn,yi ∈ Cm, i =
1, · · · , N}, complex activation function gc(z), and hidden neuron number Ñ ,

step 1 Randomly choose the complex input weight wk and the complex bias
bk, k = 1, · · · , Ñ .

step 2 Calculate the complex hidden layer output matrix H.
step 3 Calculate the complex output weight β using formula (5).

Many fully complex activation functions proposed by Kim and Adali [10] can

be used in our C-ELM. These include circular functions (tan(z) = eiz−e−iz
i(eiz+e−iz) ,

sin(z) = eiz−e−iz
2i

), inverse circular functions (arctan(z) = z
0

dt
1+t2

, arcsin(z) =
z
0

dt
(1−t)1/2 , arccos(z) =

z
0

dt
(1−t2)1/2 ), hyperbolic functions (tanh(z) =

ez−e−z
ez+e−z ,

sinh(z) = ez−e−z
2
) and inverse hyperbolic functions (arctanh(z) = z

0
dt
1−t2 ,

arcsinh(z) = z
0

dt
(1+t2)1/2

), where z ∈ C.

Remark: Calculation of Moore-Penrose Generalized Inverse

Definition 2.1. (pp. 163-169 of [11]) A matrix G is the Moore-Penrose gen-
eralized inverse of (real or complex) matrix A, if AGA = A, GAG = G,
(AG)∗ = AG, (GA)∗ = GA.

There are several methods to calculate the Moore-Penrose generalized inverse
of (real or complex) matrix. These methods may include but are not limited
to orthogonal projection, orthogonalization method, iterative method, and
Singular Value Decomposition (SVD) [11,12]. The orthogonalization method
and iterative method have their limitations since searching and iteration are
used which we wish to avoid in ELM. The orthogonal project method can be
used when H∗H is nonsingular and H† = (H∗H)−1H∗. However, H∗H may
not always be nonsingular or may tend to be singular in some applications and

1 The theoretical analysis such as universal approximation capability of C-ELM is
currently under investigation and will appear in a future paper.
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thus orthogonal projection method may not perform well in all applications.
The Singular Value Decomposition (SVD) can be generally used to calculate
the Moore-Penrose generalized inverse of H in all cases.

3 Performance Evaluation

In this section, a well-known complex nonminimum-phase channel model in-
troduced by Cha and Kassam[1] is used to evaluate the C-ELM equalizer
performance. This equalization model is of order 3 with nonlinear distortion
for 4-QAM signaling. The channel output zn (which is also the input of the
equalizer) is given by

zn =on + 0.1o
2
n + 0.05o

3
n + vn, vn ∼ N (0, 0.01)

on =(0.34− i0.27)sn + (0.87 + i0.43)sn−1 + (0.34− i0.21)sn−2 (6)

where N (0, 0.01) means the white gaussian noise (of the nonminimum-phase
channel) with mean 0 and variance 0.01.

Figure 1. The distribution of the input data zn of equalizers.

The equalizer input dimension is chosen as 3. As usually done in equalization
problems, a decision delay τ is introduced in the equalizer so that at time
n the equalizer estimates the input symbol sn−τ rather than sn and we set
τ = 1. 4-QAM symbol sequence sn is passed through the channel and the real
and imaginary parts of the symbol are valued from the set {±0.7}. The fully
complex activation function of both C-ELM and CBP is chosen as arcsinh(z) =
z
0

dt
(1+t2)1/2

, where z = w · z + b. In fact, during our studies we find that
CBP with the hyperbolic activation function tanh(z) does not converge well
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Figure 2. Eye diagram of the outputs of different equalizers (a) C-ELM, (b) CBP,
(c) CMRAN, (d) CRBF.

and produce oscillation in the error but CBP with the activation function
arcsinh(z) converges, however C-ELM works well with both these complex
activation functions and many others. The reason may be that CBP gets stuck
in local minima easily while ELM tends to reach global minimum directly.
Both the input weight vectors wk and biases bk of the C-ELM

2 are randomly
chosen from a complex area centered at the origin with the radius set as 0.1.

All the three equalizers: CMRAN, CBP and C-ELM are trained with 1000 data
symbols at 16dB SNR. It is found that the CRBF equalizer trained with such
small number of training data cannot classify the testing symbols clearly and
thus a higher number (104) of training data are used to train CRBF equalizer.
The hidden neuron numbers of C-ELM and CBP are set to 10. The CMRAN
equalizer obtains 22 hidden neurons at the end of the training process after
self growing and pruning neurons during training. Different numbers of hidden
neurons have been tried for the CRBF equalizer, however, the optimal hidden
neuron number of CRBF equalizer is found to be 30.

2 Open source codes of the ELM algorithm with different testing cases can be
downloaded from: http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
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Figure 3. Error probability for C-ELM, CMRAN, CRBF and CBP

All the simulations are conducted in a MATLAB environment running in an
ordinary PC with 3GHZ CPU. Figure 1 shows the distribution of the input
data of the different equalizers and Figure 2 shows the eye diagram of the
outputs of the four neural equalizers: C-ELM, CBP, CMRAN and CRBF, re-
spectively. As observed from Figure 2 both C-ELM and CBP can separate the
outputs into four regions clearly. Average of 106 testing samples at various
SNRs were used for computing the symbol error rate (SER) and the compar-
ison of SER for all the four equalizers is shown in Figure 3. As observed from
Figure 3, C-ELM is superior to all other equalizers in terms of SER. Table 1
shows the training and testing time comparison for the four equalizers. It can
be seen that the C-ELM equalizer can complete training much faster than all
other equalizers.

Algorithms Neurons Number of training data Training time (s) Speedup

C-ELM 10 1000 0.032 1

CBP 10 1000 1.266 39.56

CMRAN 22 1000 25.481 796.28

CRBF 30 104 46.331 1447.84

Table 1
Time comparisons of the four equalizers (a) C-ELM, (b) CBP, (c) CMRAN, (d)
CRBF.
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4 Discussions and Conclusions

In this paper, we propose a fully complex learning algorithm for single-hidden-
layer feedforward neural networks (SLFNs) which is referred to as fully com-
plex extreme learning machine (C-ELM) and its performance has been tested
in communication channel equalizers. Similar to ELM[7,6], the input weights
(linking the input layer to the hidden layer) and hidden layer biases of C-
ELM are randomly generated and then the output weights (linking the hidden
layer to the output layer) are simply analytically calculated instead of itera-
tively tuned. As observed from the simulation results, the proposed C-ELM
can complete the learning phase in an extremely fast speed and obtain much
lower symbol error rate (SER). Consistent to the conclusion of Kim and Adali
[10] compared to split-complex activation (basis) functions based on neural
models (CMRAN and CRBF) the fully complex models (C-ELM and CBP)
provide parsimonious structures for applications in the complex domain. It
should be noted that as analyzed by Kim and Adali [10] the CBP learning
algorithm is sensitive to the size of the learning rate and the radius of initial
random weights 3 and as done in our simulations the learning rate and the ra-
dius of initial random weights need to be carefully tuned. Different from other
equalizers, C-ELM has avoided well the difficulties in manually tuning control
parameters (learning rate, initial weights/biases, learning epochs) and pre-
vented local minima by reaching the good solutions analytically. C-ELM can
be implemented and used easily. In fact, faster learning speed, faster response
and ease of implementation are key to the success of the communication chan-
nel equalizers. In principle, as tested in our various simulations, many fully
complex activation functions introduced by Kim and Adali [10] can be used
in the proposed C-ELM and its universal approximation capability will be
provided in details in the near future.
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