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Abstract—The Brain-State-in-a-Box (BSB) model is an auto-
associative neural network that has been widely used in 
optical character recognition and image processing. 
Traditionally, the BSB model was realized at software level 
and carried out on high-performance computing clusters. To 
improve computation efficiency and reduce resource 
requirement, we propose a hardware realization by utilizing 
memristor crossbar arrays. Memristors can remember the 
historical profiles of the excitations and record them as analog 
variables. The similarity to biological synaptic behavior has 
encouraged a lot of research on memristor-based neuro-
morphic hardware system. In this work, we explore the 
potential of a memristor crossbar array as an auto-associative 
memory. More specifically, the recall function of a multi-
answer character recognition based on BSB model was 
realized. The robustness of the proposed BSB circuit was 
analyzed and evaluated based on massive Monte-Carlo 
simulations, considering input defects, process variations, and 
electrical fluctuations. The physical constraints when 
implementing a neural network with memristor crossbar 
array have also been discussed. Our results show that the BSB 
circuit has a high tolerance to random noise. Comparably, the 
correlations between memristor arrays introduce directional 
noise and hence dominate the quality of the circuit.   

Keywords - neural network, BSB model, memristor, crossbar 
array, process variation. 

I. INTRODUCTION 

As demand on high performance computation increases, 
the traditional Von Neumann computer architecture 
becomes less efficient. In recent years, neuromorphic 
hardware systems have gained great attention. Such 
systems can potentially provide the capabilities of 
biological perception and information processing within a 
compact and energy-efficient platform [1][2]. Many 
research activities have been carried out on neural network 
algorithm enhancement [3] and/or system implementations 
built upon the conventional CPU, GPU, or FPGA [4]. 

As a highly generalized and simplified abstract of a 
biological system, an artificial neural network usually uses 
a connection matrix to represent a set of synapse networks. 
Accordingly, a group or groups of chemically connected or 
functionally associated neurons can be mathematically 
transformed into matrix-vector multiplication(s). Similar to 
the biological systems, the neural network algorithms 
inherently are adaptive to the environment and resilience to 
random noise. As a consequence, hardware realizations of 
neural networks require a large volume of memory and are 
associated with high design complexity and hardware cost 
[2]. Algorithm enhancement can alleviate the situation but 

cannot fundamentally resolve it. More efficient hardware-
level solutions become necessary. 

The Brain-state-in-a-box (BSB) model is a simple, 
auto-associative, nonlinear, energy-minimizing neural 
network [5][6][7][8]. A common application of the BSB 
model is optical character recognition (OCR) for printed 
text [9]. Recently, a multi-answer character recognition 
method based on the BSB model has been developed to 
improve reliability and robustness for noisy or occluded 
text images [10]. An input character image is processed 
through the BSB models in parallel for the recall (pattern 
recognition) operation. When all recalls are completed, a 
set of candidates are selected based on the convergence 
speed. 

The existence of the memristor was predicted in circuit 
theory nearly forty year ago [11]. However, it wasn’t until 
2008 that the first physical realization was demonstrated by 
HP Lab through a TiO2 thin-film structure [12]. Afterward, 
many memristor materials and devices have been reported 
or rediscovered. The memristor has many promising 
features, such as non-volatility, low-power consumption, 
high integration density, and excellent scalability [13][14]. 
More importantly, the unique property to record the 
historical profile of the excitations on the device makes it 
an ideal candidate to realize synapse behavior in electronic 
neural networks [15][16]. 

In this paper, we demonstrate a BSB recall circuit built 
on the memristor crossbar array. The crossbar architecture 
can naturally transfer the weighted combination of input 
signals to output voltages. However, due to physical 
constraints, the connection matrix weights in neuromorphic 
algorithms might not have the one-to-one mapping to the 
memristances of a crossbar array. We proposed a fast 
approximation mapping method so that the connection 
matrix can be mapped to pure circuit element relations. The 
validity of the method has been proved. Key design 
parameters and physical constraints have been extracted 
and studied. Furthermore, we carried out a detailed analysis 
to study the weight of each and all noise contributors on the 
accuracy and robustness of the BSB circuit. Interestingly, 
even if a large random process variation exists in memristor 
devices [17], it will not affect the BSB circuit much due to 
the inherent random noise tolerance of the BSB model. 
However, the correlation between two memristor networks 
within one BSB circuit dominates the robustness of the 
circuit since it introduces directional noise. 
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The remainder of the paper is organized as follows. In 
Section 2 we provide background information. Section 3 
describes the hardware requirements to realize the BSB 
model and explains the details of the implementation. 
Section 4 classifies the types of noise that affect the quality 
of the BSB recall circuit. Section 5 analyzes the robustness 
of the BSB circuit design based on the simulation results. 
At the end, we conclude the paper in Section 6.  

II. PRELIMINARY 

A. Neural Network and BSB Model 
Figure 1 illustrates a simple example of a neural 

network, in which two groups of neurons are connected by 
a set of synapses. We define ai,j as the synaptic strength of 
the synapse connecting the ith neuron in the input group and 
the jth neuron in the output one. The relationship of the 
activity patterns F of input neurons and T of output neurons 
can be described in matrix form: 

𝐓𝑛 = 𝐀𝑛×𝑚 × 𝐅𝑚                             (1) 

where matrix A, denoted as the connection matrix, consists 
of the synaptic strengths between the two neuron groups. 
The matrix-vector multiplication of Eq. (1) is a frequent 
operation in neural network theory to model the 
functionally associated with neurons in brains.  

 
Figure 1: A simple example of neuron network.     

The BSB model is a simple auto-associative neural 
network with two main operations – training and recall 
[5][6][7][8]. In this paper, we will focus on the hardware 
realization of the BSB recall operation. Its mathematical 
model can be represented as [10]: 

  𝐱(𝑡 + 1) = 𝑆�𝛼 ∙ 𝐀 × 𝐱(𝑡) + 𝜆 ∙ 𝐱(𝑡)�                  (2) 

where, x is an N dimensional real vector, and A is an N-by-
N connection matrix. 𝐀 × 𝐱(𝑡) is a matrix-vector multipli-
cation, which is the main function of the recall operation.  
𝛼  is a scalar constant feedback factor. 𝜆  is an inhibition 
decay constant. S(y) is the “squash” function defined as:  

 𝑆(𝑦) = �
1, 𝑖𝑓                   𝑦 ≥ 1
𝑦, 𝑖𝑓      − 1 < 𝑦 < 1
−1, 𝑖𝑓             𝑦 ≤ −1

                         (3) 

For a given input pattern x(0), the recall function computes 
Eq.(2) iteratively until convergence, that is, when all entries 
of x(t+1) are either "1" or "-1". 

Recently, Wu et al. [10] developed a multi-answer 
character recognition method based on the BSB model for 

occluded text images. It processes an input character image 
through all the BSB models and selects multiple candidates 
with the fastest convergence speed for word-level or 
sentence-level language model. This method will be used to 
evaluate the reliability and robustness of the memristor-
based BSB recall circuit proposed in this paper. 

B. Memristor 
Based on circuit theory, an ideal memristor with 

memristance M builds the relationship between the 
magnetic flux ϕ and electric charge q that passes through 
the device, that is, dϕ = M⋅dq. Since the magnetic flux and 
the electric charge are time dependent parameters, the 
instantaneous memristance varies with time and reflects the 
historical profile of the excitations through the device. 

When developing actual memristive devices, many 
materials have demonstrated memristive behavior in theory 
and/or experimentation via different mechanisms. In 
general, a certain energy (or threshold voltage) is required 
to enable a state change in a memristor [18]. When the 
electrical excitation through a memristor is greater than the 
threshold voltage, e.g., |vin| > |vth| the memristance changes 
(training). Otherwise, the memristor behaves like a resistor. 

By nature, the memristor crossbar array is attractive for 
the implementation of neural networks. First of all, it 
supports a large number of signal connections within a 
small footprint, which is a basic characteristic of the 
synapse network in Figure 1. Secondly, the dominant 
operation in a neural network model is the weighted 
combination of input signals, which mimic the so-called 
dendritic potential [19]. As we shall show in Section 3.1, 
the crossbar array inherently provides capabilities for this 
operation. Moreover, it is required that the connection 
matrix in a neural network can be adjusted based on the 
learning process. Memristive devices are good at “learning” 
for the historical behavior [20]. 

In this work, we will focus on a hardware realization of 
the BSB recall function by assuming all of the memristors 
have been pre-programmed or already trained. During 
recall operations, the voltages across the memristors are 
constrained below the threshold voltage so that all the 
memristance values remain unchanged. 

III. METHODOLOGY 

A. Crossbar Array vs. Connection Matrix 
Let’s use the N-by-N memristor crossbar array 

illustrated in Figure 2 to demonstrate its matrix 
computation functionality. 

Here, we apply a set of input voltages 𝐕𝐈T =
{𝑣𝐼,1, 𝑣𝐼,2,⋯ , 𝑣𝐼,𝑁} on the word-lines (WL) of the array, and 
collect the current through each bit-line (BL) by measuring 
the voltage across a sensing resistor. The same sensing 
resistors are used on all the BLs with resistance rs, or 
conductance gs = 1/rs. The output voltage vector is 𝐕𝐎T =
{𝑣𝑂,1, 𝑣𝑂,2,⋯ , 𝑣𝑂,𝑁}. Assume the memristor sitting on the 
connection between WLi and BLj has a memristance of mi,j. 
The corresponding conductance is gi,j = 1/mi,j . Then the 



relation between the input and output voltages can be 
represented by: 

  𝐕𝐎 = 𝐂 × 𝐕𝐈                                     (4) 

 
Figure 2: A memristor crossbar array. 

Here, C can be represented by the memristances and the 
load resistors as: 

  𝐂 = 𝐃 × 𝐆 = 𝑑𝑖𝑎𝑔(𝑑1,⋯ ,𝑑𝑁) × �

𝑔1,1
𝑔2,1

⋯
𝑔1,𝑁
𝑔2,𝑁

⋮ ⋱ ⋮
𝑔𝑁,1 ⋯ 𝑔𝑁,𝑁

�      (5) 

where, 𝑑𝑖 = 1/(𝑔𝑠 + ∑ 𝑔𝑖,𝑘𝑁
𝑘=1 ) . The conductance matrix 

G and the memristor matrix M have a relation of: 𝐆 = 1 ∙
/𝐌1. 

Eq. (4) indicates that a trained memristor crossbar array 
can be used to construct the connection matrix C, and 
transfer the input vector VI to the output vector VO. 
However, Eq. (5) shows that C is not a direct one-to-one 
mapping of conductance matrix G of the memristor 
crossbar array, since the diagonal matrix D is related to G. 
Though we can use a numerical iteration method to obtain 
the exact mathematical solution of G, it is too complex and 
impractical. We assume any 𝑔𝑖,𝑗 ∈ 𝐆 satisfies𝑔𝑚𝑖𝑛 ≤ 𝑔𝑖,𝑗 ≤
𝑔𝑚𝑎𝑥 , where gmin and gmax respectively represent the 
minimum and the maximum conductance of all memristors 
in the crossbar array. Instead, we propose a simple and fast 
approximation to the mapping problem by allowing: 

                 𝑔𝑖,𝑗 = 𝑐𝑖,𝑗 ∙ (𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) + 𝑔𝑚𝑖𝑛                     (6) 

In the following, we will prove that by using this 
mapping method, a decayed version of the connection 
matrix 𝐂� can be approximately mapped to the conductance 
matrix G of the memristor array. 

PROOF. By plugging Eq. (6) in Eq. (5), we have: 

                  𝑐̂𝑖,𝑗 = 𝑐𝑖,𝑗∙(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)+𝑔𝑚𝑖𝑛

𝑔𝑠+(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)∙∑ 𝑐𝑖,𝑗𝑁
𝑘=1 +𝑁∙𝑔𝑚𝑖𝑛

                   (7) 

Note that many memristor materials, such as TiO2 
memristor, demonstrate a large gmax/gmin ratio [12]. Thus, a 
memristor at the high resistance state under a low voltage 
excitation can be regarded as an insulator, that is, 𝑔𝑚𝑖𝑛 ≅

0. Moreover, the BSB recall matrix A is a special matrix 
with a small ∑ 𝑐𝑖,𝑗𝑁

𝑘=1 . For example, all the BSB models 
used for character recognition in our experiments have 
∑ 𝑐𝑖,𝑗𝑁
𝑘=1 < 5 when N = 256. And ∑ 𝑐𝑖,𝑗𝑁

𝑘=1  can be further 
reduced by increasing the ratio of gs/gmax. As a result, the 
impact of ∑ 𝑐𝑖,𝑗𝑁

𝑘=1  can be ignored. These two facts indicate 
that Eq. (7) can be further simplified as: 

                                𝑐̂𝑖,𝑗 = 𝑐𝑖,𝑗 ∙
𝑔𝑚𝑎𝑥

𝑔𝑠
                                      (8) 

In summary, with the proposed mapping method, the 
memristor crossbar array performs as a decayed connection 
matrix 𝑐̂𝑖,𝑗 between the input and output voltage signals. � 

B. Transformation of BSB Recall Matrix 
To construct a memristor-based BSB recall circuit, our 

first task is to transfer the matrix A in the mathematical 
BSB recall model to a memristor array with physical 
meaning. A memristor is a physical device with 
conductance g > 0. Therefore, all elements in matrix C 
must be positive as shown in Eq. (5). However, in the 
original BSB recall model, 𝑎𝑖,𝑗 ∈ 𝐀  could be positive or 
negative. We propose to split the positive and negative 
terms of A into two matrixes A+ and A– as: 

                       𝑎𝑖,𝑗+ = �
𝑎𝑖,𝑗 , 𝑖𝑓 𝑎𝑖,𝑗 > 0
    0, 𝑖𝑓 𝑎𝑖,𝑗 ≤ 0  , and                      (9a) 

                       𝑎𝑖,𝑗− = �
0,          𝑖𝑓 𝑎𝑖,𝑗 > 0
−𝑎𝑖,𝑗 , 𝑖𝑓 𝑎𝑖,𝑗 ≤ 0  .                         (9b) 

As such, Eq. (2) becomes: 

        𝐱(𝑡 + 1) = 𝑆�𝐀+ × 𝐱(𝑡) − 𝐀− × 𝐱(𝑡) + 𝐱(𝑡)�          (10) 

Here, for the default case we set 𝛼 = 𝜆 = 1 . The two 
connection matrices A+ and A– can be mapped to two 
memristor crossbar arrays M1 and M2 in a decayed version 
𝐀�+ and 𝐀�−, respectively, by following the mapping method 
in Eq. (6). 

C. Circuit Realization 
To realize the BSB recall function at the circuit level, 

we first convert the normalized input vector x(t) to a set of 
input voltage signals V(t). The corresponding function for 
the voltage feedback system can be expressed as: 

        𝐕(𝑡 + 1) = 𝑆′�𝐀+ × 𝐕(𝑡) − 𝐀− × 𝐕(𝑡) + 𝐕(𝑡)� 

                        = 𝑆′�𝐕𝐀+(𝑡) − 𝐕𝐀−(𝑡) + 𝐕(𝑡)�                 (11) 

We use vbn to represent the input voltage boundary, that 
is, −𝑣𝑏𝑛 ≤ 𝑣𝑖(𝑡) ≤ 𝑣𝑏𝑛  for any 𝑣𝑖(𝑡) ∈ 𝐕(𝑡) . The new 
saturation boundary function 𝑆′()  need to be modified 
accordingly. In implementation, vbn can be adjusted based 
on requirements for convergence speed and accuracy. 
Meanwhile, vbn must be smaller than vth so that the 
memristance values will not change during the recall 
process. 

Figure 3 illustrates the BSB recall circuit built based on 
Eq. (11). The design is an analog system consisting of three 
major components. Below is the detailed description. 



 
Figure 3: The conceptual diagram of the BSB recall circuit. 

Memristor crossbar arrays: As the key component of 
the overall design, the memristor crossbar arrays are used 
to realize the matrix-vector multiplication function in the 
BSB recall operation. To obtain both positive and negative 
weights in the original BSB algorithm in Eq. (2), two 
memristor crossbar arrays M1 and M2 are required in the 
design to represent the connection matrices 𝐀�+  and 𝐀�− , 
respectively. The memristor crossbar array has the same 
dimension as the BSB weight matrix A. 

Summing amplifier: In our design, the input signal vi(t) 
along with 𝑣𝐴�+,𝑖(𝑡) and 𝑣𝐴�−,𝑖(𝑡), the corresponding voltage 
outputs of two memristor crossbar arrays, are fed into a 
summing amplifier. The conceptual structure of the 
summing amplifier can be found in the inner set of Figure 
3. 

Resulted by the decayed mapping method proposed in 
Section 3, the required 𝑣𝐴+,𝑖(𝑡) should be gs/gmax times of 
the generated 𝑣𝐴�+,𝑖(𝑡) . 𝑣𝐴−,𝑖

(𝑡)  has the same requirement 
too. In our design, we set R1 = R4 = R6 = 1/gs and R2 = R3 = 
R5 = R7 =1/gmax. The resulting output of the summing 
amplifier: 

     𝑣𝑖(𝑡 + 1) = 𝑔𝑠
𝑔𝑚𝑎𝑥

∙ 𝑣𝐴�+,𝑖
(𝑡) − 𝑔𝑠

𝑔𝑚𝑎𝑥
∙ 𝑣𝐴�−,𝑖

(𝑡) + 𝑣𝑖(𝑡)  

                      = 𝑣𝐴+,𝑖
(𝑡) − 𝑣𝐴−,𝑖

(𝑡) + 𝑣𝑖(𝑡)                        (12) 

which indicates that the decayed effect has been canceled 
out. The N dimensional BSB model requires N summing 
amplifiers to realize the addition/subtraction operation in 
Eq. (11). Also, for summing amplifiers, we should adjust 
their power signals to make their maximum/minimum 
output voltages equal ±𝑣𝑏𝑛 , respectively. In 
implementation, we can adjust the resistances R1 ~ R7 to 
match the required 𝛼 and 𝜆 in Eq. (2), if they are not the 
default value 1. 

Comparator: Once a new set of voltage signals V(t+1) 
is generated from the summing amplifiers, we send them 
back as the input of the next iteration. Meanwhile, every 
𝑣𝑖 ∈ 𝐕 is compared to vbn and -vbn to determine if path i has 
“converged”. The recall operation stops when all the N 
paths reach convergence. Totally N comparators are needed 
to cover all the paths. 

IV. ROBUSTNESS OF BSB RECALL CIRCUIT 

Running the BSB recall circuit constructed in Section 3 
under ideal conditions should lead to the exact same results 
as the BSB mathematical algorithm. Unfortunately, the 
noise induced by process variations and signal fluctuations 
in implementation can significantly affect circuit 
performance. In this section, we will address the modeling 
of this noise at the component level. The impact of physical 
design constraints will also be discussed. 

A. Process Variations 

1) Memristor Crossbar Arrays 
Due to process variations, the real memristance matrix 

𝐌′ of a memristor crossbar array could be quite different 
from the theoretical M. Their difference can be represented 
by a noise matrix NM, which includes two contributors – 
the systematic noise NM,sys and the random noise NM,rdm. 
Consequently, 𝐌′ can be expressed by: 

     𝐌′ = 𝐌 ∙∗ 𝐍𝐌 = 𝐌 ∙∗ (1 + 𝐍𝐌,sys + 𝐍𝐌,rdm)            (13) 

The impact of NM on the connection matrix C is too 
complex to be expressed by a mathematical closed-form 
solution. But numerical analysis shows that it can be 
approximated by: 

                       𝐂𝐌′ = 𝐂 ∙∗ 𝐍𝐂𝐌 = 𝐂 ∙∗ 1
𝐍𝐌
∙∗ 1

𝐍𝐌
                          (14) 

Here, 𝐂𝐌′  is the connection matrix after including 
memristance process variations. NCM is the corresponding 
noise matrix. 

In the following analysis, we assume NM,sys follows a 
normal distribution. To fully demonstrate the impact of the 
random process variations, the lognormal distribution is 
used to generate NM,rdm. Coefficient CorrM is used to 
represent the correlation degree between the two memristor 
crossbar arrays in the same BSB circuit. When CorrM = 1, 
the two arrays have the same systematic noise. 

2) Sensing Resistance 
Similar to the analysis of memristance variation, we 

classify the noise induced by RS variations into the 
systematic noise NR,sys and the random noise NR,rdm. The 
actual sensing resistance vector becomes: 

         𝐑𝐒
′ = 𝐑𝐒 ∙∗ 𝐍𝐑𝐒 = 𝐍𝐒 ∙∗ (1 + 𝐍𝐑,𝑠𝑦𝑠 + 𝐍𝐑,𝑟𝑑𝑚)      (15) 

𝐂𝐑′ , the connection matrix after including NRs, is: 
𝐂𝐑′ = 𝐂 ∙∗ 𝐍𝐂𝐑 = 𝐂 ∙∗ [𝐍𝐑𝐒 ,𝐍𝐑𝐒 ,⋯ ,𝐍𝐑𝐒]  (16) 

Here, NCR is the noise matrix of C after including the 
process variation of the sensing resistors. The mean value 
of rs distribution, which reflects the impact of systematic 
noise, can be obtained during the post-fabrication testing. 
When training the memristances in BSB circuit, NR,sys 
should have been included. Hence, in the following 
analysis, we only consider the random noise NR,rdm, which 
follows a normal distribution. 

B. Signal Fluctuations 



The electrical noise from the power supplies and the 
neighboring wires can significantly degrade the quality of 
analog signals. Different from the process variations that 
remain unchanged after the circuit is fabricated, these 
signal fluctuations vary during circuit operation. Without 
loss of generality, we assume the runtime noise of the 
summing amplifier’s output signals follows a normal 
distribution, same as that of the output of the comparators. 

C. Physical Constraints 
There are three major physical constraints in the circuit 

implementation: (1) For any 𝑣𝑖(0) ∈ 𝐕(0) , The voltage 
amplitude of initial input signal vi(0) is limited by the input 
circuit; (2) boundary voltage vbn must be smaller than vth of 
memristors; and (3) the summing amplifier has finite 
resolution. 

In the BSB recall function, the ratio between boundaries 
of S(y) and the initial amplitude of 𝑥𝑖(0),   𝑥𝑖(0) ∈ 𝐱(0) 
determines the learning space of the recall function. If the 
ratio is greater than the normalized value, the recall 
operation takes more iterations to converge with a higher 
accuracy. Otherwise, the procedure converges faster by 
lowering stability. Thus, minimizing the ratio of |𝑣𝑖(0)| 
and vbn can help obtain the best performance. However, the 
real amplifier has a finite resolution and vbn is limited 
within vth of the memristor. Continuously reducing |𝑣𝑖(0)| 
eventually will lose enough information in the recall 
circuit. So the resolution of the summing amplifier is a key 
parameter to determine the optimal ratio of |𝑣𝑖(0)|and vbn 
in circuit implementation. Certainly it also affects the 
design cost of amplifier and the overall design. 

V. SIMULATION RESULTS 

 
Figure 4: (a) Random line defects; (b) Random point defects 

The robustness of the BSB recall circuit was analyzed 
based on Monte-Carlo simulations conducted with 
MATLAB. We tested 26 BSB circuits corresponding to the 
26 lower case letters from “a” to “z”. Each character image 
consists of 16×16 points and can be converted to a 256-
entry vector. Accordingly, the BSB recall matrix has a 
dimension of 256×256. In each test, we created 500 design 
samples for each BSB circuit and ran 13,000 Monte-Carlo 
simulations. Two types of input pattern defects, random 
point defects and random line defects (see Figure 4), have 
been evaluated. 

A. BSB Circuit under Ideal Condition 
For an input pattern, the different BSB circuits have 

different convergence speeds. Figure 5 shows an example 
when processing a perfect “a” image through the BSB 
circuits trained for all 26 lower case letters. The BSB 
circuits for “a”, “l”, and “s” reach convergence with the 
least iteration numbers. The multi-answer character 

recognition method considers these three letters as winners 
and sends them to word-level language model [10]. 

 
Figure 5: Iterations of 26 BSB circuits for a perfect “a” image. 

Figure 6 summarizes the performance of the BSB 
circuit design under ideal conditions without input defects, 
process variations, or signal fluctuations. The x-axis and y-
axis represent input images and the BSB circuits, 
respectively. All the winners are highlighted by the black 
blocks. Figure 6 shows that a BSB circuit corresponding to 
its trained input pattern always wins under the ideal 
condition. However, after injecting noise to input pattern or 
circuit design, some BSB circuits might fail to recognize its 
trained input pattern. In this work, we use the probability of 
failed recognitions PF to measure the performance of a 
BSB circuit. 

 
Figure 6: The performance of 26 BSB circuits under ideal condition. 

B. Process Variations and Signal Fluctuations 
Impact of random noise: 

The random noise in the BSB circuit could come from 
process variations as well as electrical signal fluctuations. 
We summarize the impact of every single random noise 
component in Table 1, based on Monte-Carlo simulation 
results. Here, we assume two memristor crossbar arrays are 
fully correlated, i.e., CorrM = 1. The simulation results 
show that BSB circuit design has a high tolerance on the 
random noise: compared to the ideal condition without any 
fluctuation (“IDEAL”), these random noise of circuits 
cause slight performance degradation. This is because 
resilience to random noise is one of the most important 
inherent features for the BSB model as well as other neural 
networks. 
Static Noise vs. Dynamic Noise: 

The noise matrices NM and NRs mainly affect the 
mapping between connection matrix and memristor 
crossbar array. Physically, these noise components come 
from process variations and remain unchanged during the 



recall operation. Thus, they can be regarded as static noise 
NS. On the contrary, the noise from the summing amplifiers 
and comparators are induced by electric fluctuations, which 
demonstrate a dynamic behavior during the iteration 
process of BSB recall function. We classify them as 
dynamic noise ND. 

Table 1: PF(%) of 26 BSB circuits for 26 input patterns. 

random point numbers 0 10 20 30 40 50 
IDEAL 0 2.1 4.2 5.3 10.0 20.8 
M (σsys = 0.1 & σrdm = 0.1) 0 1.9 4.6 6.5 14.2 24.7 
RS (σ = 0.1) 0 1.8 4.3 6.2 13.7 24.1 
SUM-AMP (σ = 0.1) 0 1.9 4.4 7.7 13.5 23.1 
COMPARATOR (σ = 0.1) 0 2.3 5.5 5.4 11.1 22.0 
CorrM = 0.6 5.6 10.2 17.2 22.7 30.8 38.6 
OVERALL (CorrM = 0.6) 4.6 8.2 15.2 20.7 32.8 36.6 
random line numbers 0 1 2 3 4 5 
IDEAL 0 7.3 13.8 21.5 35.8 50.2 
M (σsys = 0.1 & σrdm = 0.1) 0 7.4 14.8 25.5 38.8 53.6 
RS (σ = 0.1) 0 7.4 14.8 23.3 35.1 51.8 
SUM-AMP (σ = 0.1) 0 7.7 15.3 23.4 34.7 52.6 
COMPARATOR (σ = 0.1) 0 6.9 14.5 23.3 33.7 53.2 
CorrM = 0.6 5.1 14.4 24.7 34.6 44.2 55.1 
OVERALL (CorrM = 0.6) 6.3 15.4 24.2 34.1 44.0 58.2 
 

 
Figure 7: Static noise vs. dynamic noise. 

 
Figure 8: The impact of CorrM. 

We can adjust NS and ND and observe the combined 
impact on BSB circuit performance. For simplicity, we set 
σrdm(M) = σ (RS) = σS and σ(AMP) = σ(COMP) = σD. And 
CorrM = 1 to exclude the impact of correlations between the 
two memristor arrays. The result in Figure 7 shows that the 
dynamic noise dominates PF. For example, when σD = 0.5 

and σS = 0.1, PF is high even with a clean input image. 
Decreasing σD but increasing σS results in PF reduction in 
all regions.  
Impact of CorrM: 

The BSB circuit implementation uses two memristor 
crossbar arrays to split the positive and negative elements 
of A. Reducing CorrM and hence increasing the difference 
in the systematic noise of two memristor arrays can be 
regarded as A+ and A– having different overall shifts. This 
is directional noise in the recall function. As a 
consequence, CorrM demonstrates a higher impact. As 
shown in Figure 8, when decreasing CorrM from 1 to 0, the 
average PF dramatically increases. 

C. Impact of Summing Amplifier Resolution 
To achieve the same learning space as the normalized 

BSB model, based on the amplifier operating voltage we 
set vbn = 1.6V and all elements of V(0) to be ±0.1V. Then 
we vary the summing amplifiers’ resolution under different 
static and dynamic noise configurations. CorrM was fixed at 
0.6. The simulation results are shown in Figure 9. 

 
Figure 9: Impact of resolutions of summing amplifiers. 

Again the simulation results demonstrate the BSB 
circuit’s high tolerance for random noise: when σS = σD ≤ 
0.4, PF is close to the ideal condition of σS = σD = 0. A 
200mV resolution for the summing amplifier is too coarse 
to be acceptable: the BSB circuit cannot have zero PF even 
under the ideal condition when neither input defects nor 
random noise are included. The resolution of 100mV is 
acceptable when the noise is not significant (e.g., σS = σD ≤ 
0.2) and the input pattern defect number is small (e.g., less 
than 20 random point defects). For the given physical 
constraints configuration, the 50mV and 25mV resolutions 
show similar results when σS = σD ≤ 0.2. Further improving 
the resolution does not improve robustness of the BSB 
circuit much but increases design complexity and cost. 

D. Overall Performance 
In the previous analysis, we use the averaged PF of all 

26 BSB circuits for performance evaluation. One thing of 
particular interest is whether all BSB circuits degrade in the 
same way as we inject defects and noise into the system, or 
perhaps certain BSB circuits perform much better or worse 



than the others. In this test, we set CorrM = 0.8 and inject 0 
or 30 random points defects for each input image. Figure 
10 shows the comparison of PF of each input character 
pattern under ideal conditions (noise free) and under the 
scenario including all process variations and signal 
fluctuations (σS = σD = 0.1). 

 
Figure 10: PF for each character pattern. 

The simulation shows that the performance degradation 
induced by process variations and signal fluctuations have a 
constant impact on all BSB circuits. When processing a 
perfect image under the ideal condition, no BSB circuits 
fails and hence PF = 0. After including static and dynamic 
noise, PF ranges from 1% to 7% for different input 
characters. When increasing the random point defects to 30 
for input images, the range of PF increases from 0~10% 
under ideal conditions to 4~16% after including all the 
noise sources. 

VI. CONCLUSION 

In this work, we firstly introduce a framework for a 
hardware realization of neural network algorithms using 
memristor crossbar arrays. More specific, we transfer the 
mathematical expression of the BSB recall model to a pure 
physical device relation and design the corresponding 
circuit architecture. The multi-answer character recognition 
method was used to perform robustness analysis for the 
proposed circuit. The impacts of various noise components 
induced by process variations and electrical fluctuations 
have been thoroughly studied. The physical constraints in 
circuit implementation have also been discussed. We found 
that the correlation between the two memristor crossbar 
arrays within a BSB recall circuit dominates the quality of 
the circuit. The resolution of the summing amplifier is 
another important factor, which is related to the physical 
constraints in circuit implementation. Interestingly, the 
random noise due to process variations and electrical 
fluctuations do not have obvious correlation with the 
character pattern which is “trained” and stored in the BSB 
connection matrix. 
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