
IEEE TRANSACTIONS ON NEURAL NETWORKS 1

Universal Approximation Using Incremental
Constructive Feedforward Networks

With Random Hidden Nodes
Guang-Bin Huang, Senior Member, IEEE, Lei Chen, and Chee-Kheong Siew, Member, IEEE

Abstract—According to conventional neural network theories,
single-hidden-layer feedforwardnetworks (SLFNs)withadditiveor
radial basis function (RBF) hidden nodes are universal approxima-
tors when all the parameters of the networks are allowed adjustable.
However, as observed in most neural network implementations,
tuning all the parameters of the networks may cause learning
complicated and inefficient, and it may be difficult to train net-
works with nondifferential activation functions such as threshold
networks. Unlike conventional neural network theories, this paper
proves in an incremental constructive method that in order to let
SLFNs work as universal approximators, one may simply randomly
choose hidden nodes and then only need to adjust the output weights
linking the hidden layer and the output layer. In such SLFNs imple-
mentations, the activation functions for additive nodes can be any
bounded nonconstant piecewise continuous functions :
and the activation functions for RBF nodes can be any integrable
piecewise continuous functions : and ( ) = 0.
The proposed incremental method is efficient not only for SFLNs
with continuous (including nondifferentiable) activation functions
but also for SLFNs with piecewise continuous (such as threshold)
activation functions. Compared to other popular methods such a
new network is fully automatic and users need not intervene the
learning process by manually tuning control parameters.

Index Terms—Ensemble, feedforward network, incremental
extreme learning machine, radial basis function, random hidden
nodes, support vector machine, threshold network, universal
approximation.

I. INTRODUCTION

THE widespread popularity of neural networks in many
fields is mainly due to their ability to approximate complex

nonlinear mappings directly from the input samples. Neural
networks can provide models for a large class of natural and
artificial phenomena that are difficult to handle using classical
parametric techniques. Out of many kinds of neural networks,
single-hidden-layer feedforward neural networks (SLFNs) have
been investigated more thoroughly.

Seen from the viewpoint of network architectures, two main
SLFN network architectures have been investigated: 1) the
SLFNs with additive hidden nodes and 2) radial basis function
(RBF) networks which apply RBF nodes in the hidden layer.
The output function of an SLFN with additive nodes can be
represented by

(1)

Manuscript received May 8, 2005; revised October 24, 2005.
The authors are with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798, Singapore (e-mail: gb-
huang@ieee.org).

Digital Object Identifier 10.1109/TNN.2006.875977

where is the weight vector connecting the input layer to the
th hidden node, is the weight connecting the th hidden node

to the output node, and is the hidden node activation func-
tion. denotes the inner product of vectors and in

. The RBF network is considered a specific SLFN which ap-
plies RBF nodes in its hidden layer. Each RBF node has its own
centroid and impact factor, and its output is some radially sym-
metric function of the distance between the input and the center.
The output function of an SLFN with RBF nodes can be rep-
resented by

(2)

where and are the center and impact factor of th RBF
node and is the weight connecting the th RBF hidden node
to the output node. indicates the set of all positive real value.
From a mathematical point of view, research on the approxima-
tion capabilities of SLFNs has focused on two aspects: universal
approximation on compact input sets and approximation in a set
consisting of finite number of training samples.

Hornik [1] proved that if the activation function is contin-
uous, bounded, and nonconstant, then continuous mappings can
be approximated by SLFNs with additive hidden nodes over
compact input sets. Leshno [2] improved the results of Hornik
[1] and proved that SLFNs with additive hidden nodes and with
a nonpolynomial activation function can approximate any con-
tinuous target functions. Regarding the universal approximation
capability of RBF network, Park and Sandberg [3] has proved
that RBF network with the same impact factor for suitably
chosen kernels can approximate any continuous target function.
For function approximation in a set consisting of training
samples ,
some researchers have proposed constructive methods for
SLFNs. For instance, Huang and Babri [4] show that an SLFN
with at most hidden nodes and with almost any nonlinear
activation function can learn distinct observations with
zero error. It should be noted that all the network parameters
(including input weights and biases of additive nodes or centers
and impact factor of RBF nodes) need to be adjusted in all these
previous research works.

It has been shown in our recent work [5] that with the input
weights chosen randomly, both SLFNs (with additive hidden
nodes) and two-hidden-layer feedforward neural networks
(TLFNs) (with at most additive hidden nodes) can
learn distinct observations with arbitrarily small error. One

1045-9227/$20.00 © 2006 IEEE

VOL. 17, NO. 4, 2006



2 IEEE TRANSACTIONS ON NEURAL NETWORKS

may only simply adjust the rest parameters except for the input
weights and first hidden layer biases in applications [6]–[10].
Baum [11] has claimed that (seen from simulations for SLFN
with additive hidden nodes) one may fix the weights of the
connections on one level and simply adjust the connections on
the other level and no gain is possible by using an algorithm
able to adjust the weights on both levels simultaneously. Fur-
thermore, Huang et al. [12], [13] show that the centers and
impact factors of the RBF nodes of RBF networks can also be
randomly chosen. In fact, some simulation results on artificial
and real large-scale complex cases [6]–[10], [12], [13] have
shown that this method (with fixed network architectures) may
be dramatically efficient and have good generalization perfor-
mance. Some researchers [14]–[16] have proved in theory that
for SLFN with additive hidden nodes, one may freeze input
weights and biases of hidden nodes once they have been tuned
and need not further adjust them when new nodes are added.

These research results may imply that in the many applica-
tions of SLFNs, input weights and biases of additive hidden
nodes or centers and impact factors of RBF hidden nodes need
not be adjusted at all. However, so far there lacks a strict the-
oretical justification for this viewpoint, and it is not clear what
functions can be chosen as activation functions of hidden layers
in such SLFNs with randomly generated nodes.

This paper mainly proves in theory that given any bounded
nonconstant piecewise continuous activation function

for additive nodes or any integrable piecewise continuous ac-
tivation function (and ) for RBF
nodes, the network sequence with randomly generated
hidden nodes can converge to any continuous target function
by only properly adjusting the output weights linking the hidden
layer to the output nodes. Although a systematically investiga-
tion of the performance of such networks is not the aim of this
paper, the constructive methods have been tested on both arti-
ficial and real-world benchmark problems. As observed from
the simulation results, the proposed constructive methods can
actually achieve good performance. Compared to other popular
algorithms such as support vector regression (SVR) [17], [18],
stochastic gradient descent backpropagation (BP) [19], and in-
cremental RBF networks (RAN [20], RANEKF [21], MRAN
[22], [23], GAP-RBF [24], and GGAP-RBF [25]), the proposed
incremental SLFN is fully automatic in the sense that except for
target errors and the allowed maximum number of hidden nodes,
no control parameters need to be manually tuned by users.

This paper is organized as follows. Section II proves in theory
that SLFNs with random additive or RBF hidden nodes are uni-
versal approximators for any continuous functions on any com-
pact sets. Section III introduces the incremental algorithm with
random additive or RBF hidden nodes, which is directly derived
from our new universal approximation theory. We will also ex-
tend the case of incremental SLFNs with random additive nodes
to the case of TLFNs with random additive nodes and further
show that in many implementations, like ensemble computing
and local experts mixture, the different learning machines may
in general share the additive hidden nodes and thus much more
compact network architectures could be obtained. Performance
evaluation is presented in Section IV. Discussions and conclu-
sions are given in Section V.

II. UNIVERSAL APPROXIMATION CAPABILITY OF

SINGLE-HIDDEN-LAYER FEEDFORWARD

NETWORKS (SLFNS) WITH RANDOM NODES

We first prove in theory that SLFNs with randomly generated
additive or RBF nodes and with a broad type of activation func-
tions can universally approximate any continuous target func-
tions in any compact subset of the Euclidean space .

Without loss of generality for universal approximation, as-
sume that the network has only one linear output node. It can
be easily seen that the extension of all the analysis conducted
in this paper to multinonlinear output nodes cases is straight-
forward. SLFN network functions with hidden nodes can be
represented by

(3)

where denotes the hidden node output function. For additive
nodes with activation function , is defined as

(4)

and for RBF nodes with activation function , is defined as

(5)

It has been shown [1]–[3], [26]–[29] that given activation
function satisfying certain mild conditions, there exists a
sequence of network functions approximating any given
continuous target function . It should be noted that all param-
eters in any in the sequence are required freely adjustable in
all these previous works. Some researchers [14]–[16] proposed
incremental methods for SLFNs with additive nodes which
can allow input weights and biases of new hidden nodes to be
tuned when added and then fixed after tuned. Romero [30] also
proposes an incremental algorithm for SLFNs with additive
and RBF nodes and shows that the input weights and biases
or centers and impact factors of hidden nodes are tuned when
added and can then be kept fixed.

The major objective of this paper is to show that given any
bounded nonconstant piecewise continuous activation function

for additive nodes or any integrable piecewise con-
tinuous activation function (and ) for
RBF nodes, the network sequence with randomly gener-
ated hidden nodes can converge to any continuous target func-
tion by only properly adjusting the output weights. Different
from other increment algorithms for SLFNs with additive nodes
[14]–[16], [30], [31] and incremental RBF networks [20]–[25],
[30], new nodes need not be tuned at the time they are added.
Thus, the efficiency of SLFNs could be considerably increased.

Let be a space of functions on a compact subset
in the -dimensional Euclidean space such that are

integrable, that is, . Let be denoted



HUANG et al.: UNIVERSAL APPROXIMATION USING INCREMENTAL CONSTRUCTIVE FEEDFORWARD NETWORKS 3

by . Similar to [15], for , , the inner product
is defined by

(6)

The norm in space will be denoted as . The closeness
between the network function and the target function is
measured by the distance

(7)

Definition II.1 [32, p. 334]: A function is
said to be piecewise continuous if it has only a finite number
of discontinuities in any interval and its left and right limits are
defined (not necessarily equal) at each discontinuity.

Definition II.2: The function sequence
or is said to be randomly generated if
the corresponding parameters are randomly generated
from or based on a continuous sampling
distribution probability.

Remark 1: As done in our simulations, one may randomly
generate sequence based on a uniform sampling distribu-
tion probability.

Definition II.3: A node is called a random node if its param-
eters are randomly generated based on a continuous sam-
pling distribution probability.

A. Necessary Lemmas

Some lemmas that are used to prove our main Theorem II.1
are provided in this section.

Lemma II.1 [33, p. 81]: The space of is complete.
Lemma II.2 [33, p. 80]: The sum of two functions of is

an element of .
Lemma II.3 [2, Proposition 1]: Given ,

is dense in for
every , if and only if is not a polynomial (almost
everywhere).

Lemma II.4 [3]: Let be an integrable bounded
function such that is continuous (almost everywhere) and

. Then
is dense in for every .

Remark 2: As mentioned by Park and Sandberg [3, p. 252],
there is no requirement of radial symmetry of the kernel function

in Lemma II.4. The radial basis functions case considered in
this paper is a specific case of Lemma II.4:

.
Lemma II.5: Given a bounded nonconstant piecewise contin-

uous function , we have

(8)

Fig. 1. Bounded piecewise continuous functions g(a�x+b) and g(kx�ak=b)
can, respectively, be as close to g(a �x+ b ) and g(kx�a k=b ) as possible
by adjusting (a; b).

and

(9)

Proof: Let and denote and
(or and ), respectively. Since is
bounded, suppose that for all . Given any small
positive value , set . Without loss of
generality, suppose that has only one discontinuity
and and have single discontinuity points and

, respectively. Thus, for given and , we have
(or

). Since (or ) is a continuous function of and
, there exists such that when ,

we have . Let denote a neighborhood of point
(as shown in Fig. 1)

(10)

Obviously, the discontinuous points ( and ) of and are
then located in the small subset . Thus, shall be contin-
uous in the subset . Further, there exists when

; we have for
all . Thus, when , we have

(11)

This completes the proof.
Lemma II.6: Given a bounded nonconstant piecewise con-

tinuous function and any given positive value
2 and any given , for any randomly generated function

sequence , there exists a positive integer such that for
any continuous segment

, with probability as close to one as desired, there
exists satisfying

(12)

where denotes the angle formed by and .



4 IEEE TRANSACTIONS ON NEURAL NETWORKS

Proof: Given a positive value , according to
Lemma II.5, there exists such that

, .
Suppose that the continuous sampling distribution proba-
bility in (for the additive node case or
for the RBF node case) is and (or

). Then for any continuous segment
, the probability that

among all the elements the parameters of some
elements are sampled from the area is . That
is, from the probability point of view, there probably are

elements

such that . Thus, can be selected
to make ; then for
any continuous segment
at least there exists an element and .
That is, there exists such that satisfying

where ,
that is, .

B. Universal Approximation Using SLFNs With Random
Nodes

Let denote the residual error function for the cur-
rent network with hidden nodes, where is the
target function. We can now prove that given any bounded non-
constant piecewise continuous activation function
for additive nodes or integrable piecewise continuous activa-
tion function (and ) for RBF
nodes, for any continuous target function and any randomly
generated sequence , holds if

.
Theorem II.1: Given any bounded nonconstant piecewise

continuous function for additive nodes or any
integrable piecewise continuous function and

for RBF nodes, for any continuous target
function and any randomly generated function sequence

, holds with probability one if

(13)

Proof: We first prove that the expression
achieves its minimum iff

and the sequence converges. Then
we further prove .

a) Since is bounded nonconstant piecewise continuous and
is continuous, we have , , and

. According to Lemma II.2, .
Let ; then we have

(14)

Fig. 2. Error residual function e is always orthogonal to g : e ? g . The
sequence fke kg is decreasing and bounded below by zero.

is maximized iff , meaning that
achieves its minimum iff

. From the function space
point of view, when

achieves its minimum (see Fig. 2). In fact, when
, we have

(15)

When ,
. So the sequence is

decreasing and bounded below by zero and the sequence
converges.

b) We can now prove by contradiction
method.
b.1) Since the sequence converges, there ex-

ists such as . Suppose
; then the sequence is decreasing and

bounded below by , that is, for all pos-
itive integer . Thus, , , such that
when , we have , which
implies an infinite number of cov-
ered by a compact set. Thus, there exists a subse-
quence which converges to a limit denoted
by and . Since

and is complete (see Lemma
II.1), we have .
Furthermore, there should exist
or such that is not or-
thogonal to . Otherwise, is orthogonal to

or
, which

is contradictory to the fact that
(see Lemma II.3) or



HUANG et al.: UNIVERSAL APPROXIMATION USING INCREMENTAL CONSTRUCTIVE FEEDFORWARD NETWORKS 5

Fig. 3. For the limit e of a subsequence of fe g, if ke k = r 6= 0 there exists a g which is not orthogonal to e , then there exists e such that
ke k < lim ke k = r, which is contradictory to the fact that ke k � r. Thus r must be zero. For the sake of simplicity, � ,
� , � , and � are denoted by � , � , � , and �, respectively. � � � + � + � .

is
dense in (see Lemma II.4).
Let denote the angle formed by and
and we have . (see Fig. 3).

b.2) Let be the angle formed by and , with
. Choose any small positive

value such that . Since
, when

(16)

Since for all positive integer , and
[see (15)], we have .

Furthermore, we have

(17)

Thus, we have
.

Then, for any given positive integer , we
have . Since

, for any fixed positive integer
, we have

(18)

We, then, further have

(19)

where need not be an element of the sub-
sequence . According to (16) and (19), there
exists , we have (see Fig. 3)

(20)

where is a function of
and

. Obviously for any given positive



6 IEEE TRANSACTIONS ON NEURAL NETWORKS

integer , since
for any given positive integer we have

.
b.3) Let denote the angle formed by and

, with . Since function
sequences are randomly generated at a
continuous sampling distribution probability,
according to Lemma II.6, there exists a pos-
itive integer such that for any continuous
segment,

of function sequence
satisfying

. As such that
, according to Lemma II.6

for continuous segment
, ,

satisfying (see Fig. 3)

(21)

b.4) Let denote the angle
formed by and . As

and ,
where is the angle formed by

and , we have
(see

Fig. 3). Thus, according to (20) and (21), we
have

.
Furthermore, as
[see (20)], we have

, which is contradictory to
the fact that all . Thus , that is,

. This completes the
proof.

Remark 3: Seen from Theorem II.1, in order to let the incre-
mental network with random hidden nodes converge to any
continuous target function , one may only need to choose a
bounded nonconstant piecewise continuous activation function

for additive nodes (such as sigmoidal, threshold,
Gaussian, sine, cosine functions) or an integrable piecewise
continuous activation function and
for RBF nodes (such as Gaussian function). Such activation
functions also include some nonregular functions as shown
in [4]. It should be noted that all the previous results [1]–[4],
[14]–[16], [20]–[29], [34]–[44] are based on the conventional
network model where the parameters of hidden nodes need to
be tuned during training phase. Furthermore, these previous
theoretical results may not be implementable either.

Remark 4: Barron [14] proposed an incremental algorithm
taking the form which tries to achieve

the nearly minimal value for by
adjusting the input weights and the bias of the newly added
node and then fixing them after tuning. Meir and Maiorov [16]
also proposed an incremental algorithm for the Sobolev class of
target functions instead of any continuous func-
tion discussed in this paper. The Sobolev class of functions

for any nonnegative integer is defined as

where

. The incremental algorithm proposed by Meir
and Maiorov [16] takes the form
or and minimizes the value of

by optimizing the input weights and the bias of the
newly added node and then fixing them after tuning. Similarly,
Romero [30], [31] proposed an incremental algorithm taking
the form . and are
chosen to minimize ( and )
where . Its universal approximation capability was
only proved under the hypothesis . It should
be noted that all these previous incremental algorithms [14],
[16], [30], [31] need to recalculate the output weights of all the
existing nodes when a new node is added. Different from these
methods, Kwok and Yeung [15] only adjust the parameters
(including input weights, bias, and output weights) of the
newly added node and then fix all of them. All the parameters
(including output weights) of the previous existing nodes will
be no longer tuned when a new node is added. Our incremental
method randomly generates input weights and biases for newly
added nodes instead of tuning them, and the output weights
remain fixed once tuned. Unlike the theoretical works done by
Barron [14] and Meir and Maiorov [16], which do not give the
explicit methods on how to tune all the parameters, our theory
indeed gives an efficient learning implementation by obtaining
the value for the only parameters (output weights) directly:

.
Remark 5: Different from other incremental learning theo-

ries [14]–[16] that are proposed for SLFNs with additive nodes,
our main Theorem II.1 is also valid for RBF networks. The al-
gorithm proposed by Romero [30], [31] works for both additive
nodes and RBF nodes; however, all the parameters need to be
tuned in that algorithm.

III. PROPOSED INCREMENTAL ALGORITHMS WITH RANDOM

ADDITIVE OR RBF NODES

A. Incremental Algorithm for SLFNs With Random Additive
or RBF Nodes

The main objective of this paper is to provide a theoretical
justification for SLFNs with randomly generated nodes. To sys-
tematically investigate the performance of such networks is ba-
sically beyond the scope of this paper. However, we can simply
show that the incremental constructive method provided in the
above analysis actually works and performs efficiently in real
applications.

According to Theorem II.1, when the th hidden node is
added, the weight linking the new node to the output node
should be chosen as . In practice, it could not



HUANG et al.: UNIVERSAL APPROXIMATION USING INCREMENTAL CONSTRUCTIVE FEEDFORWARD NETWORKS 7

be calculated since the exact functional form of is unavail-
able. Similar to [15, p. 1134], a consistent estimate of the weight

based on the training set is

(22)

where is the activation of the new hidden node for
the input of th training sample and is the corre-
sponding residual error before this new hidden node is added.

is the activation vector of the new
node for all the training samples and
is the residual vector before this new hidden node added. In real
applications, one may not really wish to get zero approximation
error by adding infinite nodes to the network; a maximum
number of hidden nodes is normally given. Thus, such an in-
cremental constructive method for SLFNs can be summarized
as follows1:

Algorithm 1

Given a training set @ = f(xi; ti)jxi 2 R
n; ti 2 R; i =

1; . . . ; Ng, activation function g(x), maximum node
number ~Nmax, and expected learning accuracy �:
Step 1) Initialization: Let ~N = 0 and residual

error E = t, where t = [t1; . . . ; tN ]T .
Step 2) Learning step:

while ~N < ~Nmax and kEk > �
a) increase by one the number of

hidden nodes ~N : ~N = ~N + 1;
b) assign random input weight a ~N and

bias b ~N (or random center a ~N and
impact factor b ~N) for new hidden
node ~N;

c) calculate the output weight � ~N
for

the new hidden node

� ~N
=

E �HT

~N

H ~N
�HT

~N

; (23)

d) calculate the residual error after
adding the new hidden node ~N:

E = E � � ~N
�H ~N

: (24)

endwhile

Before learning, there is no node in the network and the
residual error is initially set as the expected target vector
of the training data set, as shown in Step 1). Learning will
stop when the number of hidden nodes has exceeded the
predefined maximum number or the residual error
becomes less than the expected one. The in the right side
of (24) represents the residual error vector before the new
node added and the in the left side represents the residual
error vector after the new node added, which is consistent with

.

1The network with the fixed architecture and randomly assigned hidden nodes
is called extreme learning machine (ELM) [7]–[10], [12], [13] where the output
parameters are determined by ordinary least square and according to Theorem
II.1 lim kf �f k = 0 holds for ELM. For the sake of consistency, Algo-
rithm 1 directly derived from Theorem II.1 can then be referred as incremental
ELM (I-ELM) accordingly as the hidden nodes are increased one by one.

Remark 6: Different from most popular learning algorithms,
which require the activation function of hidden nodes differen-
tiable, the proposed incremental learning algorithm is suitable
not only for differentiable activation function such as the sig-
moidal, Gaussian, sine, and cosine functions but also for non-
differentiable functions such as threshold functions.

B. Incremental Algorithm for TLFNs With Additive Nodes

In order to learn finite training samples, Huang [5] constructs
a specific class of TLFNs which need much fewer additive nodes
than SLFNs by letting separate learning machines (SLFNs lo-
cally trained on different data regions) share common additive
nodes in the first hidden layer. In that implementation, the input
weights and the biases of the first hidden layers are also ran-
domly given. TLFNs proposed in [5] can approximate those fi-
nite training samples with arbitrarily small errors; however, it is
still an open issue whether it can universally approximate any
continuous functions. Section III-A of this paper proposes an
incremental implementation for SLFNs that makes SLFNs uni-
versally approximate any continuous functions in any compact
subset of . During this incremental implementation, the
input weights and hidden layer biases need only to be randomly
given. Based on the constructive method in [5] and the intro-
duced incremental implementation of SLFN in Section III-A,
naturally we can construct very compact TLFNs similar to the
one proposed by Huang [5] but with the important universal ap-
proximation feature.

For simplicity, we first construct a subnetwork which can ap-
proximate the following target:

(25)

which is a scaled function of the continuous target and is a
scale factor to make .

Similar to [5], the bounded sample input set can be divided
into subregions by setting

and
and

(26)
where is a random vector and ,

, and is the th
equal partition point of the interval . Given a bounded,
nonconstant and piecewise continuous activation function
and any small positive value , for randomly chosen sequence

, according to Theorem II.1, we can construct an
SLFN denoted by such that for subregion , when
between the hidden layer and the output node of is selected
as and the number of additive hidden nodes

of is large enough, we have .
Obviously, the sigmoidal activation function can be selected for
the output layer of all these SLFNs: .

We can construct a subnetwork. Let the hidden nodes of the
separate SLFNs (learning machines) link to the same input
nodes and the output nodes of these learning machines con-
struct the output layer of the subnetwork. The activation func-
tion used in the output layer is sigmoidal (i.e.,

). Furthermore, since the input weights and hidden



8 IEEE TRANSACTIONS ON NEURAL NETWORKS

Fig. 4. Compact TLFN constructed by L quantizers and L local learning machines which share common hidden nodes.

layer biases of all the learning machines (SLFNs) can be
chosen randomly, these learning machines can share hidden
nodes. For example, without loss of generality, suppose

. Then we can provide nodes shared by the
learning machines where the first nodes are linked to the th
node in the output layer. Thus, the th learning machine ( th
sub-SLFN) comprises the input nodes, the first nodes in the
first hidden layer and the th nodes in the second hidden layer
(see Fig. 4).

Similar to [5], now we can construct the expected TLFN by
introducing a quantizer neural module that consists of two sig-
moid nodes A and B. First, we can add 2 nodes in the hidden
layer. These 2 nodes are labeled as and , where

. All the newly added nodes and
nodes are fully connected to the input layer with weights
and , , respectively. However, for each output
node, there are only two newly added nodes linking to it, that is,
only two nodes and of the 2 newly added nodes are
linked to the th output node, where .

The biases of nodes and are set as and
, respectively. The weight vectors of the connec-

tions linking the input nodes to the newly added hidden nodes
and are chosen as and ,

respectively, where neural quantizer factor is a given posi-
tive value. All the weights of the connections linking these
newly added 2 hidden nodes to their corresponding output
nodes are chosen as the same value . The neural
quantizer modules can inhibit the outputs of those SLFNs and
make them nearly zero by adjusting its quantizer factor if the
input does not come from their specialized subregions. Thus, the

th node in the second layer of the TLFN (the output of the th
SLFN) produces the target output if and only if the input comes
from the th subregion, whereas the outputs of the other nodes
are inhibited by neural quantizer modules and can be neglected.

We add an output layer with a linear node which links to all
those output nodes (now the second hidden layer nodes) of the
above constructed subset network. The scale factor is simply

chosen as the weights between the second hidden layer and the
output layer of the finally constructed TLFN, and the bias of the
new output layer is (see Fig. 4). The output of the
final constructed TLFN can universally approximate the target
function .

Similar to the incremental algorithm for SLFNs, the incre-
mental method for TLFNs can be summarized as follows:

Algorithm 2

Given a training set @ = f(xi; ti)jxi 2 R
n; ti 2 R; i =

1; . . . ; Ng, activation function g(x), number of
groups (subregions) L, maximum node number
~Nmax, and expected learning accuracy �. Let
quantizer factors T and U large enough.
Step 1) Dividing training sample space into

subregions:
a) Randomly generate a vector a and

reindex the training samples such
that a � x1 < � � � < a � xN.

b) Divide the sorted training samples
into L groups G(p) each consisting
of about N=L training samples.

Step 2) Initialization: Set the parameters
queue W = ;, which stores the input
weight vector and hidden bias sequence
f(a1; b1); (a2; b2); . . .g. Let jW j denote the
total number of elements in W.

Step 3) Learning step:
for p = 1 to L
Let ~Np = 0 and residual error E
initialized with the target vector
of the training samples of the pth
training group G(p).
while ~Np < ~Nmax and kEk > �
a) Increase by one the number of

hidden nodes ~Np : ~Np = ~Np + 1.
b) If ~Np � jW j, use the ~Npth parameters

(a ~N ; b ~N ) in W as the input weight
vector and bias of the new hidden
node. Otherwise, assign random
input weight vector a ~N and bias b ~N
for new hidden node ~Np, and add the
parameter (a ~N ; b ~N ) into W.



HUANG et al.: UNIVERSAL APPROXIMATION USING INCREMENTAL CONSTRUCTIVE FEEDFORWARD NETWORKS 9

TABLE I
SPECIFICATION OF BENCHMARK DATA SETS

c) Calculate the output weight �
(p)
~N

for
the newly added hidden node of the
pth learning SLFN Mp

�
(p)
~N
=

E �HT
~N

H ~N �HT
~N

: (27)

d) Calculate the residual error after
adding the new hidden node ~Np

E = E � �
(p)
~N

�H ~N : (28)

endwhile
endfor

In real applications, quantizer factors and can be simply
set as a very large value which can be considered infinity in
the specified computing environments. For example, in many
ordinary PCs, and can be set as 10 as done in our
simulations.

Compared with [5], where only infinite differential activation
functions like sigmoidal function have been rigorously proved
for such TLFNs, the activation functions that could be used in
such TLFNs have been extended very widely in this paper, in-
clude almost all popular activation functions which can be used
in the application of neural networks.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed incremental
learning algorithms is compared with other popular learning
algorithms on benchmark problems in the function approxi-
mation area: 1) approximation of a SinC function and 2) eight
real-world function approximation problems from the UCI
database [45].2 The popular learning algorithms to be compared
include support vector machine for regression (SVR) [17], [18],
stochastic gradient descent backpropagation (BP) [19], and
other popular incremental learning algorithms such as RAN
[20] and MRAN [22], [23]. The sigmoidal activation function
with gain parameter is used in the
stochastic gradient BP algorithm. The kernel function used in
SVM and our SLFN with RBF nodes are the radial basis function

.Thespecificationofthesebenchmark
problems is shown in Table I. In our experiments, all the inputs
(attributes) have been normalized into the range [ 1, 1] while
the outputs (targets) have been normalized into [0, 1]. For the
case of SLFN with sigmoidal and Sin additive hidden nodes, the

2Auto Price data set, which was originally from [45], can be downloaded from
http://www.liacc.up.pt/~ltorgo/Regression/price.html

input weights and hidden biases are randomly chosen from
the range [ 1, 1]. For the case of SLFN with hard-limit additive
hidden nodes , the input weights and
hidden biases are randomly chosen from the range [ 0.1, 0.1]
and[ 1,1], respectively.ForSLFNwithRBFactivationfunction

, the centers are randomly chosen
from the range [ 1, 1] whereas the impact factor is chosen from
the range (0, 0.5). For SLFN, our target error is .

All the simulations for BP, RAN, MRAN, and our new in-
cremental learning algorithms are carried out in MATLAB 6.5
environment running in a Pentium 4 2.99 GHz CPU. The simu-
lations for SVM are carried out using compiled C-coded SVM
packages: LIBSVM [46] running in the same PC. The basic
algorithm of this C-coded SVM packages is a simplification of
three works: original SMO by Platt [47], SMO modification by
Keerthi et al. [48], and SVM by Joachims [49]. It should be
noted that a C implementation would be faster than MATLAB by
up to 10–50 times for the same applications [50]. Soacomparison
with LIBSVM gives SVM an advantage. Twenty trials have been
conducted for each problem, with training and testing data sets
randomly generated for each trial. Simulation results including
the average testing root mean square error (RMSE) and the corre-
sponding standard deviation (Dev) are given in this section.

A. Comparison Between the SLFN and Other Popular
Incremental Learning Algorithms

The performance of the proposed incremental learning algo-
rithm is first compared with other popular incremental learning
algorithms such as RAN and MRAN. Some parameters for BP,
RAN, and MRAN need to be manually tuned by trial and error.
For both RAN and MRAN, , ,

, and . For MRAN, some additional parameters
are set as , and growing and pruning thresholds are
set as 0.0001. In addition, for RAN and MRAN algorithms, dis-
tance parameter is set for Abalone, California Housing,
and Census (House8L) and is set for other cases. The al-
lowed maximum number of nodes of SLFNs is .

Fig. 5 shows the average testing RMSE decreasing trends and
the spent training time of the SLFN with RBF nodes for some
data sets. As observed from Fig. 5(a), the testing RMSE is de-
creasing with the increase of hidden nodes. Seen from Fig. 5(b),
the spent learning time is linearly increased with the learning
steps since the learning time spent for each step (a new node
added) is almost fixed (three fixed-length vector multiplication
operations only). For the sake of readability, only partial simu-
lation results are shown in Fig. 5. In fact, similar learning curves
can also be plotted for the SLFN with a different type of nodes
trained on different data sets.

During our simulations it is found that without further in-
creasing hidden nodes, the SLFN with 200 hidden nodes can
generally obtain good performance for all the tested cases which
are comparable to the results obtained by RAN and MRAN.
Table II shows the average testing RMSE and the corresponding
Dev of the proposed SLFN with 200 hidden nodes, RAN and
MRAN. As observed from Table II, except for the California
Housing data set, the generalization performance of the pro-
posed SLFN algorithm with different activation functions is
generally better than or comparable to RAN and MRAN. The



10 IEEE TRANSACTIONS ON NEURAL NETWORKS

Fig. 5. Performance of the proposed SLFN learning algorithm with RBF nodes
on some benchmark problems: (a) Average testing RMSE and (b) training time
(seconds).

training time spent for each learning algorithm is shown in
Table III. It can be seen that the proposed SLFN algorithm
runs much faster than other sequential learning algorithms. The
network architectures of RAN and MRAN are automatically
determined through their own internal growing and/or pruning
mechanism, which is also shown in Table III. Different from
RAN and our SLFN algorithms, MRAN can prune insignificant
nodes based on some criterion. Thus, among all algorithms,
MRAN obtains the most parsimonious network architectures.
Among all the algorithms, RAN obtains the largest size of
networks for many tested cases excepted for small data sets.

B. Comparison Between the SLFN Algorithm With SVR and
Stochastic Gradient Descent BP

The proposed SLFN algorithm is also compared with the pop-
ular function regression algorithms such as SVR and stochastic
gradient descent BP. Compared with other methods, SVR can

usually obtain higher generalization performance. Thus, the al-
lowed maximum number of nodes for SLFN is increased to
500 in this comparison. The sigmoidal activation function is
used in the SLFN. In order to get the best generalization per-
formance, the cost parameter and kernel parameter of SVR
need to be chosen appropriately. Similar to [51], we estimate
the generalized accuracy using different combinations of cost
and kernel parameters
and . Therefore, for each problem
we try combinations of parameters for
SVM and the average performances over 20 trials are obtained
for each combination of parameters . The average perfor-
mance (testing RMSE, the corresponding Dev, and the training
time) of SLFN and SVR are shown in Table IV. Table IV also
shows the number of support vectors obtained by SVR and the
optimal values of the cost and kernel parameters . The
learning rate and the momentum constant of BP are set as

and . The number of nodes assigned to sto-
chastic gradient descent BP algorithm is decided by trial and
error in order to obtain as good a generalization performance as
possible. During our simulations, 15 nodes and 30 nodes are as-
signed to BP when tested on Auto Price and Census (House8L)
data sets, respectively, and ten nodes are assigned to BP tested
on other data sets. It can be seen that the generalization perfor-
mance of SLFN is close to that of SVR in most cases. Among
eight data sets, the proposed SLFN obtains much better general-
ization performance than BP in four data sets and almost same
generalization performance in the other four data sets. Com-
pared to the results of RAN and MRAN shown in Table II, the
proposed SLFN with 500 sigmoidal nodes produces better gen-
eralization performance than RAN and MRAN in all cases ex-
cept the California Housing data set. For medium or large ap-
plications, SVR spent much more time on training than SLFN.

C. Performance Evaluation of the SLFN Algorithm for
Threshold Networks

The widely BP learning algorithm and its variants cannot be
used to train the threshold neural networks (SLFN with threshold
hidden activation function) directly as the threshold functions
are nondifferentiable. One method is to approximate threshold
activation function using sigmoid activation function with higher
gain parameters . For example, a threshold network may be
approximated by a sigmoid network with . One may then
train such an approximated threshold network using BP instead
of training the threshold network directly [10]. The performance
comparison between our SLFN algorithm for threshold network
and the stochastic gradient descent BP for sigmoid network with

has been conducted. There are 500 threshold nodes
assigned to the SLFN. The average performance of our SLFN
and stochastic gradient descent BP for threshold networks is
shown in Table V. As observed from Table V, our proposed
SLFN algorithm overall tends to have better generalization
performance than the approximated threshold network trained
by BP. It should be noted that the stochastic gradient descent
BP just trains an approximated threshold network instead of a
true threshold network, whereas our SLFN algorithm provides
a method to train the true threshold network directly. Fig. 6
shows the testing RMSE decreasing trends for some data sets.



HUANG et al.: UNIVERSAL APPROXIMATION USING INCREMENTAL CONSTRUCTIVE FEEDFORWARD NETWORKS 11

TABLE II
AVERAGE TESTING RMSE AND THE CORRESPONDING STANDARD DEVIATIONS (DEV) OF DIFFERENT ALGORITHMS: SLFN (WITH 200 NODES) WITH DIFFERENT

ACTIVATION FUNCTIONS (SIGMOID, SIN, AND RBF), AND TWO POPULAR SEQUENTIAL LEARNING ALGORITHMS: RAN AND MRAN

TABLE III
TRAINING TIME (SECONDS) AND NETWORK COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS: SLFN WITH DIFFERENT ACTIVATION FUNCTIONS (SIGMOID,

SIN, AND RBF) AND TWO POPULAR SEQUENTIAL LEARNING ALGORITHMS: RAN AND MRAN. IN ALL THESE CASE, 200 NODES ARE INCREMENTALLY

ADDED TO SLFNS

TABLE IV
PERFORMANCE COMPARISON OF SLFN WITH INCREMENTALLY ADDED 500 NODES, STOCHASTIC GRADIENT DESCENT BP, AND SVR. THE CLOSE

GENERALIZATION PERFORMANCE (TESTING RMSE) OBTAINED BY DIFFERENT ALGORITHMS IS UNDERLINED AND THE BEST RESULTS AMONG

THREE ALGORITHMS ARE SHOWN IN BOLDFACE

TABLE V
PERFORMANCE COMPARISON BETWEEN THE APPROXIMATED THRESHOLD NETWORK (� = 10) TRAINED BY STOCHASTIC GRADIENT DESCENT BP AND THE TRUE

THRESHOLD NETWORKS TRAINED BY THE PROPOSED SLFN WITH 500 THRESHOLD NODES: g(x) = �1 + 1

D. Comparison Between the SLFN and TLFN Algorithms

The performance of the proposed SLFN and TLFN algo-
rithms has been compared on medium or large problems such
as Abalone, California Housing, Census (House8L), Delta
Ailerons, and Delta Elevators. The performance of these two

algorithms is also evaluated in the approximation of the SinC
function

(29)



12 IEEE TRANSACTIONS ON NEURAL NETWORKS

TABLE VI
PERFORMANCE COMPARISON OF TLFN WITH 100 SIN NODES AND SLFN WITH 200 SIN NODES. THE TRAINING TIMES OF TLFNS ARE THE TOTAL TIME SPENT

ON SEPARATE SLFNS TRAINED ON DIFFERENT SUBREGIONS AND DO NOT INCLUDE THE TIME SPENT ON SORTING TRAINING DATA

Fig. 6. Performance of the SLFN learning algorithm with 500 hard-limit addi-
tive nodes on some benchmark problems: average testing RMSE.

A training set and testing set with 10 000 and
5000 data, respectively, are created where ’s are uniformly
randomly distributed on the interval ( 10, 10). In order to make
the regression problem “real,” large uniform noise distributed
in [ 0.2, 0.2] has been added to all the training samples while
testing data remain noise-free.

The maximum number of hidden nodes is set as 200 for the
SLFN learning algorithm and the maximum number of hidden
nodes is set as 100 for the TLFN learning algorithm. The target
error is set 0.001 for SinC problem and 0.01 for the rest of
the problems. Table VI shows the average performance of these
two algorithms. It can be observed that TLFN with 100 nodes
can get better generalization performance than SLFN with 200
nodes. The TLFN algorithm runs faster than SLFN in these
cases. The training time shown in Table VI is the total time spent
for training all SLFNs in all subregions but does not include
the time spent for sorting the input data into different subre-
gions. It can be seen that the sorting time spent in TLFN is only
0.5–2.5% of the training time, which could be ignored.

V. DISCUSSION AND CONCLUSION

This paper first proves in an incremental constructive method
that the input weights and hidden layer biases of SLFNs with
additive hidden nodes or centers and impact factors of RBF
nodes of RBF networks need not be tuned at all. In order to make
the incremental network with randomly generated hidden

nodes converge to any continuous target function in a compact
subset of , one may only need to choose any bounded noncon-
stant piecewise continuous activation function for
additive nodes or any integrable piecewise continuous activation
function and for RBF nodes. It
is also noted that all the previous results [1]–[4], [14]–[16],
[20]–[29], [34]–[44] are based on the conventional network
model where additive or RBF hidden nodes need to be tuned
during training. These previous proof methods may not be imple-
mentable either. For example, some previous constructive proof
methods [14], [37] need to find enough appropriate interpolation
or partition points for network construction purposes; however,
in real applications, only a finite number of training samples is
available and they may not be the required interpolation points
for such universal approximation problems. Some incremental
algorithms proposed for SLFNs with additive hidden nodes in
the literature [14]–[16], [30], [31] require one to find the best
input weights and hidden node biases for newly added nodes
based on complicated methods as well.

The main aim of this paper is to prove in theory that the SLFNs
with randomly generated hidden nodes are actually universal
approximators. In fact, the proof itself is a practical incremental
constructive method, which actually shows an efficient way
to construct an incremental feedforward network. This simple
incremental constructive method with different activation func-
tions has been compared with other popular learning algorithms
on some benchmark artificial and real-world problems. The
simulation results show that our proposed method can reach
good generalization performance in a very efficient and simple
way. Interestingly, theoretically the learning algorithms de-
rived from our constructive method can be applied to a wide of
activation functions no matter whether they are sigmoidal or
nonsigmoidal, continuous or noncontinuous, or differentiable
or nondifferentiable. The traditional gradient-descent-based
learning algorithms cannot be applied to networks with nondif-
ferential activation functions such as threshold networks since
the required derivatives are not available. These methods may
also face local minima issues. Many popular learning algo-
rithms do not deal with threshold networks directly either and
instead use some analog networks to approximate them such
that gradient-descent method can finally be used. However,
the proposed learning algorithm can be used to train threshold
networks directly. A thorough performance evaluation of the
proposed algorithms using different activation functions for dif-
ferent applications should be further systematically conducted in
future. Although many other incremental learning algorithms



HUANG et al.: UNIVERSAL APPROXIMATION USING INCREMENTAL CONSTRUCTIVE FEEDFORWARD NETWORKS 13

have been proposed in the literature for training RBF networks
[20]–[25], unlike our incremental learning algorithms, the
universal approximation capability of these previous learning
algorithms has not been proved yet. The universal approxima-
tion capability of these incremental RBF learning algorithms
could be proved based on our proposed theory.

A special TLFN network architecture has also been proposed
in this paper, which consists of many learning machines (SLFNs)
with additive nodes each locally trained on one subregion of
the whole sample input space. Since all these local learning
machines can use the same input weights and hidden layer bi-
ases, these local learning machines can actually share the same
hidden nodes. Compared to[5], which only shows that infinite
differentiable sigmoidal functions can be used as activation
function in such TLFNs, it has been extended in this paper that a
large broad type of activation functions can be used if only they
are bounded nonconstant piecewise continuous. It is not difficult
to see that for modular networks such as ensemble computing
and mixture of local experts [52], [53], one may actually be able
to obtain compact networks by allowing those local learning
machines to share common hidden nodes. Some researchers
[14]–[16], [30], [31] proposed incremental constructive methods
for SLFNs that will fix parameters of existing nodes after trained
and will not be adjusted when new nodes are added. However,
similar compact TLFNs cannot be constructed based on such
incremental methods [14]–[16]. Based on these constructive
methods [14]–[16], [30], [31], the input weights of each SLFN
need to be trained at least one time and different SLFNs have
different input weights and hidden biases. Thus different SLFNs
cannot share common hidden nodes.

ACKNOWLEDGMENT

The author would like to thank the anonymous associate
editor and reviewers for their invaluable suggestions, which
have been incorporated to improve the quality of this paper
dramatically.

REFERENCES

[1] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Netw., vol. 4, pp. 251–257, 1991.

[2] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedfor-
ward networks with a nonpolynomial activation function can approxi-
mate any function,” Neural Netw., vol. 6, pp. 861–867, 1993.

[3] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, pp. 246–257, 1991.

[4] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden
neurons in feedforward networks with arbitrary bounded nonlinear
activation functions,” IEEE Trans. Neural Netw., vol. 9, no. 1, pp.
224–229, Jan. 1998.

[5] G.-B. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE Trans. Neural Netw., vol. 14, no. 2,
pp. 274–281, Mar. 2003.

[6] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Real-time learning capa-
bility of neural networks,” IEEE Trans. Neural Netw., vol. 17, no. 4,
Jul. 2006.

[7] ——, “Extreme learning machine: A new learning scheme of feed-
forward neural networks,” in Proc. Int. Joint Conf. Neural Networks
(IJCNN2004), Budapest, Hungary, Jul. 25–29, 2004, vol. 2, pp.
985–990.

[8] ——, “Extreme learning machine: Theory and applications,” Neuro-
comput., to be published.

[9] M.-B. Li, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “Fully
complex extreme learning machine,” Neurocomput., vol. 68, pp.
306–314, 2005.

[10] G.-B. Huang, Q.-Y. Zhu, K. Z. Mao, C.-K. Siew, P. Saratchandran,
and N. Sundararajan, “Can threshold networks be trained directly?,”
IEEE Trans. Circuits Syst. II, vol. 53, no. 3, pp. 187–191, Mar.
2006.

[11] E. Baum, “On the capabilities of multilayer perceptrons,” J. Complex.,
vol. 4, pp. 193–215, 1988.

[12] G.-B. Huang and C.-K. Siew, “Extreme learning machine: {RBF} net-
work case,” in Proc. 8th Int. Conf. Control, Automation, Robotic Vi-
sion (ICARCV 2004), Kunming, China, Dec. 6–9, 2004, vol. 2, pp.
1029–1036.

[13] ——, “Extreme learning machine with randomly assigned RBF ker-
nels,” Int. J. Inf. Technol., vol. 11, no. 1, pp. 16–24, 2005.

[14] A. R. Barron, “Universal approximation bounds for superpositions of
a sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp.
930–945, Mar. 1993.

[15] T.-Y. Kwok and D.-Y. Yeung, “Objective functions for training new
hidden units in constructive neural networks,” IEEE Trans. Neural
Netw., vol. 8, no. 5, pp. 1131–1148, Sep. 1997.

[16] R. Meir and V. E. Maiorov, “On the optimality of neural-network ap-
proximation using incremental algorithms,” IEEE Trans. Neural Netw.,
vol. 11, no. 2, pp. 323–337, Mar. 2000.

[17] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[18] A. Smola and B. Schölkopf, A tutorial on support vector regression

NeuroCOLT2 Tech. Rep. NC2-TR-1998-030, 1998.
[19] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient

BackProp,” Lecture notes in computer science, vol. 1524, pp. 9–50,
1998.

[20] J. Platt, “A resource-allocating network for function interpolation,”
Neural Comput., vol. 3, pp. 213–225, 1991.

[21] V. Kadirkamanathan and M. Niranjan, “A function estimation ap-
proach to sequential learning with neural networks,” Neural Comput.,
vol. 5, pp. 954–975, 1993.

[22] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A sequental
learning scheme for function approximation using minimal radial
basis function (RBF) neural networks,” Neural Comput., vol. 9, pp.
461–478, 1997.

[23] ——, “Performance evaluation of a sequental minimal radial basis
function (RBF) neural network learning algorithm,” IEEE Trans.
Neural Netw., vol. 9, no. 2, pp. 308–318, Mar. 1998.

[24] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An efficient
sequential learning algorithm for growing and pruning RBF (GAP-
RBF) networks,” IEEE Trans. Syst., Man, Cybern. B, vol. 34, no. 6,
pp. 2284–2292, Dec. 2004.

[25] ——, “A generalized growing and pruning RBF (GGAP-RBF) neural
network for function approximation,” IEEE Trans. Neural Netw., vol.
16, no. 1, pp. 57–67, Jan. 2005.

[26] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, pp.
359–366, 1989.

[27] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[28] K. Funahashi, “On the approximate realization of continuous mappings
by neural networks,” Neural Netw., vol. 2, pp. 183–192, 1989.

[29] M. Stinchcombe and H. White, “Universal approximation using feed-
forward networks with non-sigmoid hidden layer activation functions,”
in Artificial Neural Networks: Approximation and Learning Theory, H.
White, Ed. Oxford, U.K.: Blackwell, 1992, pp. 29–40.

[30] E. Romero, Function Approximation with SAOCIF: A general se-
quential method and a particular algorithm with feed-forward neural
networks [Online]. Available: http://www.lsi.upc.es/dept/techreps/
html/R01-41.html Dept. de Llenguatges i Sistemes Informàtics, Univ.
Politècnica de Catalunya, Spain, 2001

[31] ——, “A new incremental method for function approximation using
feed-forward neural networks,” in Proc. INNS-IEEE Int. Joint Conf.
Neural Networks (IJCNN’2002), 2002, pp. 1968–1973.

[32] W. L. Voxman, J. Roy, and H. Goetschel, Advanced Calculus: An In-
troduction to Modern Analysis. New York: Marcel Dekker, 1981.

[33] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Func-
tions and Functional Analysis, Volume 2: Measure, The Lebesgue In-
tegral, Hilbert Space. Baltimore, MD: Graylock, 1961.

[34] Y. Ito, “Approximation of continuous functions onR by linear com-
binations of shifted rotations of a sigmoid function with and without
scaling,” Neural Netw., vol. 5, pp. 105–115, 1992.

[35] A. Gallant and H. White, “There exists a neural network that does not
make avoidable mistakes,” in Artificial Neural Networks: Approxima-
tion and Learning Theory, H. White, Ed. Oxford, U.K.: Blackwell,
1992, pp. 5–11.



14 IEEE TRANSACTIONS ON NEURAL NETWORKS

[36] F. Girosi and T. Poggio, Networks and the best approximation prop-
erty A.I. Memo 1164, Artificial Intell. Lab., Massachusetts Inst. Tech.,
1989.

[37] T. Chen, H. Chen, and R.-W. Liu, “Approximation capability in
C(R ) by multilayer feedforward networks and related problems,”
IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 25–30, Jan. 1995.

[38] T. Poggio and F. Girosi, A theory of networks for approximation and
learning A.I. Memo No. 1140, Artificial Intell. Lab., Massachusetts
Inst. Tech., 1989.

[39] V. Kurková, “Kolmogorov’s theorem and multilayer neural networks,”
Neural Netw., vol. 5, pp. 501–506, 1992.

[40] V. Y. Kreinovich, “Arbitrary nonlinearity is sufficient to represent all
functions by neural networks: A theorem,” Neural Netw., vol. 4, pp.
381–383, 1991.

[41] C.-H. Choi and J. Y. Choi, “Constructive neural networks with piece-
wise interpolation capabilities for function approximations,” IEEE
Trans. Neural Netw., vol. 5, no. 6, pp. 936–944, 1994.

[42] Y. Ito, “Approximation of functions on a compact set by finite sums of
a sigmoid function without scaling,” Neural Netw., vol. 4, pp. 817–826,
1991.

[43] J. Wray and G. G. Green, “Neural networks, approximation theory and
finite precision computation,” Neural Netw., vol. 8, no. 1, pp. 31–37,
1995.

[44] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence
theorem,” in Proc. Int. Conf. Neural Networks, 1987, pp. 11–14.

[45] C. Blake and C. Merz, UCI repository of machine learning databases
[Online]. Available: http://www.ics.uci.edu/~mlearn/MLReposi-
tory.html Dept. Inf. Comp. Sci., Univ. California. Irvine, 1998

[46] C.-C. Chang and C.-J. Lin, LIBSVM—A library for support vector ma-
chines [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Dept. Comp. Sci. Inf. Eng., Nat. Taiwan Univ., Taiwan, R.O.C., 2003

[47] J. Platt, Sequential minimal optimization: A fast algorithm for
training support vector machines Microsoft Research Tech. Rep.
MSR-TR-98-14, 1998.

[48] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy,
“Improvement to Platt’s SMO algorithm for SVM classifier design,”
Neural Comput., vol. 13, pp. 637–649, 2001.

[49] T. Joachims, SVM —Support vector machine [Online]. Available:
http://svmlight.joachims.org/ Dept. of Computer Science, Cornell
Univ. Ithaca, NY, 2003

[50] MathWorks, Compiler execution speed comparison [Online]. Avail-
able: http://www.mathworks.com/products/compiler/examples/ex-
ample2.shtml MathWorks, Inc., 2003

[51] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2,
pp. 415–425, 2002.

[52] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the EM algorithm,” Neural Comput., vol. 6, pp. 181–214, 1994.

[53] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Comput., vol. 3, pp. 79–87, 1991.

Guang-Bin Huang (M’98–SM’04) received the
B.Sc. degree in applied mathematics and the M.Eng.
degree in computer engineering from Northeastern
University, China, in 1991 and 1994, respectively,
and the Ph.D. degree in electrical engineering from
Nanyang Technological University, Singapore, in
1999.

From June 1998 to May 2001, he was a Research
Fellow with the Singapore Institute of Manufacturing
Technology (formerly known as Gintic Institute of
Manufacturing Technology), where he led/imple-

mented several key industrial projects. Since then, he has been an Assistant
Professor in the School of Electrical and Electronic Engineering, Nanyang
Technological University. His current research interests include machine
learning, bioinformatics, and networking.

Dr. Huang is an Associate Editor of Neurocomputing and IEEE TRANSACTION

ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS.

Lei Chen received the B.Sc. degree in applied
mathematics and the M.Sc. degree in operational
research and control theory from Northeastern
University, China, in 1999 and 2002, respectively.
He is currently working toward the Ph.D. degree
from Nanyang Technological University, Singapore.

His research interests include artificial neural net-
works, pattern recognition, and machine learning.

Chee-Kheong Siew (M’92) received the B.Eng.
degree in electrical engineering from the University
of Singapore, Singapore, in 1979, and the M.Sc.
degree in communication engineering from Imperial
College, London, U.K., in 1987.

He is currently an Associate Professor in the
School of Electrical and Electronics Engineering,
Nanyang Technological University (NTU), Sin-
gapore. From 1995 to 2005, he was Head of the
Information Communication Institute of Singapore
(ICIS) after he managed the transfer of ICIS to

NTU and rebuilt the institute in the university environment. After six years in
industry, he joined NTU in 1986 and became the Head of the institute in 1996.
His current research interests include neural networks, packet scheduling,
traffic shaping, admission control, service curves and admission control, QoS
framework, congestion control, and multipath routing.


