
Optimization Method Based Extreme

Learning Machine For Classification

Guang-Bin Huang a,∗, Xiaojian Ding a,b and Hongming Zhou a

aSchool of Electrical and Electronic Engineering, Nanyang Technological
University, Nanyang Avenue, Singapore 639798

bSchool of Electronic and Information Engineering, Xi’an Jiaotong University,
Shaanxi, Xi’an, China 710049

Abstract

Extreme learning machine (ELM) as an emergent technology has shown its good
performance in regression applications as well as in large dataset (and/or multi-
label) classification applications. The ELM theory shows that the hidden nodes of
the “generalized” single-hidden layer feedforward networks (SLFNs), which needn’t
be neuron alike, can be randomly generated and the universal approximation ca-
pability of such SLFNs can be guaranteed. This paper further studies ELM for
classification in the aspect of the standard optimization method and extends ELM
to a specific type of “generalized” SLFNs - support vector network. This paper
shows that: 1) under the ELM learning framework, SVM’s maximal margin prop-
erty and the minimal norm of weights theory of feedforward neural networks are
actually consistent; 2) from the standard optimization method point of view ELM
for classification and SVM are equivalent but ELM has less optimization constraints
due to its special separability feature; 3) as analyzed in theory and further verified
by the simulation results, ELM for classification tends to achieve better generaliza-
tion performance than traditional SVM. ELM for classification is less sensitive to
user specified parameters and can be implemented easily.

Key words: Extreme learning machine, support vector machine, support vector
network, ELM kernel, ELM feature space, equivalence between ELM and SVM,
maximal margin, minimal norm of weights, primal and dual ELM networks.

∗ Corresponding author
Email address: egbhuang@ntu.edu.sg (Guang-Bin Huang).

1 This research was sponsored by the grant from Academic Research Fund (AcRF)
Tier 1 under project No. RG 22/08 (M52040128). X. Ding’s research was also under
the sponsorship from Chinese Scholarship Council(CSC), China.

Accepted by Neurocomputing 9 February 2010

1 Introduction

There are three main approaches in the training of feedforward networks: 1)
gradient-descent based (e.g, backpropagation (BP) method [1] for multi-layer
feedforward “neural” networks); 2) least square based (e.g. extreme learning
machines (ELMs) [2–6] for the “generalized” single-hidden layer feedforward
networks (SLFNs)); 3) standard optimization method based (e.g. support vec-
tor machines (SVMs) [7] for a specific type of single-hidden layer feedforward
networks, the so-called support vector network).

Support vector machines (SVMs) [7] have been extensively used in widespread
applications. The main learning feature of SVM is that the standard optimiza-
tion method is used to find the solution of maximizing the separating margin
of two different classes while minimizing the training errors.

Extreme learning machines (ELMs) were originally developed for the single-
hidden layer feedforward neural networks [2–4] and then extended to the “gen-
eralized” single-hidden layer feedforward networks (SLFNs) which may not be
neuron alike [5,6]. ELM proposes to apply random computational nodes in the
hidden layer, which may be independent of the training data. ELM [2,3] and
its variants [4–6,8–12] mainly focus on the function approximation applica-
tions. Different from traditional learning algorithms for neural networks ELM
not only tends to reach the smallest training error but also the smallest norm
of output weights. Bartlett’s theory [13] shows that for feedforward neural
networks reaching smaller training error the smaller the norm of weights is,
the better generalization performance the networks tend to have.

Intuitively speaking, SVMs and ELMs do not seem to have much direct rele-
vance although one of the main reasons behind the extension of ELM to “gen-
eralized” SLFNs is to possibly apply ELM learning approach in SVM in some
way [5,6]. It is also not clear whether there is any close relationship between
SVM’s maximal separating margin of two different classes and Bartlett’s min-
imal size of weights theory on feedforward neural networks [13]. However, Liu,
et al [14] and Frénay and Verleysen [15] have made a significant contribution
showing that the ELM learning approach can be applied to SVMs directly by
simply replacing SVM kernels with (random) ELM kernels and better general-
ization can be achieved 2 . Random ELM kernels can be applied in SVM, which
validates the correctness of ELM’s theory on the “generalized” SLFNs [5,6].
Their proposed SVM with ELM kernel and the conventional SVM have the
same optimization constraints. Their work is exciting and has resolved a chal-
lenging issue whether ELM can be used for SVM in real applications, however,
the reason why ELM for SVM can achieve better generalization performance

2 Liu, et al [14] originally applies ELM kernel in PSVM [16] and later Frénay and
Verleysen [15] shows that ELM kernel can also be applied in the traditional SVM.

2

than the conventional SVM has not been answered clearly.

Different from the earlier work on ELM for SVM [14,15] which effectively and
simply apply ELM kernels in SVM, this paper studies ELM for classification
in the aspect of the standard optimization method and further shows that
1) SVM’s maximal separating margin property and the ELM’s minimal norm
of output weights property are actually consistent and with ELM framework
SVM’s maximal separating margin property and Barlett’s theory on feedfor-
ward neural networks remain consistent; 2) in theory ELM can be linearly
extended to SVMs (but with less optimization constraints) instead of only
replacing SVM kernels with ELM kernels, and thus the learning and imple-
mentation of SVMs can be made much simpler and more efficient indeed; 3)
since according to the ELM theories [2–6] all the training data are linearly
separable by a hyperplane passing through the origin with probability one in
the ELM feature space, ELM for classification tends to achieve better gener-
alization performance than SVM.

2 Brief of Support Vector Machine

In order to understand how Cortes and Vapnik’s SVM [7] was proposed it may
be useful to mention Rosenblatt’s feature space on perceptrons [17] first 3 . As
shown in Cortes and Vapnik’s SVM [7], SVM can be seen as a specific type of
SLFNs, the so-called support vector networks.

2.1 Rosenblatt’s feature space

In 1962 Rosenblatt [17] investigated perceptrons (multi-layer feedforward neu-
ral networks). Due to lack of learning algorithms to adjust all the weights
of perceptrons, Rosenblatt suggested a learning mechanism where only the
weights of the connections from the last hidden layer to the output layer were
adjusted. After all the rest weights fixed the input data are actually trans-
formed into a feature space Z of the last hidden layer. In this feature space a
linear decision function is constructed:

f(x) = sign

(
L∑

i=1

αizi(x)

)
(1)

where zi(x) is the output of the i-th neuron in the last hidden layer of a
perceptron.

3 One may refer to [7] for the details of the relationship between SVM and Rosen-
blatt’s feature space.

3

In order to find an alternative solution of zi(x), in 1995 Cortes and Vapnik
[7] proposed the support vector machine which maps the data from the in-
put space to some high dimensional feature space Z through some non-linear
mapping chosen a priori. Standard optimization methods are used to find the
separating hyperplane which maximizes the separating margins of two differ-
ent classes in the feature space.

2.2 Maximal separating margins in feature space

Given a set of training data (xi, ti), i = 1, · · · , N , where xi ∈ Rd and
ti ∈ {−1, 1}, these training data are usually not separable in the input space
in most cases. If the training data cannot be separated by a linear decision
function w · x + b = 0 one can map the training data xi from the input space
to a feature space Z through a mapping φ(x) : xi → φ(xi). In this feature
space, to separate the training data with a minimal training error we have:

w · φ(xi) + b ≥ 1 − ξi if ti = 1

w · φ(xi) + b ≤ −1 + ξi if ti = −1
(2)

that is

ti(w · φ(xi) + b) ≥ 1 − ξi, i = 1, · · · , N (3)

Vectors xi for which ti(w · φ(xi) + b) = 1 is termed support vectors. The
hyperplane w · φ(x) + b = 0 is the unique one which separates the training
data with a maximal margin in the feature space: it maximizes the distance
2/‖w‖ between two different classes in the feature space Z.

To maximize such separating margin and to minimize the training error is
equivalent to:

Minimize: LP =
1

2
‖w‖2 + C

N∑
i=1

ξi

Subject to: ti(w · φ(xi) + b) ≥ 1 − ξi, i = 1, · · · , N

ξi ≥ 0, i = 1, · · · , N

(4)

where C is a user specified parameter and provides a tradeoff between the
distance of the separating margin and the training error.

Based on the Karush-Kuhn-Tucker theorem [18], to train such a SVM is equiv-

4

alent to solving the following dual optimization problem:

minimize: LD =
1

2

N∑
i=1

N∑
j=1

titjαiαjφ(xi) · φ(xj) −
N∑

i=1

αi

subject to:
N∑

i=1

tiαi = 0

0 ≤ αi ≤ C, i = 1, · · · , N

(5)

where each Lagrange multiplier αi corresponds to a training example (xi, ti).

We also have

w =
Ns∑
s=1

αstsφ(xs) (6)

where Ns is the number of support vectors xs.

2.3 SVM kernel functions

Kernel functions K(u,v) = φ(u) ·φ(v) are usually used in the implementation
of SVM learning algorithm. In this case, we have:

minimize: LD =
1

2

N∑
i=1

N∑
j=1

titjK(xi,xj)αiαj −
N∑

i=1

αi

subject to:
N∑

i=1

tiαi = 0

0 ≤ αi ≤ C, i = 1, · · · , N

(7)

The SVM kernel function K(u,v) needs to satisfy Mercer’s condition [7]. The
decision function of SVM is:

f(x) = sign

(
Ns∑
s=1

αstsK(x,xs) + b

)
(8)

3 Brief of Extreme Learning Machine

Extreme learning machine (ELM) [2–4] was originally proposed for the single-
hidden layer feedforward neural networks and then extended to the generalized
single-hidden layer feedforward networks where the hidden layer needn’t be
neuron alike [5,6]. In ELM all the hidden node parameters are randomly gen-
erated (even before ELM sees the training data) without tuning.

5

3.1 ELM feature space

The output of ELM is

f(x) =
L∑

i=1

βiG(ai, bi,x) = β · h(x) (9)

where βi is the output weight from the i-th hidden node to the output node and
G(ai, bi,x) is the output of the i-th hidden node. h(x) = [G(a1, b1,x), · · · , G(aL, bL,x)]T

is the output vector of the hidden layer with respect to the input x. h(x) actu-
ally maps the data from the d-dimensional input space to the L-dimensional
hidden layer feature space (ELM feature space) H. For the binary classification
applications, the decision function of ELM is

f(x) = sign

(
L∑

i=1

βiG(ai, bi,x)

)
= sign (β · h(x)) (10)

3.2 Minimal norm of output weights

Different from traditional learning algorithms ELM not only tends to reach the
smallest training error but also the smallest norm of output weights. According
to Bartlett’s theory [13], for feedforward neural networks reaching smaller
training error, the smaller the norm of weights is, the better generalization
performance the networks tends to have. We conjecture that this may be true
to generalized SLFNs. ELM is to minimize the training error as well as the
norm of the output weights [2,3]:

Minimize:
N∑

i=1

‖β · h(xi) − ti‖
and

Minimize: ‖β‖
(11)

Seen from (10), to minimize the norm of the output weights ‖β‖ is actually to
maximize the distance of the separating margins of the two different classes
in the ELM feature space: 2/‖β‖ although the minimal norm least square
method instead of the standard optimization method was used in the original
implementation of ELM [2,3].

6

4 ELM for Classification

This section shows that with the standard optimization method ELM can
be linearly extended to SVM (with less optimization constraints) and the
implementation of SVM can be made much simpler.

Seen from the decision function of SVM (8): f(x) = sign
(∑Ns

s=1 αstsK(x,xs) + b
)
,

apparently SVM can be considered as one of the “generalized” single-hidden
layer feedforward networks (SLFNs) which has Ns hidden nodes. The output
function of the s-th hidden node of this support vector network is K(x,xs),
the output weight between the s-th hidden node to the output node (with bias
b) is αsts.

Huang, et al [5,6] extends ELM from the SLFNs with neuron type of hidden
nodes to the generalized SLFNs where the hidden nodes may not neuron alike.
One of the aims of this extension is to possibly apply ELM learning approach
in SVM. Since both ELM and SVM work for SLFNs and the hidden layers of
both ELM and SVM are not tuned, the learning mechanism of ELM and SVM
may be combined in some way: 1) similar to the standard ELM but different
from SVM, the random kernels are used; 2) similar to SVM but different the
least square solution of ELM, the standard optimization method is adopted
to find the solution of ELM, resulting in support vectors as well.

4.1 Optimization method based solution to ELM

Different from the standard SVM [7], in theory [2–6] any set of distinct training
data transformed from the input space to the ELM feature space with the ELM
mapping h(x) are linearly separable in the ELM feature space with probability
one. However, it is most possible that some testing data may be within the
classification margin if zero training error is strictly obtained. In this sense, one
may wish to separate the training data with an acceptable minimal training
error instead of the zero training error so that the testing error can thus be
minimized accordingly:

β · h(xi) ≥ 1 − ξi if ti = 1

β · h(xi) ≤ −1 + ξi if ti = −1
(12)

That is,

tiβ · h(xi) ≥ 1 − ξi, i = 1, · · · , N (13)

Thus, from the standard optimization theory point of view, the objective (11)
of ELM in minimizing both the training errors and the output weights can be

7

written as:

Minimize: LP =
1

2
‖β‖2 + C

N∑
i=1

ξi

Subject to: tiβ · h(xi) ≥ 1 − ξi, i = 1, · · · , N

ξi ≥ 0, i = 1, · · · , N

(14)

which is very similar to SVM’s optimization problem (4) with two main dif-
ferences:

(1) Different from the conventional SVM the randomness is adopted in the
ELM mapping h(x), that is, all the parameters of h(x) are chosen ran-
domly.

(2) The bias b is not required in the ELM’s optimization constrains since
in theory the separating hyperplane in the ELM feature space passes
through the origin.

The Lagrange function of the primal ELM optimization (14) is:

LELM(β, ξ, α, μ) =
1

2
β·β+C

N∑
i=1

ξi−
N∑

i=1

αi

(
tiβ·h(xi)−(1−ξi)

)
−

N∑
i=1

μiξi (15)

where αi and μi are the Lagrange multipliers and are non-negative values.

In order to find the optimal solutions of (15) we should have:

∂LELM(β, ξ, α, μ)

∂β
= 0 =⇒ β =

N∑
i=1

αitih(xi) (16)

∂LELM(β, ξ, α, μ)

∂ξ
= 0 =⇒ C = αi + μi, ∀i (17)

Substitute (16) and (17) into (15) and to train ELM for classification is then
equivalent to solving the following dual optimization problem:

minimize: LD =
1

2

N∑
i=1

N∑
j=1

titjαiαjh(xi) · h(xj) −
N∑

i=1

αi

subject to: 0 ≤ αi ≤ C, i = 1, · · · , N

(18)

Different from the conventional dual SVM optimization problem (5), the above
dual ELM optimization problem does not have the condition

∑N
i=1 tiαi = 0, ∀i

due to the truth that in theory the separating hyperplane in the ELM feature
space tends to pass through the origin.

8

4.2 ELM kernel

An ELM kernel function can be defined as

KELM(xi,xj) = h(xi) · h(xj)

= [G(a1, b1,xi), · · · , G(aL, bL,xi)]
T · [G(a1, b1,xj), · · · , G(aL, bL,xj)]

T

(19)

where G(a, b,x) is a nonlinear piecewise continuous function satisfying ELM
universal approximation capability theorems [4–6] and {(ai, bi)}L

i=1 are ran-
domly generated according to any continuous probability distribution.

Thus, we have:

minimize: LD =
1

2

N∑
i=1

N∑
j=1

titjKELM(xi,xj)αiαj −
N∑

i=1

αi

subject to: 0 ≤ αi ≤ C, i = 1, · · · , N

(20)

The decision function of ELM is

f(x) = sign

(
Ns∑
s=1

αstsKELM(x,xs)

)
(21)

4.3 ELM primal and dual networks

Seen from ELM output functions (10) and (21), after applying the optimiza-
tion method to ELM, we have β =

∑Ns
s=1 αstsh(xs), where Ns is the number of

the support vectors xs, and thus we have the primal ELM network as shown
in Figure 1(a).

On the other hand, seen from the ELM network output function (21), after
applying the standard optimization method to ELM, we can also obtain a
dual network (the so-called support vector network) for ELM (cf. Figure 1(b))
which has Ns number of hidden nodes each with ELM kernel KELM(x,xs)
while the output weight linking the s-th hidden layer to the output node is
αsts.

4.4 Karush-Kuhn-Tucker Conditions of ELM

Based on the Karush-Kuhn-Tucker (KKT) theorem [18], the necessary condi-
tions (often referred to as KKT conditions) of the primal ELM optimization
(14) should be:

9

(a) Primal ELM Network

(b) Dual ELM Network

Figure 1. (a) Primal ELM Network: 1) L hidden nodes; 2) The output
of the i-th hidden node is G(ai, bi, xi); 3) the output weight vector link-
ing the hidden layer to the output node is β =

∑N
i=1 αitiKELM(x, xi).

(b) Dual ELM Network: 1) Ns hidden nodes where Ns is the number of
support vectors; 2) The output of the s-th hidden node is KELM(x, xs):
KELM(x, xs) = [G(a1, b1, x), · · · , G(aL, bL, x)]T · [G(a1, b1, xs), · · · , G(aL, bL, xs)]T ;
3) the output weight linking the s-th hidden layer to the output node is αsts.

Primal feasibility:

tiβ · h(xi) − (1 − ξi) ≥ 0, ∀i (22)

ξi ≥ 0, ∀i (23)

10

Dual feasibility:

αi ≥ 0, ∀i (24)

μi ≥ 0, ∀i (25)

Complementary slackness:

αi (tiβ · h(xi) − (1 − ξi)) = 0, ∀i (26)

μiξi = 0, ∀i (27)

Furthermore,

(1) if αi = 0: from (17) and (27) we have ξi = 0. Thus, from (22) we have

tiβ · h(xi) ≥ 1 (28)

(2) if 0 < αi < C: from (17) and (27) we have ξi = 0. Thus, from (26) we
have

tiβ · h(xi) = 1 (29)

(3) if αi = C : from (17) and (27) we have ξi ≥ 0. Thus, from (26) we have

tiβ · h(xi) ≤ 1 (30)

Thus, the QP problem is solved when for all i:

αi = 0 =⇒ tiβ · h(xi) ≥ 1

0 < αi < C =⇒ tiβ · h(xi) = 1

αi = C =⇒ tiβ · h(xi) ≤ 1

(31)

5 Discussions

In essence it has different physical meanings of introducing the training error
in the optimization constraints of both SVM and ELM: the reason why SVM
permits the training errors is that some training data may not be linearly sep-
arable in the conventional SVM feature space. According to the ELM theory
[2–6] all the training data are linearly separable in the ELM feature space,
the reason why ELM permits the training errors is to eliminate the possible
overfitting and thus to minimize the testing errors and to further improve
the generalization performance. According to ELM theories [2–6] widespread
nonlinear piecewise continuous functions can be used as ELM feature mapping
h(x). As pointed out by Frénay and Verleysen [15] the ELM kernel function
KELM(x,xi) always satisfies the Mercer’s condition.

11

5.1 Differences between SVM’s separating hyperplane and ELM’s separating
hyperplane

Liu, et al [14] and Frénay and Verleysen [15] provides an efficient extreme
learning approach to SVM by simply replacing the SVM kernels with ELM
kernels. Generally speaking, their work adopts the same optimization con-
strains as the conventional SVM.

The essence of SVM is: after the training data are mapped into the SVM
feature space and there exists a hyperplane which can separate these data with
a maximal margin. It is reasonable to think that such separating hyperplane
in SVM may not necessarily pass through the origin in the SVM feature space
and thus a bias b is required in the optimization constraint of SVM: ti(w ·
φ(xi)+ b) ≥ 1− ξi. Liu, et al [14] and Frénay and Verleysen [15] proposed the
SVM with ELM kernels with the same optimization constraint assumption as
the conventional SVM. The corresponding Lagrange function of the primal
SVM optimization (4) is:

LSVM(w, ξ, α, μ, b) =
1

2
w·w+C

N∑
i=1

ξi−
N∑

i=1

αi

(
ti(w·φ(xi)+b)−(1−ξi)

)
−

N∑
i=1

μiξi

(32)

In order to find the optimal solutions of (32) one of the KKT conditions
(necessary conditions) for the conventional SVM (as well as for SVM with
ELM kernels [14,15]) is:

∂LSVM(w, ξ, α, μ, b)

∂b
= 0 =⇒

N∑
i=1

αiti = 0 (33)

This is the reason why SVM learning needs to satisfy both optimization con-
ditions (5):

∑N
i=1 αiti = 0 and 0 ≤ αi ≤ C , ∀i.

According to ELM theories [2–6] the separating hyperplane of ELM basically
passes through the origin in the SVM feature space, there is no bias b in the
optimization constraint of ELM: tiβ · h(xi) ≥ 1 − ξi and thus, different from
SVM, ELM learning does not need to satisfy the condition:

∑N
i=1 αiti = 0.

SVM and ELM have similar optimization objective functions and SVM learn-
ing needs to satisfy both optimization conditions (5):

∑N
i=1 αiti = 0 and

0 ≤ αi ≤ C , ∀i while ELM learning only needs to satisfy the loose condi-
tion: 0 ≤ αi ≤ C , ∀i, thus, obviously SVM tends to find a solution which is
sub-optimal to ELM’s solution.

This view can also become clear from a different observation aspect. ELM

12

(a)

(b)

Figure 2. (a) ELM finds the optimal solution in the entire cube [0, C]N of the
ELM feature space without any other constraints. (b) SVM always searches for the
optimal solution in the hyperplane

∑N
i=1 αiti = 0 (shaded area) within the cube

[0, C]N of the SVM feature space.

finds the optimal solution in the entire cube [0, C]N of the ELM feature
space without any other constraints (cf. Figure 2(a)). However, SVM always
searches for the optimal solution in the hyperplane

∑N
i=1 αiti = 0 within the

cube [0, C]N of the SVM feature space (cf. Figure 2(b)). In this sense, SVM’s
search area depends more on the target output vector [t1, · · · , tN]T instead
of the combination of (xi, ti). In other words, given two training datasets

{(x(1)
i , t

(1)
i)}N

i=1 and {(x(2)
i , t

(2)
i)}N

i=1 and {(x(1)
i }N

i=1 and {(x(2)
i }N

i=1 are totally

irrelevant/independent, if [t
(1)
1 , · · · , t

(1)
N]T is similar or close to [t

(2)
1 , · · · , t

(2)
N]T

13

(although this rarely happens in applications) SVM may have similar search
areas of the cube [0, C]N for two different cases, which actually implies that
the bias b may not be used in SVMs. 4

5.2 Maximal separating margin and minimal norm of output weights

The aim of ELM is to minimize the norm of the output weights β: min ‖β‖.
However, the distance of the separating boundaries of the two classes in the
ELM feature 2/‖β‖, thus to minimize the norm of the output weights β is
actually to maximize the separating margin.

6 Performance Verification

In this section, the performance of ELM for classification is compared with
SVM on some benchmark binary classification problems: 11 UCI datasets
[20] and 2 Gene expression datasets (leukemia and colon [21]) (cf Table 1).
The training and testing data of the first 7 datasets of Table 1 are reshuffled
at each trial of simulation while the training and testing data of the last 6
datasets remain fixed for all trials of simulations. Different from the ELM
learning approach to SVM proposed by Liu, et al [14], Frénay and Verleysen
[15] simply replaces the conventional kernel with ELM kernel in the standard
SVM method. We will compare our method with ELM learning approach to
SVM proposed by Frénay and Verleysen [15].

All the simulations for SVM and ELM for classification algorithms are carried
out in MATLAB 2007 environment running in a Pentium 4, 2.53 GHZ CPU.
The simulations for SVM are carried out using Matlab-coded SVM package:
SVM and Kernel Methods Matlab Toolbox [22]. Although it is fully written
in Matlab, it can perform fast due to the optimization of QP solver.

6.1 User specified parameters

The popular Gaussian kernel function K(u,v) = exp(−γ‖u− v‖2) is used in
SVM. Sigmoid type of ELM kernels are used in ELM and ELM for SVM [15]:

4 Poggio, et al [19] studies the role of the bias b in SVMs and shows that the bias b
may not be required in some cases. However, different from our work, Poggio, et al
[19] does not show that from the cross-application point of view the bias b should
not be used in SVMs. A detail comparison of SVMs with and without the bias b is
beyond the scope of this paper and will be reported in a separate work.

14

Datasets # Attributes # Training data # Testing data

Breast-cancer 10 300 383

liver-disorders 6 200 145

heart 13 70 200

ionosphere 34 100 251

Pimadata 8 400 368

Pwlinear 10 100 100

Sonar 60 100 158

Monks Problem 1 6 124 432

Monks Problem 2 6 169 432

Splice 60 1000 2175

A1a 123 1605 30956

leukemia 7129 38 34

Colon 2000 30 32

Table 1
Specification of tested binary classification problems

0.001
0.1

0.4
1

5
20

100
10000

0.001
0.05

0.2
1

5
20

100
10000

50

60

70

80

90

100

γC

T
e

s
ti
n

g
 r

a
te

 (
%

)

Figure 3. The performance of SVM is sensitive to the parameters (C, γ): an example
on Monks problem 1.

KELM(x,xs) = [G(a1, b1,x), · · · , G(aL, bL,x)]T ·[G(a1, b1,xs), · · · , G(aL, bL,xs)]
T

where G(a, b,x) = 1/(1 + exp(−(a · x + b))). In order to achieve good gener-
alization performance, the cost parameter C and kernel parameter γ of SVM
need to be chosen appropriately. Similar to Ghanty et al [23] we have tried a

15

20
50

100
500

2000

0.001
0.05

0.2
1

5
20

100
10000

60

70

80

90

100

L
C

T
e
s
ti
n
g
 r

a
te

 (
%

)

Figure 4. The performance of ELM is not very sensitive to the parameters (C, L) and
a good testing accuracy can be achieved as long as L is large enough: an example
on Monks problem 1.

wide range of C and γ. For each dataset we have used 15 different values of
C and 15 different values of γ resulting in a total of 225 pairs of (C, γ). The
15 different values of C are 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50,
100, 1000, 10000 and the 15 different values of γ are 0.0001, 0.001, 0.01, 0.1,
0.2, 0.4, 0.8, 1, 2, 5, 10, 20, 100, 1000 and 10000.

It is known that the generalization performance of SVM usually depends
closely on the combination of (C, γ) (see Figure 3 for an example). The best
generalization performance is usually achieved in a narrow range of such com-
binations. Thus, when SVM applied the best combination of (C, γ) needs to
be chosen for each dataset.

For ELM for classification and SVM with ELM kernel [15]), there are two
parameters: the cost parameter C and the number of hidden nodes L. For
each problem we have also used 15 different values of C and 10 different
values of L resulting in a total of 150 pairs of (C, L). The 15 different values
of C are 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 1000, and 10000
and the 10 different values of L are 20, 30, 50, 80, 100, 200, 500, 1000, 2000,
3000. After extensive simulations, it is found that the performance of ELM
and SVM with ELM kernel is actually not so sensitive to the combination of
(C, L). As mentioned in [15], the good performance of ELM for SVM can be

16

achieved as long as the number of hidden node L is large enough. It is true to
ELM as well. As observed from Figure 4 (which is true to other datasets as
well), the generalization performance of ELM tends to monotonically increase
with the number of hidden nodes L. In all the simulations for 11 UCI datasets,
L is set 1000. One only needs to adjust the cost parameter C although the
performance of ELM is not very sensitive to C either. The insensitivity of
ELM performance on the user specified parameters makes the implementation
of ELM very effectively.

Twenty trials have been conducted for each problem, with training and testing
data sets randomly generated for each trial. Simulation results including the
average testing accuracy, the corresponding standard deviation (Dev), and the
number of resulted support vectors are given in this section.

6.2 Performance comparison on UCI benchmark datasets

As observed from Table 2, SVM with ELM kernels and the conventional SVM
achieve similar generalization performance, however, the conventional SVM
face the trivial and time-consuming issue in finding the best combination of
learning parameters while users can choose the learning parameters for SVM
with ELM kernels easily. Among the three learning methods, ELM usually
achieves the best generalization performance.

6.3 Performance comparison on DNA microarray datasets

The leukemia dataset was taken from a collection of leukemia patient samples
[24]. The dataset consists of 72 samples: 25 samples of AML, and 47 samples
of ALL. Each sample is measured over 7,129 genes. The colon microarray
dataset consists of 22 normal and 40 tumor tissue samples. In this dataset,
each sample contains 2,000 genes.

The minimum-redundancy-maximum-relevance (MRMR) feature selection method
was developed by Ding and Peng, et al [25], and further studied in Ding and
Peng [26]. MRMR considers both maximum relevance with the class labels
and minimum redundancy among genes. That has six cases, such as MID,
MIQ, FCD, FCQ, FDM, FSQ. The MRMR feature selection is among the
most powerful methods to select a subset of features from a big pool, or just
do dimension reduction. This method has been well cited and used for many
different applications. Seen from Table 3, ELM generally achieves the best
generalization performance in these two DNA microarray applications.

17

D
a
ta

se
ts

S
V

M
E

L
M

G
a
u
ss

ia
n

K
er

n
el

E
L
M

K
er

n
el

[1
5
]

(C
,γ

)
T
ra

in
in

g
T
es

ti
n
g

T
es

ti
n
g

#
C

T
ra

in
in

g
T
es

ti
n
g

T
es

ti
n
g

#
C

T
ra

in
in

g
T
es

ti
n
g

T
es

ti
n
g

#

T
im

e
(s

)
R

a
te

(%
)

D
ev

(%
)

S
V

s
T

im
e

(s
)

R
a
te

(%
)

D
ev

(%
)

S
V

s
T

im
e

(s
)

R
a
te

(%
)

D
ev

(%
)

S
V

s

B
re

a
st

-
ca

n
ce

r
(5

,
5
0
)

0
.1

1
1
8

9
4
.2

0
0
.8

7
1
9
0

1
0
−

3
0
.1

4
4
2

9
6
.2

8
0
.5

9
6
5

1
0
−

3
0
.1

4
2
3

9
6
.3

2
0
.7

5
6
6

L
iv

er
-
d
is

o
rd

er
s

(1
0
,
2
)

0
.0

9
7
2

6
8
.2

4
4
.5

8
1
5
8

1
0

0
.1

6
8
5

7
1
.7

9
3
.0

2
1
3
2

1
0

0
.1

7
3
4

7
2
.3

4
2
.5

5
1
3
1

H
ea

rt
(1

0
4
,5

)
0
.0

3
8
2

7
6
.0

0
3
.8

5
4
1

5
0

0
.0

4
7
4

7
5
.3

2
2
.2

2
3
7

5
0

0
.0

3
4
4

7
6
.2

5
2
.7

0
3
6

Io
n
o
sp

h
er

e
(5

,
5
)

0
.0

2
1
8

9
0
.5

8
1
.2

2
3
0

0
.1

0
.0

3
9
6

8
8
.7

8
1
.7

7
2
5

1
0
−

3
0
.0

3
5
9

8
9
.4

8
1
.1

2
3
2

P
im

a
d
a
ta

(1
0
3
,5

0
)

0
.2

0
4
9

7
6
.4

3
1
.5

7
2
0
9

0
.0

1
0
.2

9
4
2

7
6
.5

4
1
.8

9
2
1
8

0
.0

1
0
.2

8
6
7

7
7
.2

7
1
.3

3
2
1
7

P
w

li
n
ea

r
(1

0
4
,1

0
3
)

0
.0

3
5
7

8
4
.3

5
3
.2

8
5
4

1
0
−

3
0
.0

5
6
0

8
4
.1

0
2
.8

8
4
9

1
0
−

3
0
.0

4
8
6

8
6
.0

0
1
.9

2
5
1

S
o
n
a
r

(2
0
,
1
)

0
.0

4
1
2

8
3
.3

3
3
.5

5
7
0

1
0
4

0
.0

4
9
8

7
8
.8

1
3
.7

5
4
4

1
0
4

0
.0

4
6
7

8
1
.5

3
3
.7

8
5
0

M
o
n
k
s

P
ro

b
le

m
1

(1
0
,
1
)

0
.0

4
2
4

9
5
.3

7
0

7
0

1
0
4

0
.0

6
1
2

9
4
.4

9
0
.5

1
3
7

1
0
4

0
.0

8
2
1

9
5
.1

9
0
.4

1
4
0

M
o
n
k
s

P
ro

b
le

m
2

(1
0
4
,5

)
0
.0

8
6
0

8
3
.8

0
0

7
7

1
0
4

0
.1

0
7
7

8
5
.5

2
0
.5

9
7
5

1
0
4

0
.0

9
2
0

8
5
.1

4
0
.5

7
7
5

S
p
li
ce

(2
,
2
0
)

2
.0

6
8
3

8
4
.0

5
0

7
0
4

0
.0

1
3
.2

0
7
6

8
5
.3

4
0
.4

1
5
0
7

0
.0

1
3
.5

9
1
2

8
5
.5

0
0
.5

4
5
0
9

A
1
a

(2
,
5
)

5
.6

2
7
5

8
4
.2

5
0

6
8
0

0
.0

1
5
.6

0
1
7

8
4
.1

3
1
0
−

3
6
5
6

0
.0

1
5
.4

5
4
2

8
4
.3

6
0
.7

9
6
6
6

T
ab

le
2.

C
om

pa
ri

so
n

be
tw

ee
n

th
e

co
nv

en
ti

on
al

SV
M

,
SV

M
w

it
h

E
L
M

ke
rn

el
[1

5]
an

d
E

L
M

fo
r

cl
as

si
fic

at
io

n.

18

D
a
ta

se
ts

S
V

M
E

L
M

G
a
u
ss

ia
n

K
er

n
el

E
L
M

K
er

n
el

[1
5
]

(C
,γ

)
T
ra

in
in

g
T
es

ti
n
g

T
es

ti
n
g

#
(C

,L
)

T
ra

in
in

g
T
es

ti
n
g

T
es

ti
n
g

#
(C

,L
)

T
ra

in
in

g
T
es

ti
n
g

T
es

ti
n
g

#

T
im

e
(s

)
R

a
te

(%
)

D
ev

(%
)

S
V

s
T

im
e

(s
)

R
a
te

(%
)

D
ev

(%
)

S
V

s
T

im
e

(s
)

R
a
te

(%
)

D
ev

(%
)

S
V

s

B
ef

o
re

G
en

e
S
el

ec
ti

o
n

le
u
k
em

ia
(1

0
3
,1

0
3
)

3
.2

6
7
4

8
2
.3

5
0

2
9

(0
.0

5
,
3
0
0
0
)

0
.9

7
9
6

8
0
.1

5
2
.4

4
3
5

(0
.0

1
,
3
0
0
0
)

0
.2

8
7
8

8
1
.1

8
2
.3

7
3
5

C
o
lo

n
(1

0
3
,1

0
3
)

0
.2

3
9
1

8
1
.2

5
0

2
4

(0
.0

1
,
3
0
0
0
)

0
.2

7
5
7

8
1
.8

7
2
.5

4
2
8

(0
.0

1
,
3
0
0
0
)

0
.1

0
2
3

8
2
.5

0
2
.8

6
2
8

A
ft

er
G

en
e

S
el

ec
ti

o
n

(6
0

G
en

es
O

b
ta

in
ed

fo
r

E
a
ch

C
a
se

)

le
u
k
em

ia
(2

,
2
0
)

0
.0

6
4
0

1
0
0

0
1
2

(0
.0

1
,
3
0
0
0
)

0
.0

3
1
6

1
0
0

0
1
3

(1
0
,
3
0
0
0
)

0
.0

1
9
9

1
0
0

0
1
1

C
o
lo

n
(2

,
5
0
)

0
.0

1
6
6

8
7
.5

0
0

2
6

(0
,0

5
,
2
0
)

0
.0

1
6
0

8
2
.3

4
4
.2

2
2
5

(0
,0

0
1
,
5
0
0
)

0
.0

1
6
1

8
9
.0

6
2
.1

0
2
8

T
ab

le
3.

C
om

pa
ri

so
n

be
tw

ee
n

th
e

co
nv

en
ti

on
al

SV
M

,S
V

M
w

it
h

E
L
M

ke
rn

el
[1

5]
an

d
E

L
M

in
ge

ne
cl

as
si

fic
at

io
n

ap
pl

ic
at

io
ns

.

19

7 Conclusions

This paper studies ELM for classification with the standard optimization
method. It is found that ELM and SVM are actually consistent in some man-
ner: 1) to minimize the norm of output weights in ELM for classification is
actually to maximize the distance of the separating margin of two different
classes in the ELM feature space, which is equivalent to SVM’s maximal sepa-
rating margin property; 2) both ELM and SVM are to maximize the separating
margin as well as to minimize the training errors.

This paper shows that the separating hyperplane tends to pass through the
origin of the ELM feature space, resulting in less optimization constraints and
better generalization performance than SVM. It is also pointed out that the
generalization performance of ELM is less sensitive to the learning parameters
especially the number of hidden nodes. Thus, compared to SVM, users can use
ELM easily and effectively by avoiding tedious and time-consuming parameter
tuning. From the implementation point of view, such ELM implementation
may straightforward be extended to other SVM variants and those extensions
are worth studying further in the future.

Similar to the conventional SVM, one may easily apply ELM in multi-label
classification applications by using one-against-one (OAO) or one-against-all
(OAA) methods.

References

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagation errors,” Nature, vol. 323, pp. 533–536, 1986.

[2] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: A
new learning scheme of feedforward neural networks,” in Proceedings of
International Joint Conference on Neural Networks (IJCNN2004), vol. 2,
(Budapest, Hungary), pp. 985–990, 25-29 July, 2004.

[3] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory
and applications,” Neurocomputing, vol. 70, pp. 489–501, 2006.

[4] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden nodes,”
IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

[5] G.-B. Huang and L. Chen, “Convex incremental extreme learning machine,”
Neurocomputing, vol. 70, pp. 3056–3062, 2007.

[6] G.-B. Huang and L. Chen, “Enhanced random search based incremental
extreme learning machine,” Neurocomputing, vol. 71, pp. 3460–3468, 2008.

20

[7] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20,
pp. 273–297, 1995.

[8] G.-B. Huang, Q.-Y. Zhu, K. Z. Mao, C.-K. Siew, P. Saratchandran, and
N. Sundararajan, “Can threshold networks be trained directly?,” IEEE
Transactions on Circuits and Systems II, vol. 53, no. 3, pp. 187–191, 2006.

[9] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A fast and
accurate on-line sequential learning algorithm for feedforward networks,” IEEE
Transactions on Neural Networks, vol. 17, no. 6, pp. 1411–1423, 2006.

[10] M.-B. Li, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “Fully complex
extreme learning machine,” Neurocomputing, vol. 68, pp. 306–314, 2005.

[11] G. Feng, G.-B. Huang, Q. Lin, and R. Gay, “Error minimized extreme
learning machine with growth of hidden nodes and incremental learning,” IEEE
Transactions on Neural Networks, vol. 20, no. 8, pp. 1352–1357, 2009.

[12] H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran, “Online
sequential fuzzy extreme learning machine for function approximation and
classification problems,” IEEE Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, vol. 39, no. 4, pp. 1067–1072, 2009.

[13] P. L. Bartlett, “The sample complexity of pattern classification with neural
networks: The size of the weights is more important than the size of the
network,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 525–
536, 1998.

[14] Q. Liu, Q. He, and Z. Shi, “Extreme support vector machine classifier,” Lecture
Notes in Computer Science, vol. 5012, pp. 222–233, 2008.

[15] B. Frénay and M. Verleysen, “Using SVMs with randomised feature spaces: an
extreme learning approach,” in Proceedings of The 18 th European Symposium
on Artificial Neural Networks (ESANN), (Bruges, Belgium), 28-30 April, 2010.

[16] G. Fung and O. L. Mangasarian, “Proximal support vector machine classifiers,”
in International Conference on Knowledge Discovery and Data Mining, (San
Francisco, California, USA), pp. 77–86, 2001.

[17] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, New York, 1962.

[18] R. Fletcher, Practical Methods of Optimization: Volume 2 Constrained
Optimization. John Wiley & Sons, 1981.

[19] T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri, “b,” (A.I.
Memo No. 2001-011, CBCL Memo 198, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology), 2001.

[20] C. L. Blake and C. J. Merz, “UCI repository of machine learning databases,”
in http://www.ics.uci.edu/∼mlearn/MLRepository.html,
Department of Information and Computer Sciences, University of California,
Irvine, USA, 1998.

21

[21] J. Li and H. Liu, “Kent ridge bio-medical data set repository,” in
http://levis.tongji.edu.cn/gzli/data/mirror-kentridge.html, School of Computer
Engineering, Nanyang Technological University, Singapore, 2004.

[22] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy, “SVM and kernel
methods matlab toolbox,” in
http://asi.insa-rouen.fr/enseignants/ arakotom/toolbox/index.html, Perception
Systmes et Information, INSA de Rouen, Rouen, France, 2005.

[23] P. Ghanty, S. Paul, and N. R. Pal, “NEUROSVM: An architecture to reduce the
effect of the choice of kernel on the performance of svm,” Journal of Machine
Learning Research, vol. 10, pp. 591–622, 2009.

[24] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S.
Lander, “Molecular classification of cancer: Class discovery and class prediction
by gene expression monitoring,” Science, vol. 286, pp. 531–537, 1999.

[25] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8,
pp. 1226–1238, 2005.

[26] C. Ding and H. Peng, “Minimum redundancy feature selection from microarray
gene expression data,” in Proceedings of the IEEE Computer Society Conference
on Bioinformatics, 2003.

22

