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This  paper  studies  hierarchical  discrimination  and quantification  models  in  order  to  simultaneously  quan-
tify multiple  kinds  of  odors  with  an  improved  electronic  nose.  Such  tasks  are  first  regard  as  multiple
discrimination  tasks  and  then  as  multiple  quantification  tasks,  and  implemented  by  the  hierarchical
models  with  the  divide-and-conquer  strategy.  The  discrimination  models  are  the common  classifiers,
including  nearest  neighbor  classifiers,  local  Euclidean  distance  templates,  local  Mahalanobis  distance
templates,  multi-layer  perceptrons  (MLPs),  support  vector  machines  (SVMs)  with  Gaussian  or  polyno-
mial kernels.  Similarly,  the  quantification  models  are  multivariate  linear  regressions,  partial  least  squares
iscrimination
uantification
dors
lectronic nose

regressions,  multivariate  quadratic  regressions,  MLPs,  SVMs.  We  developed  several  types  of  hierarchi-
cal model  and  compared  their  capabilities  for quantifying  12  kinds  of  volatile  organic  compounds  with
the  improved  electronic  nose.  The  experimental  results  show  that  the  hierarchical  model  composed  of
multiple  single-output  MLPs  followed  by  multiple  single-output  MLPs  with  local  decomposition,  vir-
tual balance  and  local  generalization  techniques,  has  advantages  over  the  others  in  the  aspects  of  time
complexity,  structure  complexity  and  generalization  performance.
. Introduction

Odors cannot be seen by eyes and felt by hands. People usu-
lly use some vague terms to describe their characteristics, such as
trong, weak, stimulative, fragrant, top-quality, second-rate, nor-
al, abnormal, sweet, foul, and abominable [1,2]. We  can depict

ne kind of odor by means of another. For example, an odorous
ample may  be said to be like orange or banana, but what is the
range or the banana odor? Such questions are very difficult to be
nswered. Odors ever smelled can remain in our memory and be
rought to our mind by imagination, but cannot be quantitatively
ompared by data or recode. It is not an easy thing to quantify odors
nly by our olfaction, namely our noses. Accordingly, sensory eval-
ation of odor qualities is not objective and fair enough, even if
iven by experts. Under the circumstances, electronic noses (ENs)
merge as the times require [3].

Electronic noses have a wide range of applications. After sens-

ng odors with a gas sensor array and analyzing the resulting
ata by means of appropriate pattern recognition methods, an EN
an determine products’ classes, grades and freshness; distinguish
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genuine from sham; control production processes; readjust pre-
scriptions; monitor environmental pollutions, etc. The application
objects include perfumes [4–7], milks and teas [8–10], alcoholic
beverages [11–13],  fruits [14], fishes and meats [15–17],  environ-
mental air [18], water [19,20], medical treatments [21], drugs [22],
warfare agents [23,24],  and even bloods and bacteria [25,26]. Can
we find an absolutely odorless material?

There are many kinds of odors in the natural world, and often
tens, hundreds and even thousands of components in one kind.
For example, there exist about 50 main aromatic components in a
brewing alcoholic drink. If the aroma of the drink changes, an EN is
required to judge which components change and how much they
change. Currently, ENs are limited in capabilities to carry out the
real-time quantitative analysis of odors [1,4–26].  Therefore, there
is an urgent need to find suitable pattern recognition methods to
both discriminate and quantity multiple kinds of odors, simple or
complex [1].

An unfavorable case for odor quantification is that the lower the
concentrations of odors, the smaller the differences between them.
In other words, different sorts of low-concentration odors may be
close to each other in the measure space. The relationships between
strengths of multiple kinds of odors and their components may be

multiple complex curved surfaces, which may  intersect with each
other. Therefore, the discrimination and quantification of multi-
ple kinds of odors will bring about great difficulties and challenges
to the existing pattern recognition methods, including neural

dx.doi.org/10.1016/j.snb.2011.11.003
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:gaodaqi@8163.net.cn
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etworks [1,7,14,18,27] and support vector machines (SVMs)
28,29].

A single prediction model with multiple output units will give
ultiple predicted values for a specific odorous sample. Can we

hus say that the sample belongs both to an odor ωA with a con-
entration �A and to another odor ωB with a concentration �B? It is
nallowable. In other words, a single prediction model with multi-
le output units fails to quantify multiple kinds of odors, regardless
imple or complex [1,2,30–34].  In order to recognize many kinds
f odors and quantify their concentrations as well, the following
pproaches are available.

A) A single multi-output (SMO) discrimination model [1] or a
SMO  discrimination model followed by multiple multi-output
(MMO)  discrimination models [30,31] is used. The two  solu-
tions actually consider the quantification task as a pure
discrimination one, and a concentration point as a class. The dis-
advantages of these solutions include complicated structures,
long learning time and serious imbalance between classes
when many kinds of odors and many concentrations exist.
Consequently, these two models are only suitable for a small
number of classes of odors with limited concentrations [30,31].

B) An SMO  discrimination model followed by multiple single-
output (MSO) quantification models, called an SMO–MSO
model, or two groups of MSO  quantification models in cascade,
called an MSO–MSO model [32], is employed. These solutions
consider the quantification task first as multiple discrimina-
tive tasks and then as multiple quantitative tasks. However, the
defects that exist in case (A) will still appear when there are too
many kinds of odors and concentration points.

Because the existing pattern recognition models are quite lim-
ted in their capabilities for identifying many kinds of odors and
uantifying their concentrations as well [30–34],  this paper devotes
o studying hierarchical models and finding out the appropriate

odel to accomplish such tasks. The remainder of this paper is orga-
ized as follows: Section 2 illustrates an improved electronic nose
nd introduces its working principle. In Section 3, we propose the
tructure of a hierarchical model and possible component units.
urthermore, we analyze the time complexities, structure com-
lexities and generalization performances of several hierarchical
odels. Section 4 presents the experimental results for quantify-

ng 12 kinds of volatile organic compounds (VOCs). Finally, Section
 comes to our conclusions.

. Experimental

Fig. 1 shows an improved electronic nose [35], which consists
f a test box, a personal computer (PC), six headspace vapor gen-
rators and a clean air cylinder. The test box mainly contains

 thermostatic chest, an automatic lift device, a sampling nee-
le, a miniature diaphragm vacuum pump, three two-positional
wo-way electromagnetic valves, a flow meter, two  flow valves, a
-channel direct current (DC) source as well as control and measure
ircuits. The array, which is installed within the circular chamber in
he thermostatic chest, is composed of 16 TGS gas sensors, namely
GS800, 812, 813, 816, 821, 822, 823, 824, 825, 826, 830, 831, 832,
42, 880, 883T, all provided by Figaro Inc., Japan. The load resistor
f each gas sensor is fixed at 10 k�.

The samples, liquid or solid, and headspace vapors are kept

t the constant temperature of 42 ± 0.1 ◦C for 30 min  before mea-
ured, and the chest always kept at 55 ± 0.1 ◦C. In order to get good
epeatability, a sample of 10 ml  and its headspace vapor is mea-
ured only one time, and a glass flask of 200 ml  to hold the sample
ors B 161 (2012) 578– 586 579

and thus generate the vapor is also used only once. The responses
of gas sensors are limited to the range (0.0, 10.0 V) by hardware.

The gas sensor array is calibrated by clean air before sampling.
The clean air from the cylinder passes through the flow valve 2,
the electromagnetic valve 3, the outlet, the interior and the inlet of
the circular chamber, and the needle in sequence before exhausted
into the atmosphere, at the flow rate of 600 ml/min. During the
course, the electromagnetic valve 3 is on while the other two are off.
Consequently, the gas sensors exactly recover to their preliminary
state.

The working principle of the improved electronic nose is
described as follows. While sampling, under the roles of the PC
and the automatic lift device, the headspace vapor generator rises,
and the sampling needle fixed under the inlet of the chamber
thus contacts the headspace vapor. With the aid of the miniature
diaphragm pump, the vapor in the flask is drawn into the circular
chamber where the gas sensor array is mounted in at the flow rate
of 600 ml/min, forced to skim across the sensitive films of gas sen-
sors, and finally exhausted into the air at the waste gas outlet. Along
with the flow of vapors, the gas sensors produce analogous sensitive
responses, which are then converted into digital by the data acqui-
sition card and stored in the PC as a data file. For a sample measured,
a 16-dimensional response vector is thus gotten, called a pattern
x ∈ R16 hereafter, because the maximum steady-state response of a
gas sensor is regarded as a variable.

The purpose of the experiment is to discriminate twelve kinds
of VOCs, ethanol, butanol, hexanol, ethyl acetate, ethyl propionate,
ethyl butyrate, ethyl valerate, ethyl caproate, ethyl heptanoate,
ethyl octanoate, ethyl lactate, and isoamyl acetate, and quantify
their concentrations as well by measuring their headspace vapors
with the improved electronic nose. These VOCs are the main fra-
grant components in brewing alcoholic drinks. They are diluted
with distilled water into required concentrations.

3. Hierarchical models and their component units

3.1. Structure of hierarchical models

The divide-and-conquer strategy is an effective approach for the
discriminative and quantitative analysis of multiple kinds of odors
[30–34]. Fig. 2 illustrates a hierarchical model for implementing
such tasks. Seen from the horizontal direction, a pair of hierarchi-
cal modules represents a specific kind of odor. The former module
is responsible for discrimination, whose role is to separate the rep-
resented odor from the others, and the followed one is in charge of
quantification, whose role is to predict the strengths and concen-
trations of the represented odor. If there are n kinds of odors, there
are n pairs of modules, one for one. Seen from the vertical direc-
tion, there exist two parallel columns of modules. The modules in
the first column are for discrimination, and those in the second
column are for quantification.

3.2. Discrimination models

Because of the nonlinear distributions of odors in the mea-
sure space, the classical linear discriminant analysis (LDA) is not
adopted [11,36]. The radial basis function (RBF) networks [9,11]
and fuzzy inference models [1,37] are not included because they are
not often employed for odor discrimination in the electronic noses.
k-Nearest-Neighbor (k-NN) classifiers, Euclidean or Mahalanobis
distance templates, multi-layer perceptrons (MLPs) and SVMs are

able to form nonlinear decision boundaries and commonly used in
the electronic noses [1,11,29–34]. They are thus chosen as the com-
ponent units of discrimination modules of the hierarchical model
shown in Fig. 2. In the following subsections, we will introduce the
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Fig. 1. Schematic diagram

rinciples and algorithms of these selected models, as well as their
dvantages and disadvantages.

.2.1. Nearest neighbor classifiers
A 1-NN classifier with k = 1 needs no training process. While

ssigning a label to a test pattern x ∈ Rm, however, the 1-NN clas-

ifier has to calculate N Euclidean distances from x to N training
atterns X ∈ RN×m [36] and find the nearest neighbor from them.
ere, m = 16 is the number of input dimensions or gas sensors. Natu-

ally, all the N patterns in X must be stored as prototypes. Therefore,

Fig. 2. Hierarchical models for discriminative and qu
improved electronic nose.

the time and structure complexities of 1-NN classifiers are high
when N is large.

3.2.2. Local Euclidean distance templates
A Euclidean distance template is sometimes called a fingerprint

or polar or radar plot [1,13,36]. In order to discriminate multiple

kinds of odors with changing concentrations, we treat a concentra-
tion as a class and thus propose a type of local Euclidean distance
(LED) template. The decision rule is to seek the minimum Euclidean
distance between x and all the means �(j)

k
(j = 1, 2, . . .,  n). Here, n is

antitative analysis of multiple kinds of odors.
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he number of classes of odors, and �(j)
k

is the mean vector of the

raining patterns X(j)
k

from the kth concentration point of odor ωj.

.2.3. Local Mahalanobis distance templates
A local Mahalanobis distance (LMD) template [1,33,36] is the

atural generalization of an LED model. The decision rule is to seek
he minimum Mahalanobis distance between x and all the centers

(j)
k

. Usually, an LMD model is better in discrimination performance
han an LED model. This kind of model requires to store all the mean
ectors �(j)

k
and all the symmetrical covariance matrices �(j)

k
. Here,

(j)
k

is determined by X(j)
k

. The model will be no longer in force when
 certain covariance matrix is singular.

.2.4. Single-output perceptrons
Single-hidden-layer perceptrons have good capabilities to solve

onlinearly separable problems [1,27].  Each single-output percep-
ron with a hidden layer solves a two-class recognition problem,
nd its hidden and output nodes are with sigmoid activation func-
ion f(ϕ) = 3(1 + exp(−ϕ/3))−1 [38]. In order to improve the learning
nd generalization performances of perceptrons, we adopt and per-
ect a local one-against-all (OAA) decomposition method, a virtual
alance step and a local generalization strategy [38].

Fig. 3 illustrates the formation of the jth training subset and
he local generalization region for the jth perceptron. We  first con-
truct two concentric oblique ellipsoids, an initial ellipsoid �j0 and
n extended ellipsoid �j, the centers of which are just the mean
ector �(j) of all the training patterns X(j) from ωj. �j0 just encloses
(j), whose max  Mahalanobis radius r(j)

max = dM(x, ωj) is with respect
o �(j) and the covariance matrix �(j) of X(j). Let N(j) and N(∼j0) be
he numbers of patterns from ωj and all the others ∼ωj encircled

ithin �j0, a suitable radius of �j is R(j)
min = (1 + N(j)/N(∼j0))r(j)

max.
ll the patterns inside �j form the final two-class training subset
(j) = {X(j), X(∼j)}. The final number of patterns is N(j) + N(∼j), and the

mbalanced ratio is �j = max(N(j), N(∼j))/min(N(j), N(∼j)) ≥ 1.
In order to achieve a virtual balance for the unbalanced subset

(j), a good solution is to add some virtual patterns to the minority
ide, say X(j). In the specific programming realization, for the pth
raining pattern xp from ωj, we can directly multiply the weigh

pdate increment �w(j)
p (	) by an enlargement coefficient ˇj at the

th iterative epoch, that is

w(j)(	) = −ˇj

∑
xp ∈ X(j)

∂Ej(	)

∂w(j)
p (	)

−
∑

xp ∈ X(∼j)

∂Ej(	)

∂w(j)
p (	)

(1)

here Ej(	) is the root-mean-square (RMS) error of perceptron j.
n appropriate value ˇj is given by

j =

⎧⎨
⎩ 1 + �j − 1

3
, if 1 ≤ �j ≤ 4

�j

2
,  otherwise

(2)

In order to realize the local generalization, the action of every
erceptron must be limited in a reasonable range through the cor-
ection of its outputs. Let the real output of perceptron j for x be
(j), the corrected output �(j) is

(j) =

⎧⎪⎨
⎪⎩

y(j) exp

(
− ln(2) × r(j)

R(j)
min

)
, if (r(j))

2 = (x − �(j))
T
(˙(j))

−

y(j), otherwise
The parameters that must be noted down include the class mean
ectors, the class covariance matrixes, the radii of oblique ellip-
oids, and all the weights and thresholds of perceptrons.
ors B 161 (2012) 578– 586 581

 �(j)) ≥ (r(j)
max)

2

(3)

3.2.5. Support vector machines with Gaussian kernels
SVMs for discrimination decompose an n-class problem into

n two-class ones and make decision according to the max  rule
[28]. An SVM with Gaussian kernels solves a two-class recognition
problem {ωj, ∼ωj}, whose target outputs are coded as {+1, −1}. A
Gaussian kernel is expressed as

k(x, xp) = exp

(
−||x − xp||2

2�2

)
= exp(−� ||x − xp||2) (4)

where xp is called the pth support vector (SV), � the width of ker-
nels, and � = �−2/2 the width parameter which has to be selected
artificially. Hereafter, an SVM with Gaussian kernels is written as
an SVM-G for short.

SVMs-G must memorize all the SVs, all the Lagrangian multipli-
ers, and the widths of kernels.

3.2.6. Support vector machines with polynomial kernels
A polynomial kernel is expressed as

k(x, xp) = (〈x, xp〉 + 1)d = (xT xp + 1)
d

(5)

where d is called the degree of polynomials, which must be also
selected in advance [28].

SVMs with polynomial kernels are as a whole the same as those
with Gaussian kernels except the type of kernels. Henceforth, an
SVM with polynomial kernels is written as an SVM-P for short. SVMs
of this kind will store all the SVs, all the Lagrangian multipliers, and
the degrees of polynomials.

3.3. Quantification models

A quantification module j represents a specific kind of odor ωj,
and realizes the mapping f:X(j) → t(j), where t(j) is the expected
output vector. The target and predicted outputs of the regression
curves often take the logarithmic concentrations [1,37].  The crite-
ria to choose models for quantification are that (A) they are widely
employed in the electronic noses and (B) they have simple struc-
tures and good capabilities to approximate nonlinear curves. The
component units of quantification modules are multivariate linear
regressions (MVLRs), partial least squares regressions (PLSRs), mul-
tivariate quadratic regressions (MVQRs), MLPs, SVMs, as shown in
the second column of the hierarchical model in Fig. 2.

In order to predict the possible concentration points between
distilled water and the lowest concentration points in each class,
the patterns from distilled water are regarded as the common point
of all the curves, and their expected concentrations are enforced to
be 0.1 ppm. A consideration to do like this is that the TGS gas sensors
used have lower sensitive limitations of 1.0 ppm and over [1].

In the following subsections, we will introduce on the princi-
ples, algorithms, as well as advantages and disadvantages of these
mentioned models.

3.3.1. Multivariate linear regression

The target output of the jth MVLR model z(j) = (ˇ(j))
T
x + ˇ(j)

0

takes the logarithm base 10 of the expected concentrations C(j)
p in
ppm plus 1.0, i.e., t(j)
p = ϕ(C(j)

p ) = 1.0 + log10C(j)
p , where ˇ(j) ∈ Rm is a

coefficient vector and ˇ(j)
0 a constant. All the parameters are deter-

mined by the minimum squared-error (MSE) method [1,36,37].
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An MVLR model only needs to store 1 + 1/m equivalent
atterns.

.3.2. Partial least squares regression [39]
As the extended version of principal component regression

PCR), an PLSR model j first seeks the projection direction w(j)
1 cor-

esponding to the maximum eigenvalue �(j)
1 of the inner product of

he normalized sensor response matrix X(j)
0 and the normalized log-

rithmic concentration vector t(j)
0 , i.e., w(j)

1 = (X(j)
0 )

T
t(j)

0 /||(X(j)
0 )

T
t(j)

0 ||.
hen, the one-variable regressions between the first principal
omponent vector p(j)

1 = X(j)
0 w(j)

1 and X(j)
0 and t(j)

0 are done simul-
aneously. The regression coefficients are calculated by

(j)
1 = (X(j)

0 )
T
p(j)

1

(p(j)
1 )

T
p(j)

1

and r(j)
1 = (t(j)

0 )
T
p(j)

1

(p(j)
1 )

T
p(j)

1

.

Next, the one-variable regressions are applied to the residual

atrix X(j)
1 = X(j)

0 − p(j)
1 (q(j)

1 )
T

and the residual vector t(j)
1 = t(j)

0 −
(j)
1 p(j)

1 , by which the 2nd projection direction w(j)
2 , the 2nd prin-

ipal component vector p(j)
2 , and the 2nd regression coefficients q(j)

2

nd r(j)
2 , are obtained accordingly.

Repeating the above steps, the predicted equations of the jth
LSR model for x are generated as

p1 = xT w(j)
1 , . . . , pk = (xk−1)T w(j)

k−1

z(j)
1 = r(j)

1 p1 + r(j)
2 p2 + · · · + r(j)

k
pk

(6)

here the index k is the computational step or the number of prin-
ipal components. The computation process stops when the rate of
robenius norms of the residual matrix X(j)

k
= X(j)

k−1 − X(j)
k−2 to the

riginal matrix X(j)
0 is below 1.0%.

An PLSR model stores 1 + 1/m  equivalent patterns because its
inearly regressive nature.

.3.3. Multivariate quadratic regression
The jth MVQR model is expressed as

(j) =
m∑

i=1

˛(j)

i
(x(j)

i
)
2 +

m∑
i=1

ˇ(k)
i x(j)

i
+ ˇ(j)

0

here ˛(j) and ˇ(j) are two coefficient vectors determined by the
bove-mentioned MSE  method. Except the coefficient vector for
he quadratic term, an MVQR is completely the same as an MVLR.
n MVQR model stores 2 + 1/m equivalent patterns.
 subset for the jth perceptron classifier.

Generally, the fitting capabilities of MVQRs are slightly better
than those of MVLRs and PLSRs. It is worthy noting that the three
mentioned models are only approximately valid for a small range
of concentrations [1,36,39].

3.3.4. Single-output perceptrons
Single-hidden-layer perceptrons with sufficient number of

hidden nodes have good capabilities to approximate any
nonlinear curves [1,27].  The hidden and output nodes of
single-output perceptrons are with sigmoid activation function
f(ϕ) = 3(1 + exp(−ϕ/3))−1 [38]. The target outputs of perceptron j
are scaled to the real range [0.05, 2.95] by

t(j)
p = ϕ

(
c(j)

p

)
=

(
1.0 + log10c(j)

p

)
× 2.9

5.0
+ 0.05 (7)

The learning algorithm is the classical back-propagation (BP)
algorithm [27]. Let the real output of perceptron j  be z(j) for x, the
predicted concentration is

c(j) = 1.0 × 10

(
5.0
(

z(j)−0.05
)

2.9 −1.0

)
.

Each perceptron for quantification only needs to store its
weights and thresholds.

3.3.5. SVMs with Gaussian or polynomial kernels
SVMs with Gaussian or polynomial kernels for quantification

are the same as their correspondents for discrimination in learning
algorithms. Of course, all the new SVs, the Lagrangian multipliers,
and the pre-selected widths of Gaussian kernels or the pre-selected
degrees of polynomials, have to be stored. SVMs for quantification
use the same target outputs as MVLRs do.

Now, we  have discussed the component units that are suitable
for the hierarchical models. To summarize, the hierarchical models
may  be a 1-NN classifier followed by n MVLRs; n LED templates
followed by n MVQRs; n LMD  templates followed by n MVLRs or
PLSRs or MVQRs; n MLPs followed by n MLPs; n SVMs followed by
n SVMs. In the next section, we will compare their performances
through experiments.

4. Experimental results

The experiment aims at comparing the time complexities, struc-

ture complexities and generalization performances of the proposed
hierarchical models for identifying and quantifying 12 kinds of
VOCs. The common concentration points in the training and the
test set are 1, 5, 10, 50, 100, 500, 1000, 5000 and 10,000 ppm. The
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Table 1
The concentration points arranged for 12 kinds of volatile organic compounds in the
training and test set (ppm).

Dataset Common concentration Added
concentration

The training set 1a, 5a, 10b, 50, 100, 500,
1000, 5000, 10,000

The test set 1a, 5a, 10b, 50, 100, 500,
1000, 5000, 10,000

25b, 75, 250, 750,
2500, 7500
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a Only for ethyl caproate.
b Except ethanol and ethyl lactate.

pecific concentration points only in the test set are 25, 75, 250,
50, 2500 and 7500 ppm. Limited by the sensitivity of sensors, the
oints of 1 and 5 ppm are only for ethyl caproate, and the points of
0 and 25 ppm are not for ethanol and ethyl lactate. Table 1 gives
he detailed concentrations.

There are 84 concentration points, plus distilled water, 85 in
otal, in the training set, and 85 + 70 = 155 concentration points in
he test set. For each VOC, 60 samples are made up and measured
or each common concentration point. 50 patterns among them are
andomly selected as a part of the training data and the remains,
.e., 10 patterns, as a part of the test data. For the concentration
oints only existing in the test set, 10 samples are made up and
easured. As a result, the total numbers of patterns are 4250 in

he training set and 1550 in the test set, respectively. Statistical
erms of gas sensor responses for the training data are that the

aximum standard deviation (MSD) is 0.2483 V, which occurs at
thyl acetate of 10,000 ppm measured by TGS832, and the maxi-
um  relative standard deviation (MRSD), i.e., the MSD  divided by

he mean, is 7.28%, which occurs at ethyl caproate of 1 ppm detected
y TGS825. Fig. 4(a) and (b) shows the results of the first two prin-
ipal component analyses. In the measure space, the 12 kinds of
OCs may  be nonlinearly separable from each other because of the
hanging concentrations, and the relationships between gas sensor
esponses and odor concentrations are also nonlinear.

The input variables are transformed into the range (0, 1) by
ividing the maximum steady-state response values of gas sen-
ors by 10, except changed into the range [0.0, 6.0] in proportion
or perceptrons or normalized for PLSRs. In the following exper-
ments, MLPs with the BP algorithm are developed in C language,
VMs are realized with the existing software – Libsvm [40], and the
thers are programmed with Matlab 7.0.

Table 2 summarizes the learning and identifying results of the

 discrimination models, namely 1-NN classifiers, LED templates,
MD  templates, MLPs, SVMs with Gaussian kernels, and SVMs with
olynomial kernels, as shown in the first column of the hierarchical
odel in Fig. 2.
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The LED and LMD  templates have the discrimination rates (DRs)
of 99.93% and 100% for the training set, respectively, and their learn-
ing time is short, below 13.4 s (given by a PC with 2.6G CPU, 1.0G
RAM, the same below). A 1-NN classifier has no training process.
However, the DRs of the three models are only between 65.29%
and 67.10% for the 1550 test patterns.

The structural and learning parameters of 12 single-output MLPs
for discrimination are preset as follows. The number of hidden
nodes is s = 8, the max  iterative epoch 	max = 15,000, and the allow-
able RMS  error ε* = 0.05. The patterns from distilled water are
adopted as the common point of all the odors. Two  additional
agreements are that (A) one sample is considered wrong if the real
outputs from two to eleven MLPs are beyond 1.5 and (B) one sam-
ple is labeled as distilled water if all the real outputs of the 12 MLPs
are larger than 1.5. According to Section 3.2.4, the sizes of training
subsets are between 1514 and 2867, with an average of 2127.08,
i.e., 50.05% of the original training set. The proper learning factors
�j are between 3 and 5 times of reciprocal numbers of patterns, i.e.,
between 0.0010 and 0.0033. Using the optimal learning subsets,
virtual balance step and local generalization strategy together, the
resulting DRs are 100% for the training and 1485/1550 = 95.81% for
the test set.

The parameters of SVMs for discrimination are preset to be
� = 0.03, d = 3 and C = 1000. The two mentioned additional agree-
ments for the MLPs are still valid here, but the discriminative
thresholds are changed from 1.5 in MLPs to 0. The SVMs with Gaus-
sian and polynomial kernels reach the DRs of 81.74% and 75.27% for
the training set, and 80.45% and 72.52% for the test set, respectively.
These results show that the generalization performances of SVMs
for discrimination are not as good as expected.

According to Table 2, the MSO  perceptrons take the longest
learning time among the discrimination models. Based on the
evaluation of the predicted time, structure complexity and gen-
eralization performance, however, the MLPs are the best, and the
SVMs are the second best.

Next we  employ MVLRs, PLSRs, MVQRs, MLPs, SVMs with Gaus-
sian kernels, and SVMs with polynomial kernels, to predict the
concentrations of the 12 kinds of VOCs.

Table 3 gives the learning and predicted results of the 6 models
for quantification. In the table, MSDs are specific to concentra-
tion points, and average relative deviations (ARDs) are specific
to odor categories, while maximum absolution deviations (MADs)
and maximum relative deviations (MRDs) are specific to single
samples.

Because the rates of Frobenius norms of the residual matrixes

to the original are below 1.0% when k = 4, all the 12 PLSR mod-
els are formed by the first 4 principal components. The MVLR,
PLSR and MVQR models perform poorly in the learning and

1st principal component (97.34%) 
0 5 302520 15 10

-6

-4

-2

0

2

4

2nd
 p

rin
ci

pa
l c

om
po

ne
nt

 (2
.0

3%
) 

(b). The test set with 1550 samples 

o: Ethanol 
: Butanol 
: Hexanol 

×: Ethyl acetate 
◊: Ethyl propionate

: Ethyl butyrate 
� : Ethyl valerate 

+: Ethyl caproate 
Δ: Ethyl heptanoate 

: Ethyl octanoate 
: Ethyl lactate 
: Isoamyl acetate 

• : Distilled water

 test set with 12 kinds of volatile organic compounds.
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Table 2
Learning and predicted results given by six types of discrimination models for 12 kinds of volatile organic compounds.

Model 1-NN LED LMD  MLP  SVM-G SVM-P

The training set Learning time (s) – 10.11 13.40 2232.27 1221.45 1385.71
No.  mislabeled samples – 3 0 0 776 1051
Discrimination rate (%) 100 99.93 100 100 81.74 75.27

The  test set Decision time (s) 179.33 3.74 4.94 0.18 1.06 1.74
No.  mislabeled samples 523 538 510 65 303 426
Discrimination rate (%) 66.26 65.29 67.10 95.81 80.45 72.52

Table 3
Learning and predicted results given by six regression models for quantifying 12 kinds of volatile organic compounds.

Regression model MVLR PLSR MVQR MLP SVM-G SVM-P

The training set Learning time (s) 1.99 2.51 2.06 213.33 137.82 159.66
Max  standard deviation (ppm) 5630.55 5532.46 3580.43 806.29 736.00 2258.88
Max  absolute deviation (ppm) 25109.30 12901.80 11442.80 1985.71 2246.73 8535.32
Average relative deviation (%) 37.49 32.61 31.56 5.57 17.63 23.22
Max  relative deviation (%) 600.55 254.88 190.71 56.15 34.97 85.35

The  test set Predicted time (s) 1.22 1.38 1.32 0.18 1.52 2.26
Max  standard deviation (ppm) 5521.27 2997.63 2535.67 568.15 624.26 1965.24
Max  absolute deviation (ppm) 16437.20 8479.10 5493.47 1714.66 2928.70 9591.60

p
2
e
1
e

F
r

Average relative deviation (%) 30.09 

Max  relative deviation (%) 200.38 

redicted accuracies in spite of the short learning time, about
.0 s. For example, the MSDs and MADs given by the MVLR mod-

ls even reach 5521.27 ppm and 16437.20 ppm for ethyl acetate of
0,000 ppm; and the ARDs and MRDs given by the MVQR models
ven attain 62.64% and 809.78%, respectively, all for ethanol in the
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test set. Relatively speaking, PLSRs are between MVLRs and MVQRs
in learning and predicted accuracies. Such results are quite identical

with those demonstrated in Ref. [37].

The preset parameters of the 12 single-output perceptrons for
quantification are s = 5, 	max = 10,000, � = 0.025, and ε* = 0.05. Each
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icted results of the corresponding models.
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perceptron iterates 10,000 epochs because ε* is small. The max,
min  and average RMS  errors of the 12 MLPs are 0.0061, 0.0307 and
0.0129 for the training subsets; and 0.0241, 0.0388 and 0.0304 for
the test subsets. The ARDs are only 5.57% for the training set and
9.58% for the test set.

The 12 SVMs with Gaussian kernels for quantification are set
with the parameters of � = 0.05 and C = 1000, and the resulting ARDs
of 17.63% are for the training and 32.65% for the test set. For the
12 SVMs with polynomial kernels, the preset parameters are d = 3,
C = 1000, and the resulting ARDs are 23.22% for the training and
20.68% for the test set.

According to Table 3, based on learning speeds, the MVLR, PLSR
and MVQR models are the fastest. However, judged by MSDs, MADs,
ARDs and MRDs, the MLPs are the best. The SVMs do not perform
as well as expected in generalization performance. An interesting
phenomenon is that the 12 SVMs with Gaussian kernels perform
better than those with polynomial kernels in fitting the training
curves; however, the latter are a little better than the former in the
aspect of average predicted accuracies.

Fig. 5 illustrates the learning and predicted results of the
6 quantification models for ethyl caproate. The results support
the previous theoretical analysis and the experimental results in
Table 3. Fig. 5(l) indicates that the SVM with polynomial kernels
of d = 3 works quite well for predicting ethyl caproate except for
the concentration point of 750 ppm which deviate its mean value
a little too far.

It ought to be pointed out that the number of hidden nodes and
the learning parameters for MLPs, and the widths of Gaussian ker-
nels as well as the degrees of polynomial kernels for SVMs, are
relatively optimal through repeated trials.

Table 4 compares the time complexities, structure complexi-
ties and generalization performances of several combinations of
hierarchical model, including 1-NN classifiers followed by MVLRs,
LED templates by MVQRs, LMD  templates by MVLRs or PLSRs or
MVQRs, MLPs by MLPs, SVMs by SVMs with Gaussian or polynomial
kernels. According to the table, the combination of MSO  percep-
trons followed by MSO  perceptrons has the longest time. However,
in terms of time complexity for prediction, structure complex-
ity and generalization performance, the hierarchical model based
on MLPs is the best. The second best is the combination of
SVMs.

Let us conduct a further discussion about the generalization per-
formances of the hierarchical models mentioned above. Because
the action of sigmoid activation functions is global, i.e., in the range
(−∞, +∞), and if the number of hidden nodes is sufficient and
small enough, MLPs cannot only form arbitrarily complicated deci-
sion boundaries and approximate arbitrarily complicated nonlinear
curves, but also avoid over-fitting [27]. Quite the reverse, Gaus-
sian kernels are local and their widths are forced to be the same in
advance for all support vectors. Furthermore, it is troublesome to
pre-select suitable widths of Gaussian kernels [28], e.g., the width
parameter � chosen in the range [2−10, 2−9, . . .,  23, 24] in Ref. [40].
Though polynomial kernels are not certainly local, it is difficult
to pre-select proper integral order of polynomials, and perhaps
a non-integral order is better [28]. As a result, the generalization
performances of SVMs are not so satisfactory.

5. Conclusions

This paper employs hierarchical models to implement the
quantitative analysis of multiple kinds of odors with the divide-

and-conquer strategy. We  have developed and compared different
hierarchical models such as 1-NN classifiers followed by MVLRs,
LED templates by MVQRs, LMD  templates by MVLRs or PLSRs or
MVQRs, MLPs by MLPs, SVMs by SVMs.
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We  measured 12 kinds of VOCs with the improved electronic
ose and quantified their concentrations using the proposed hier-
rchical models. The experimental results for quantifying the VOCs
upport the following conclusions. (A) The hierarchical model
omposed of MSO  perceptrons followed by MSO  perceptrons
ith local decomposition, virtual balance and local generaliza-

ion techniques has simple structure, fast prediction and good
eneralization. The more the sorts of odors and concentration
oints, the more superior the MLP-based hierarchical model. (B)
he hierarchical models composed of SVMs are sub-optimal in
omprehensive performance because of the difficulties to pre-
elect proper widths of Gaussian kernels and appropriate degrees
f polynomial kernels. (C) The hierarchical models consisting of
-NN classifiers, distance templates, MVLRs, PLSRs and MVQRs per-
orm poorly, because 1-NN classifiers and distance templates fail to
dentify new concentration points, and MVLRs, PLSRs and MVQRs
re low in prediction accuracy for the large-range concentration
hanges.

Electronic noses will be inevitably applied to the quantitative
nalysis of many kinds of complex odors. The divide-and-conquer
trategy and the corresponding hierarchical models will be good
pproaches. Future work will be devoted to these aspects.
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