
UNSCENTED KALMAN FILTER IN ADAPTIVE NEURAL 
MODEL-BASED PREDICTIVE CONTROL 
P. Gil †*, J. Henriques †, H. Duarte-Ramos *, A. Dourado † 

† CISUC-Informatics Engineering Department, 
UCPólo II, Pinhal de Marrocos, 3030 Coimbra, Portugal 

Phone: +351 239790000, Fax: +351 239701266 
e-mail: pgil@dei.uc.pt

* Electrical Engineering Department, UNL 
2825-114 Monte de Caparica, Portugal 

Phone: +351 212948545, Fax: +351 212948532 
 
Abstract 
An adaptive model-based predictive control scheme is 
proposed for non-linear systems. This methodology 
exploits the non-linear modelling capabilities of non-
linear state-space neural networks and the online weights 
adjustment by means of an unscented Kalman filter. 
Results from experiments show evidences on its good 
tracking performance even when the system’s dynamics 
change. 

Index Terms: State-space neural networks; on-line 
training; model-based predictive control; dual unscented 
Kalman filter. 

1. Introduction 

In the last few years the development and application 
of artificial neural networks methodologies in a wide 
variety of fields, such as in filtering, modelling and 
control, have witnessed an increasing growth. At the basis 
for this scenario were undoubtedly the demonstrated 
approximation capabilities of multi-layer networks [1] and 
the fact that they are less sensitive to noise and more fault 
tolerant than other non-linear mappings, such as 
polynomial or splines models [2].  

In system identification, feedforward networks have 
been used to represent spatio-temporal information by 
means of the tapped-delay-line method. Nevertheless, it is 
well established that dynamic neural structures containing 
a state feedback not only may provide computational 
advantages, since the corresponding models are likely to 
possess a smaller number of parameters, but also they can 
describe a larger class of dynamic systems than the input-

output counterparts. Furthermore, it is not always possible 
to derive an input-output model globally equivalent to a 
specific state-space representation. 

Regarding the control systems design, neural 
networks can basically be incorporated in two different 
ways: as a neuro-controller or providing a model of the 
plant to be placed under control. Within the first group of 
techniques, a neural network may be used to emulate the 
behaviour of a particular controller either a human 
controller or another automatic controller, as well as 
providing the system’s inverse model. For instance, 
Cavagnari et al. [3] have implemented a non-linear 
receding horizon controller by training a neural network 
in a supervised way.  

With respect to the inverse-model-based techniques, 
several control structures have been proposed so far [4], 
all having in common the underlying idea that the process 
and the controller would result in an identity mapping 
between the desired output and the system’s output.  

In another different direction, as a result of their 
inherent ability to approximate arbitrary non-linear vector 
functions, neural networks have extensively been used 
within model-based control techniques providing black-
box models from which suitable control-laws can be 
derived. For instance, in the context of predictive control 
methodologies, Sørensen et al. [5] reported to use a neural 
input-output black-box model in a generalised predictive 
control framework. Bearing in mind the advantages of 
recurrent neural networks for modelling dynamic systems 
Gil et al. [6] reported an implementation of a non-linear 
neural state-space model based predictive controller 
(MPC) guaranteeing free static offset by incorporating a 
pre-filter in the control loop. 

In the present work, instead of resorting to an offset 
compensation, it is proposed to use a real-time neural 
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network weights adaptation within a MPC framework. 
For system identification, a batch technique is first 
applied in the estimation of the neural state-space 
parameters. Next, at each discrete time and using the most 
recent input-output sample, by means of a dual unscented 
Kalman filter, not only a new set of parameters is 
provided to the neural state space predictor, but also a 
state estimation is made available, which is crucial to the 
control optimisation stage. Experiments on a laboratory 
heating system are used to highlight the merits of the 
proposed methodology, particularly when the controlled 
system’s dynamics is forced to change. 

2. Neural Network Modelling: 
Topology and Training 

Consider a general deterministic discrete-time non-
linear plant described by (1) for which is required to find 
a model structure and a particular parameterisation: 
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where nmnf ℜ→ℜ×ℜ×ℜ:  and pnh ℜ→ℜ×ℜ:  are 

non-linear functions, assumed to be smooth; ( ) mku ℜ∈ , 

( ) nkx ℜ∈  and ( ) pky ℜ∈  are, respectively, the input 
vector, the state vector and the output vector, at a discrete 
time k . 

2.1. Architecture 

In this work the black-box model is derived by means 
of a hybrid recurrent neural network comprising 3 layers, 
as depicted in Fig. 1. The input and output layers 
incorporate as much neurons as the number of inputs and 
outputs of the system, whereas the number of neurons in 
the hidden layer should be the most appropriate to get a 
good approximation. In view of selecting the optimal 
number of hidden neurons, one should mention, without 
going into details, that understanding the relationship 
between generalization performance and training error is 
of crucial importance. 
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Fig. 1. State-space neural network block diagram. 

In this neural network topology Nnℜ∈ξ  denotes the 

neural state-space vector, Noy ℜ∈ˆ  is the neural output, 
Niu ℜ∈ is the neural external input; Nn , No  and Ni  are, 

respectively, the number of neurons in the hidden layer, 
output layer and input layer; ϕ  is a non-linear activation 

function, 1−q  denotes the backward shift operator. 
Additionally, the synaptic weights between neurons: BW , 

CW , DW  and EW  are real-valued matrices having 
appropriate dimensions. 

The resulting dynamic model may be written in the 
state-space form as: 
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assuming a hyperbolic tangent as a non-linear activation 
function. It consists in a combination of a linear and non-
linear terms, which are likely to perform better than those 
having only non-linear ones [7]. 

2.2. Training 

The evaluation of a suitable parameterisation for a 
particular model structure is central in many fields of 
engineering. When a representative observation data set is 
available in advance, batch learning techniques can be 
exploited to infer such a relationship. In this context, the 
back-propagation algorithm, in its various forms has 
extensively been used to adjust the weights of neural 
networks. However, since they are all based on a gradient 
search direction their performance is somehow poor 
particularly close to local minima compared to second 
order search direction algorithms. 

In the online estimation of recurrent neural networks 
weights, gradient descent based algorithms have also been 
applied. Recently, rooted in the intuition that training a 
neural network can be regarded as a non-linear parameter 
estimation a number of second-order algorithms have 
emerged such as the recursive least squares and Kalman 
filter.  

In the present work the Levenberg-Marquardt 
algorithm is applied to the offline minimisation problem, 
assuming the following cost function: 
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where Nww ℜ∈  denotes the parameterisation vector and 
N  the total the number of training data. 

According to this algorithm, the updating law is given 
by: 

( ) ( )wJw ∇+−=∆
−1~
IλH  (4) 



with H~  the approximation of the Hessian matrix of cost-
function ( )wJ , ( )wJ∇  denotes its gradient, +ℜ∈λ  and 
I  is an identity matrix of appropriate dimensions. 

For online training the neural network it is used a 
Kalman filter approach based on the unscented 
transformation (UT) [8]. The unscented transformation 
enables to compute the statistics properties of a random 
variable propagated through a non-linear mapping. 

Consider then a Nw -dimensional real-valued random 
variable w  with mean w  and covariance matrix wwP  and 
suppose it is required to predict the mean and the 
covariance of qy ℜ∈  given as: 

( )wy h=  (5) 
with qNw ℜ→ℜ:h . 

First, a set of 12 +Nw  pairs of weights and translated 
sigma points ( )ii ω,Γ  is formed according to (6), in such a 
way that the mean and the covariance of w  are preserved.  
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with ( )iwwP  the ith column or row of covariance matrix 

wwP  and κ  a scaling parameter. These sigma points are 
then propagated through the non-linear mapping, 

( )ii ωh=Y  (7) 
and the corresponding mean and covariance computed as 
follows: 
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The dual unscented Kalman filter (DUKF) consists in 
the UT application to the recursive estimation of both the 
states and the parameters of a non-linear discrete-time 
dynamic system [9]. In the present work, the non-linear 
system is assumed to be described as: 
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where pz ℜ∈  denotes the observation vector; nℜ∈υ  is 
a Gaussian process noise with covariance Q  and pℜ∈η  
a Gaussian measurement noise with covariance R . 

Like all Kalman filter based algorithms, in DUKF 
approach the estimates are computed in two stages: in the 
time update stage one step-ahead predictions are 
performed whereas in the measurement update phase it is 
provided a correction to the a priori estimates on the basis 
of the most recent sample. The dual filter equations are 
given by: 

Weights estimation 
Time update: 
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Measurement update: 
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(11) 

States estimation 
Time update: 
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Measurement update: 
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where µ  denotes the forgetting factor, Ω  the sigma 
point matrix of w, Γ  the corresponding weight vector, K 
the Kalman gain and X the sigma point matrix of x. 

3. Constrained Model-based 
Predictive Control 

Model-based predictive control is a discrete-time 
technique for which an explicit dynamic model of the 
plant is used to predict the system’s outputs over a finite 
prediction horizon P  when control actions are 
manipulated over a finite control horizon M . 

At time step k , the optimiser computes an open-loop 
control action sequence in such a way that the predicted 
output follows a pre-specified reference while taking into 
account possible hard and soft constraints. Only the 
current control action ( )kku |  is actually fed to the plant 
over time [ )1, +kk . Subsequently, the prediction and 
control horizons are shifted ahead by one step and a new 
optimisation problem is solved, taking into account the 
most recent measurements from the plant. 

Consider the first order Taylor expansion of a general 
discrete-time non-linear system (1) as given by: 
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where nn×ℜ∈Φ , mn×ℜ∈Ξ and np×ℜ∈Η  denote, the 
state, the input and the output matrices, respectively; 

nℜ∈Ε  is the first term of the Taylor series expansion. 
The constrained open-loop optimisation problem can 

be stated as follows: 
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subject to the system dynamics (15) and to the following 
constraint inequalities: 
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with pp
i

×ℜ∈Q , mm
i

×ℜ∈R , mm
i

×ℜ∈S ; mu ℜ∈∆  is 

the control action increment vector and pr ℜ∈  the 
reference vector. 

As a result of the optimisation problem convexity any 
particular solution is a global optimum and hence the 
open-loop optimal control problem can be rewritten as a 
quadratic programming problem (18). 

minimise ( ) uuuhuJ TT ~~
2
1~~ ∆∆+∆=∆ H  

Subject to buAT ≤∆~  
(18)

where ( )pPmMmMA 24 +×ℜ∈ , ( )pPmMb 24 +ℜ∈ ; mMu ℜ∈∆~  
denotes the extended control increment vector over the 
control horizon. Expressions for the cost function gradient 

mMh ℜ∈  and Hessian mMmM×ℜ∈H  can be found in [6]. 

4. Experiments 

4.1. Process Description 

The laboratory process set-up used for assessing the 
adaptive MPC technique performance is the heating 
system depicted schematically in Fig. 2. Air drawn from 
the local atmosphere is forced to circulate by means of a 
centrifugal fan through a length of duct, being heated in a 
heater grid just after the inlet. This is a non-linear process 
with a pure time delay that depends on the position of the 
temperature sensor and the air flow rate, which is a 
function of the damper position φ . The input to the 
system is a voltage on the heating device consisting of a 
mesh of resistor wires and the system’s output is the outlet 
air flow temperature. 
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Fig. 2. Heating system schematics. 

4.2. Results 

For offline plant identification purpose, open-loop 
experiments have been carried out on the heating system 
in order to collect input-output data to be used in the 
parameter estimation stage. The heating system damper 
was set to °20=φ  and the detector probe placed at the 
intermediate position (140 mm). 

The experiments were conducted by feeding step and 
pseudo random binary signals to the system and choosing 
a sampling interval of 0.15 second. Two of the collected 
records were picked out: one for neural network training 
and the other for cross-validation. 

The structure of the neural network is that of 
presented in Fig. 1, having one neuron in both the input 
and output layers and three neurons in the hidden layer. 
After being trained, this neural model is able to predict 



quite well the behaviour of the plant, as can be inferred 
from Fig. 3. 
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Fig. 3. Model validation. 

The neural state-space predictor is used within the 
local instantaneous linear model-based predictive control 
(LIMPC) framework as a seed for linear discrete-time 
models. At each sampling time, a new model is provided 
to the optimiser by means of a first-order Taylor series 
expansion. 

The constrained open-loop optimal control (18) is 
solved by taking the prediction horizon and the control 
horizon, respectively, as 3=P  and 1=M  time steps, 
choosing 0.15 second for sampling time and imposing the 
following constraints: 

C60C15 °≤≤° y  
V10V0 ≤≤ u  

V0.2≤∆u  
(19)

The cost functional weight matrices were chosen as: 
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In the first group of control experiments the neural 
non-linear state-space model with fixed weights, i.e. not 
adjusted online, is used within the LIMPC framework 
together with an unscented Kalman filter observer. This 
control scheme is then applied to control the laboratory 
heating system, being one of these experiments plotted in 
Fig. 4. As can be observed for some particular operating 
ranges the control system is unable to remove completely 
static offsets. These deviations are mainly attributed to 
model/plant mismatch and thus by further training the 
neural network, making use of fresh data, one should be 
able to reduce those modelling errors and, in turn, 
achieving a better control performance. 
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Fig. 4. Non-adaptive LIMPC 

In fact, as shown in Fig. 5, the proposed adaptive 
model-based predictive controller not only guarantees a 
stable time response but also the deterministic steady-state 
errors are significantly reduced or even removed. In this 
experiment a dual unscented Kalman filter was used for 
updating the neural network weights and estimating the 
system states.  
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Fig. 5.a) Adaptive LIMPC – Output. 
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Fig. 5.b) Adaptive LIMPC – Control action. 

In order to assess the performance of the adaptive 
model-based predictive control scheme in time-variant 
plants, the laboratory heating system dynamics was 
allowed to change during the control experiments. For this 
purpose, the blower inlet throttle was changed to °30=φ  
at instant 20 second, returning to its original position 
( °20=φ ) at instant 40 second. Fig. 6 compares the air 
flow temperature for the adaptive and non-adaptive 
model-based predictive controllers. As can be seen, due to 
the online neural network weights adaptation, the new 
system dynamics has been captured in a suitable way 
being a decisive factor in removing those static offsets. 

Sample

Te
m

pe
ra

tu
re

 [°
C

]

0 10 20 30 40 50 60
10
15
20
25
30
35
40
45
50
55
60

Adaptive MPC
Non-adaptive MPC

φ=20° φ=30° φ=20°

 
Fig. 6. MPC - Changing the system’s dynamics. 

5. Conclusions 

In this paper an adaptive constrained model-based 
predictive control scheme is proposed on the basis of an 
online model parameters updating. The black-box model 
is derived by means of state-space neural network and the 
online training and states estimation is based on an 
unscented Kalman filter.  

This approach was successfully applied to the control 
of a laboratory heating system whose dynamics is forced 
to change during the experiments. Furthermore, as it is 

clear from comparative studies, the proposed adaptive 
MPC technique outperforms that of a standard MPC 
scheme. Finally, since the underlying control design is 
quite general and flexible this adaptive scheme offers 
significant potential benefits for time-variant systems 
control. 
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