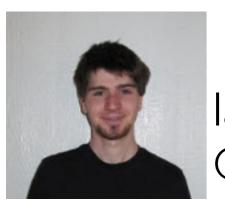
Generative adversarial networks

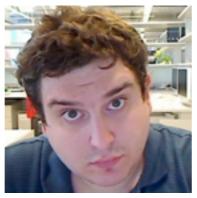


lan Goodfellow

Jean Pouget-Abadie

Mehdi Mirza

Bing Xu

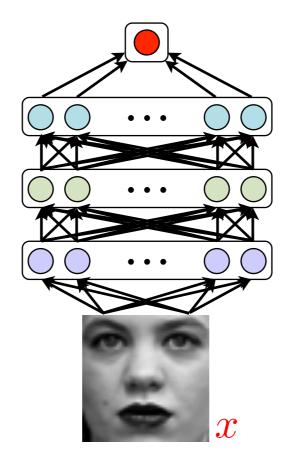


David Warde-Farley

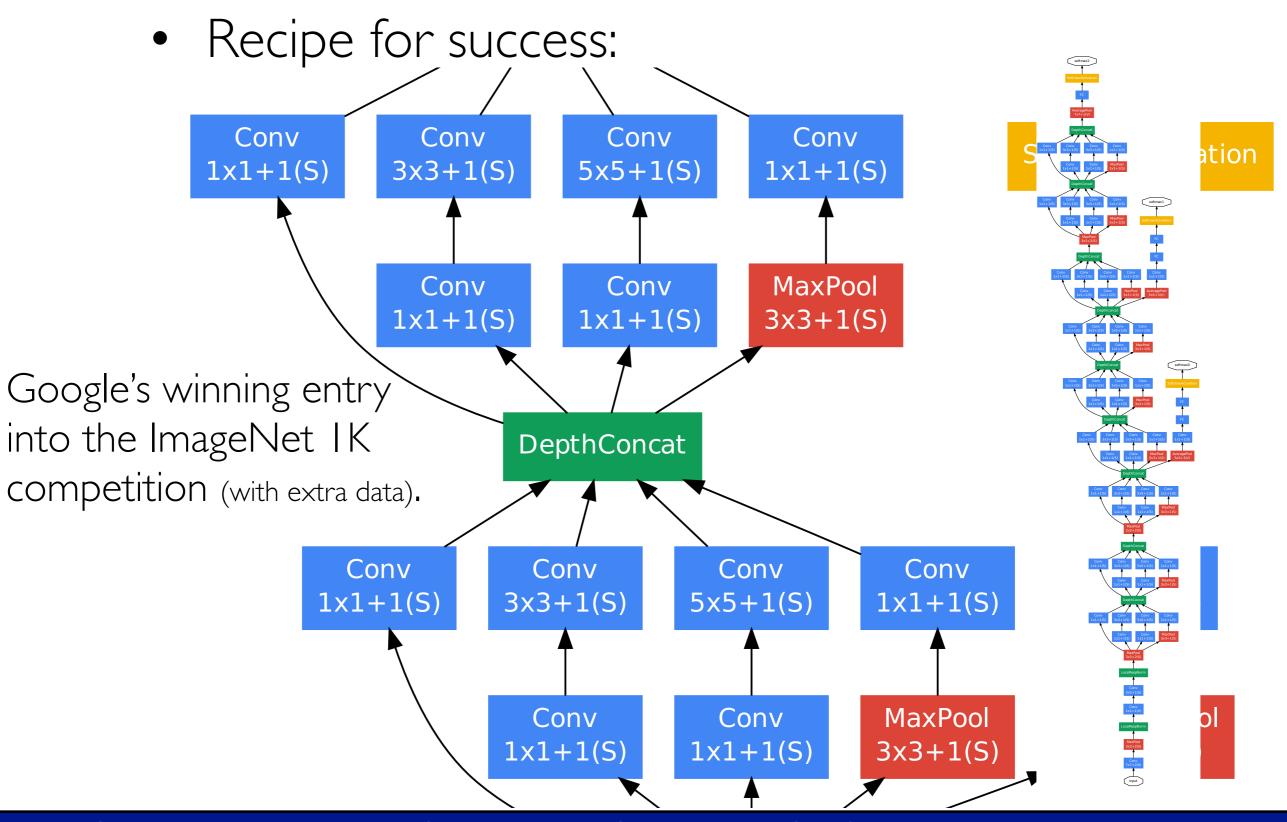
Yoshua Bengio

Discriminative deep learning

• Recipe for success



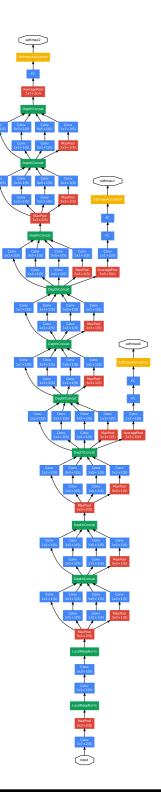
Discriminative deep learning



Discriminative deep learning

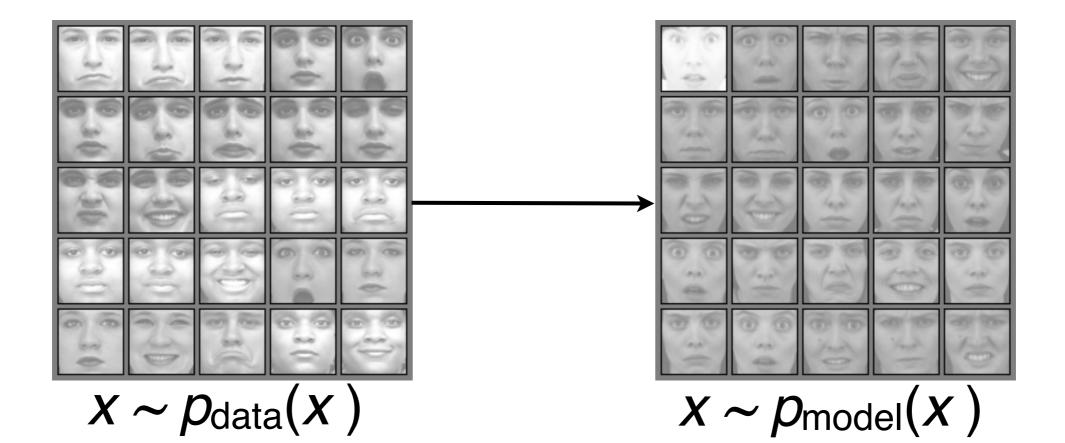
- Recipe for success:
 - Gradient backpropagation.
 - Dropout
 - Activation functions:
 - rectified linear
 - maxout

Google's winning entry into the ImageNet IK competition (with extra data).



Generative modeling

- Have training examples $x \sim p_{data}(x)$
- Want a model that can draw samples: $X \sim p_{model}(X)$
- Where $p_{\text{model}} \approx p_{\text{data}}$



Why generative models?

- Conditional generative models
 - Speech synthesis: Text \Rightarrow Speech
 - Machine Translation: French \Rightarrow English
 - French: Si mon tonton tond ton tonton, ton tonton sera tondu.
 - English: If my uncle shaves your uncle, your uncle will be shaved
 - Image \Rightarrow Image segmentation
- Environment simulator
 - Reinforcement learning
 - Planning
- Leverage unlabeled data

Maximum likelihood: the dominant approach

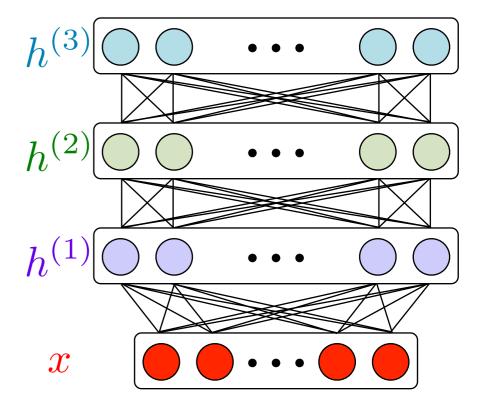
• ML objective function

$$\theta^* = \max_{\theta} \frac{1}{m} \sum_{i=1}^m \log p\left(x^{(i)};\theta\right)$$

Undirected graphical models

- State-of-the-art general purpose undirected graphical model: **Deep Boltzmann machines**
- Several "hidden layers" h

$$p(h, x) = \frac{1}{Z}\tilde{p}(h, x)$$
$$\tilde{p}(h, x) = \exp(-E(h, x))$$
$$Z = \sum_{h, x}\tilde{p}(h, x)$$



Undirected graphical models: disadvantage

• ML Learning requires that we draw samples:

$$\frac{d}{d\theta_i}\log p(x) = \frac{d}{d\theta_i} \left[\log \sum_h \tilde{p}(h, x) - \log Z(\theta)\right] \begin{array}{c} h^{(3)} & \cdots & \\ h^{(2)} & \cdots & \\ h^{(1)} & \cdots & \\ x & & & \\ \end{array}$$

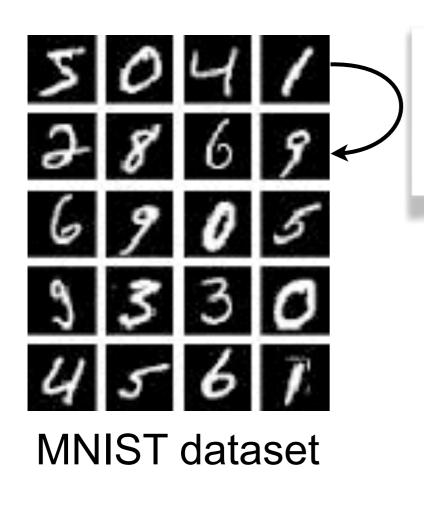
• Common way to do this is via MCMC (Gibbs sampling).

Boltzmann Machines: disadvantage

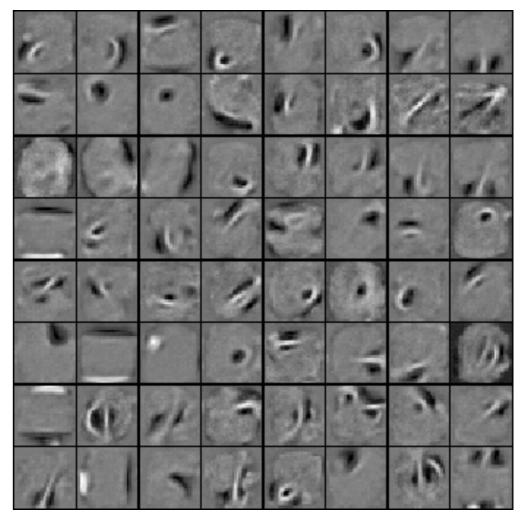
- Model is badly parameterized for learning high quality samples.
- Why?
 - Learning leads to large values of the model parameters.
 - Large valued parameters = peaky distribution.
 - Large valued parameters means slow mixing of sampler.
 - Slow mixing means that the gradient updates are correlated \Rightarrow leads to divergence of learning.

Boltzmann Machines: disadvantage

- Model is badly parameterized for learning high quality samples.
- Why poor mixing?



Coordinated flipping of lowlevel features

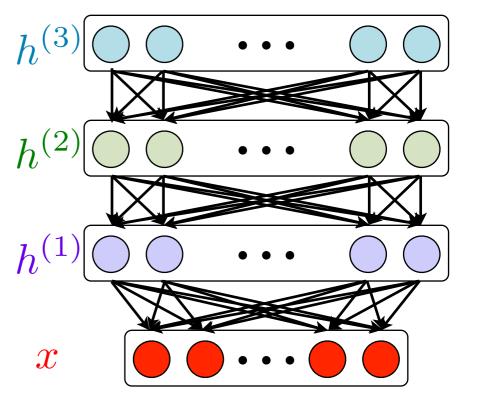


1st layer features (RBM)

Directed graphical models

$$p(x,h) = p(x \mid h^{(1)})p(h^{(1)} \mid h^{(2)}) \dots p(h^{(L-1)} \mid h^{(L)})p(h^{(L)})$$

$$\frac{d}{d\theta_i} \log p(x) = \frac{1}{p(x)} \frac{d}{d\theta_i} p(x)$$
$$p(x) = \sum_h p(x \mid h) p(h)$$



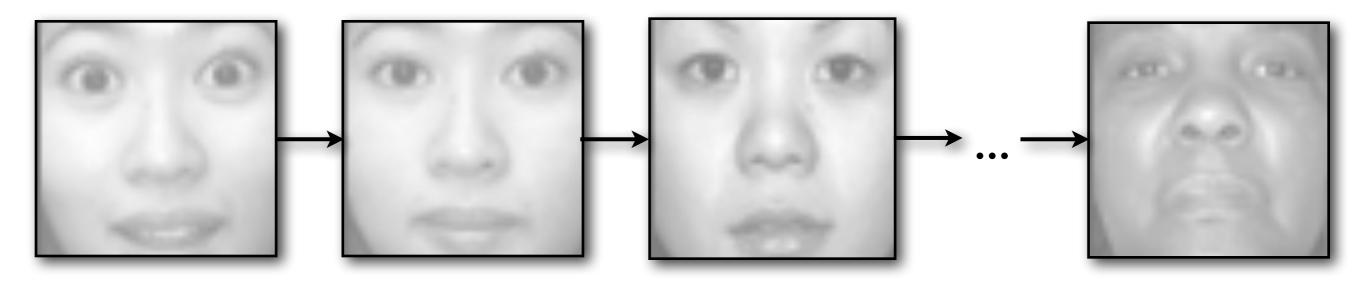
- Two problems:
 - I. Summation over exponentially many states in h
 - 2. Posterior inference, i.e. calculating $p(h \mid x)$, is intractable.

Directed graphical models: New approaches

- The Variational Autoencoder model:
 - Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning Representations (ICLR) 2014.
 - Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep latent Gaussian models. ArXiv.
 - Use a reparametrization that allows them to train very efficiently with gradient backpropagation.

Generative stochastic networks

• General strategy: Do not write a formula for p(x), just learn to sample incrementally.



• Main issue: Subject to some of the same constraints on mixing as undirected graphical models.

Generative adversarial networks

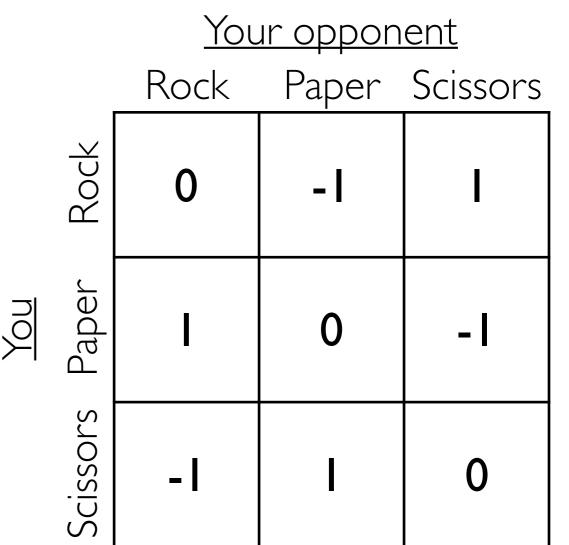
- Don't write a formula for *p(x)*, just learn to sample directly.
- No summation over all states.
- How? By playing a game.

Two-player zero-sum game

- Your winnings + your opponent's winnings = 0
- Minimax theorem: a rational strategy exists for all such finite games

Two-player zero-sum game

- Strategy: specification of which moves you make in which circumstances.
- Equilibrium: each player's strategy is the best possible for their opponent's strategy.
- Example: Rock-paper-scissors:
 - Mixed strategy equilibrium
 - Choose you action at random



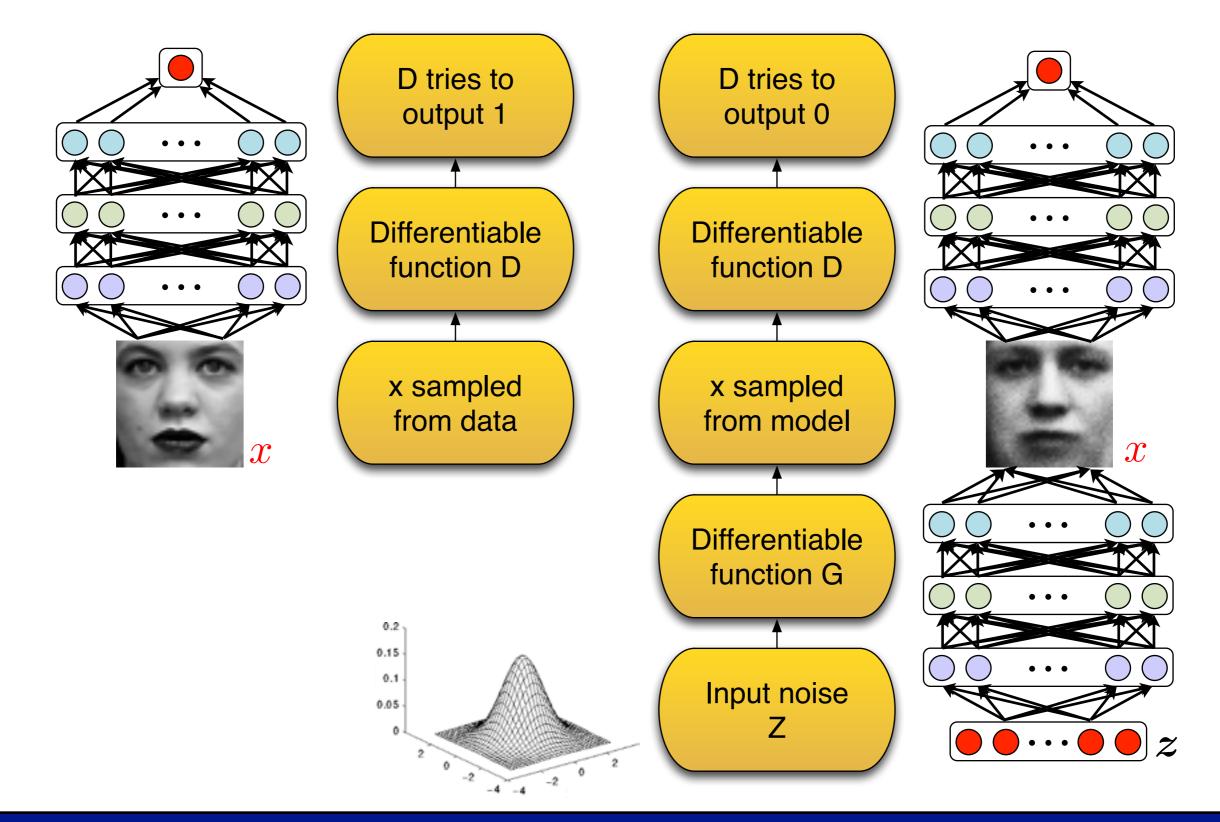
Generative modeling with game theory?

• Can we design a game with a mixed-strategy equilibrium that forces one player to learn to generate from the data distribution?

Adversarial nets framework

- A game between two players:
 - I. Discriminator D
 - 2. Generator G
- D tries to discriminate between:
 - A sample from the data distribution.
 - And a sample from the generator G.
- G tries to ''trick'' D by generating samples that are hard for D to distinguish from data.

Adversarial nets framework



Zero-sum game

• Minimax objective function:

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

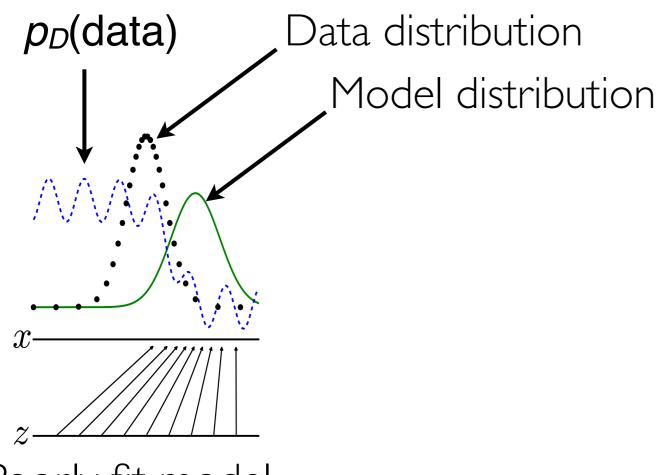
• In practice, to estimate G we use:

 $\max_{G} \mathbb{E}_{z \sim p_{z}(z)}[\log D(G(z))]$ Why? Stronger gradient for G when D is very good.

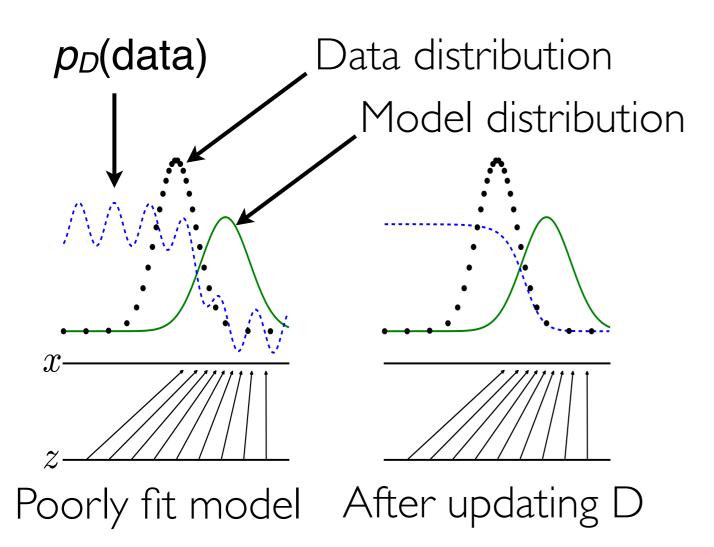
Discriminator strategy

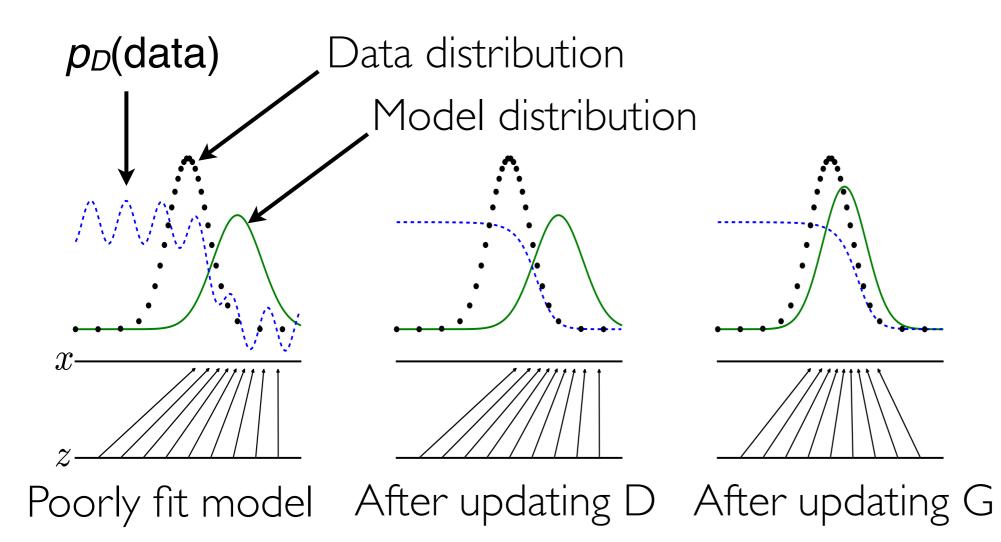
• Optimal strategy for any $p_{model}(x)$ is always

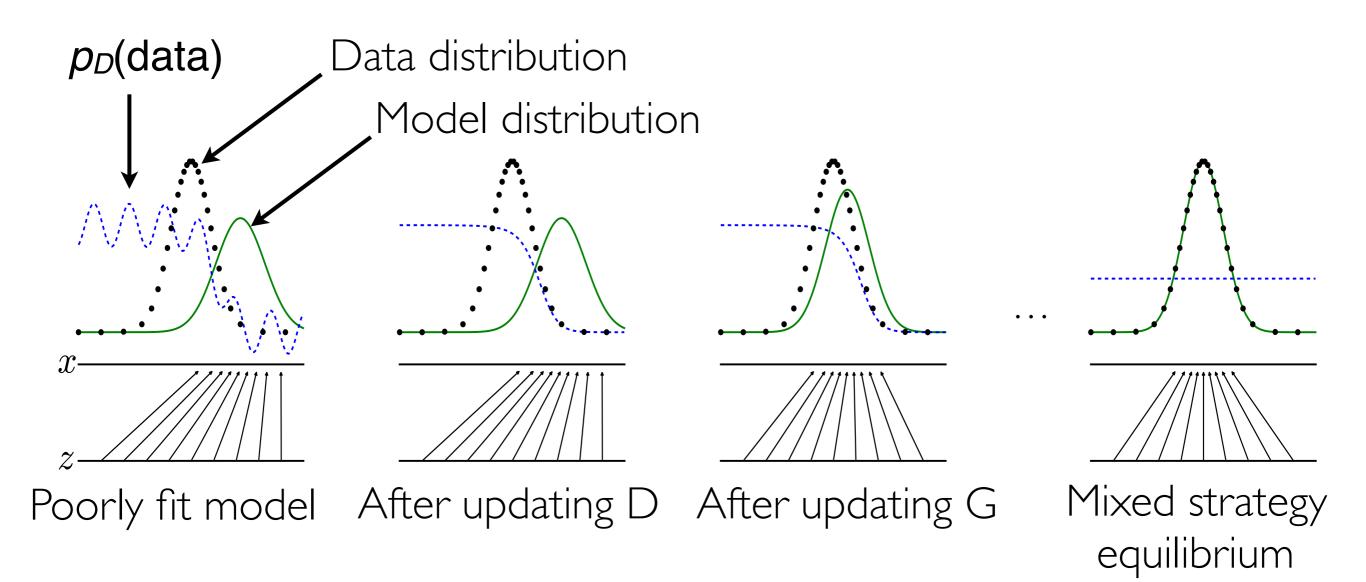
$$D(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$$



Poorly fit model







Theoretical properties

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

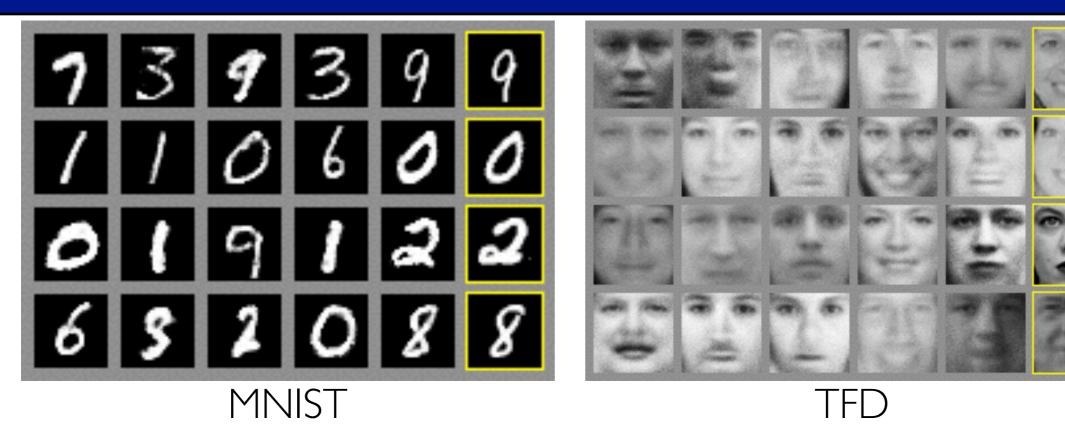
- Theoretical properties (assuming infinite data, infinite model capacity, direct updating of generator's distribution):
 - Unique global optimum.
 - Optimum corresponds to data distribution.
 - Convergence to optimum guaranteed.

Quantitative likelihood results

- Parzen window-based log-likelihood estimates.
 - Density estimate with Gaussian kernels centered on the samples drawn from the model.

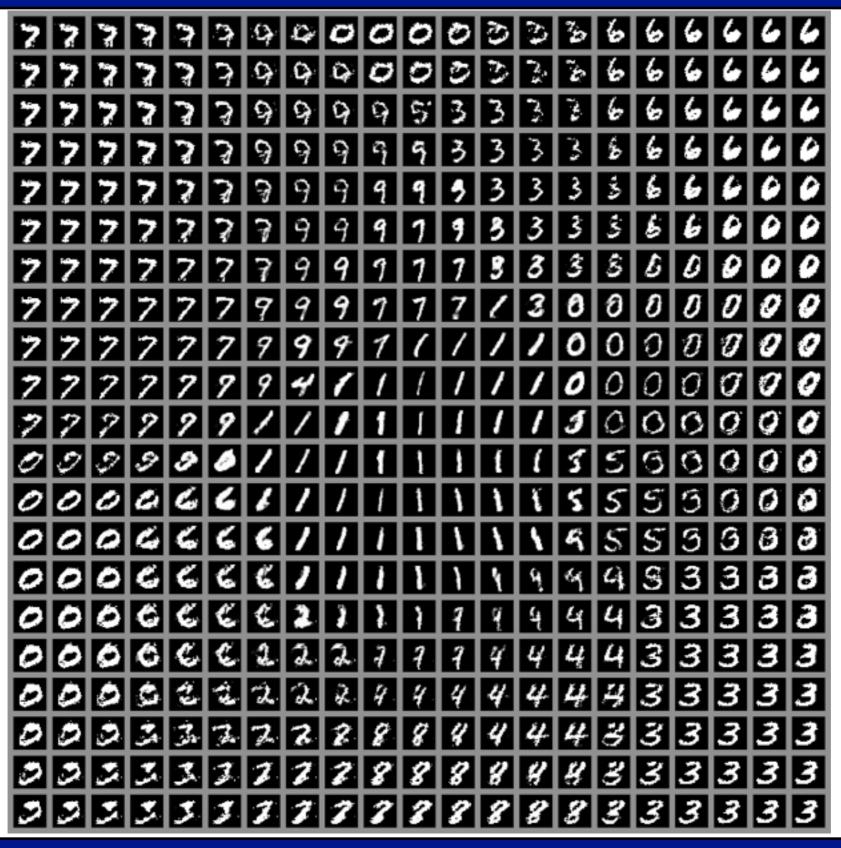
Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [6]	214 ± 1.1	1890 ± 29
Adversarial nets	${\bf 225 \pm 2}$	2057 ± 26

Visualization of model samples



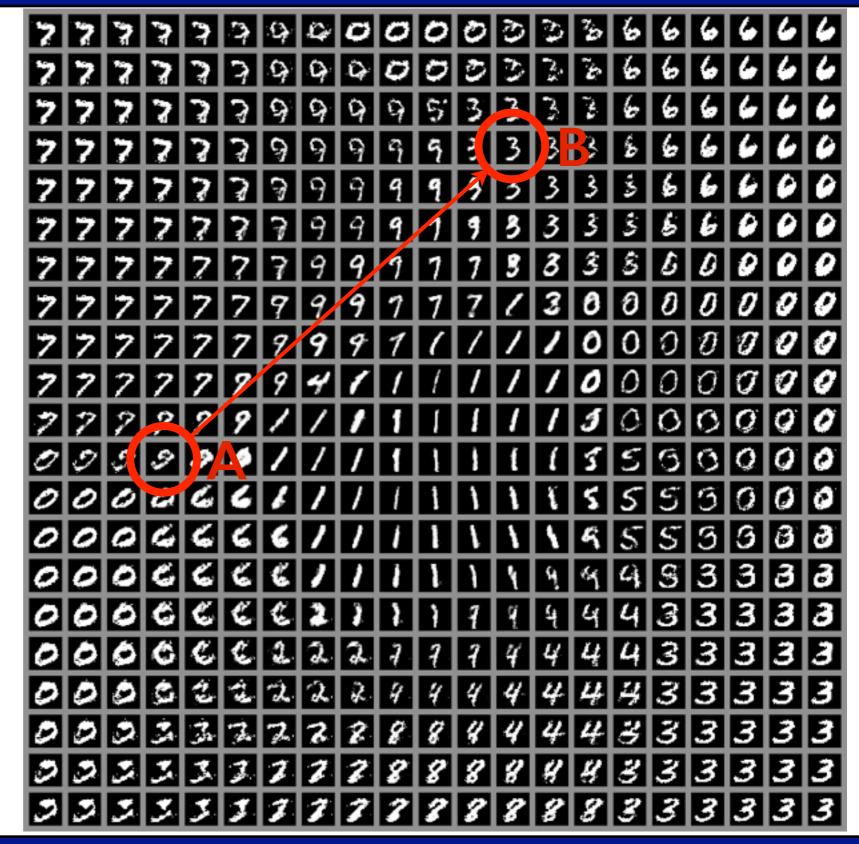
CIFAR-10 (convolutional)

Learned 2-D manifold of MNIST

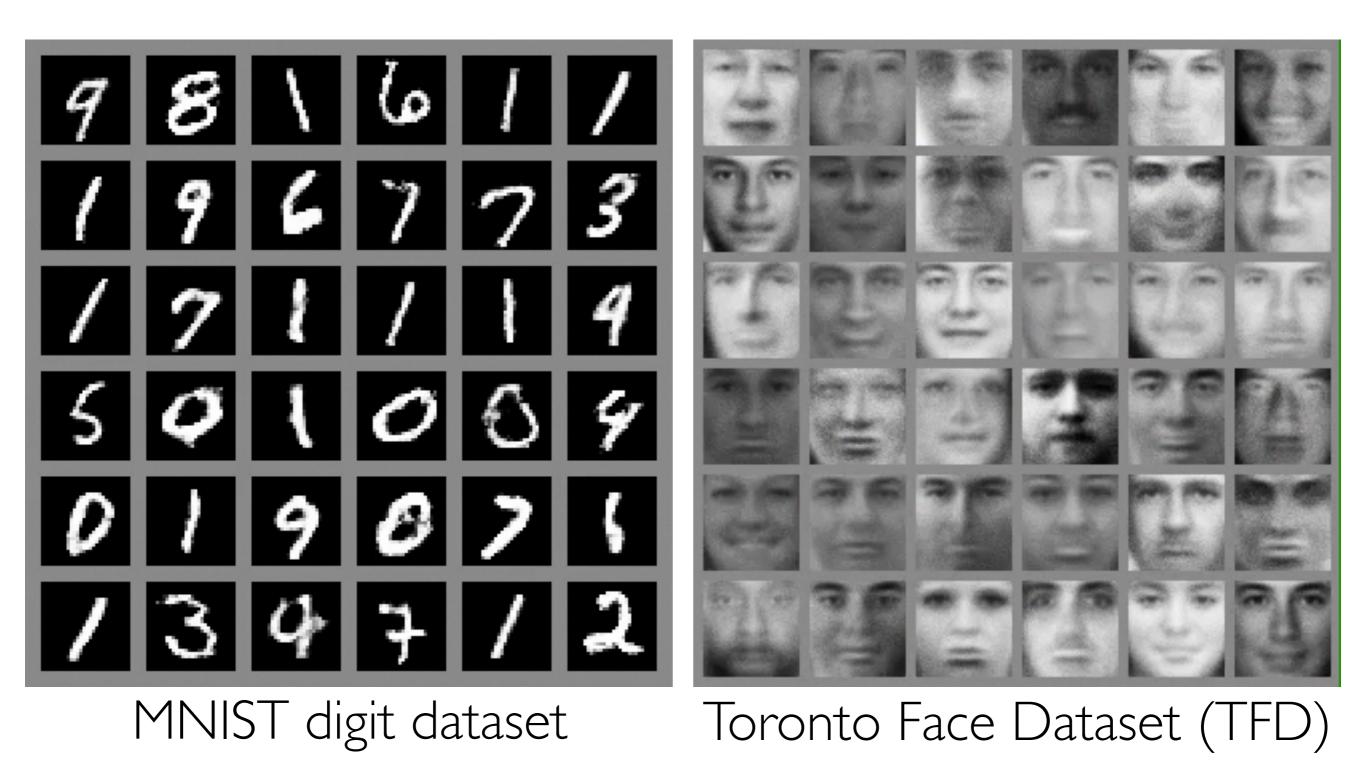


Visualizing trajectories

- I. Draw sample (A)
- 2. Draw sample (B)
- Simulate samples along the path between A and B
- 4. Repeat steps I-3 as desired.



Visualization of model trajectories



Visualization of model trajectories

CIFAR-10 (convolutional)

Extensions

- Conditional model:
 - Learn $p(x \mid y)$
 - Discriminator is trained on (*x*,*y*) pairs
 - Generator net gets *y* and *z* as input
 - Useful for: Translation, speech synth, image segmentation.

- Inference net:
 - Learn a network to model $p(z \mid x)$
 - Infinite training set!

- Take advantage of high amounts of unlabeled data using the generator.
- Train G on a large, unlabeled dataset
- Train G' to learn p(z|x) on an infinite training set
- Add a layer on top of G', train on a small labeled training set

- Take advantage of unlabeled data using the discriminator
- Train G and D on a large amount of unlabeled data
 - Replace the last layer of D
 - Continue training D on a small amount of labeled data

Thank You.

Questions?