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Abstract

The paper considers a class of additive neural networks where the neuron activations are modeled by discontinuous functions or by continuous
non-Lipschitz functions. Some tools are developed which enable us to apply a Lyapunov-like approach to differential equations with discontinuous
right-hand side modeling the neural network dynamics. The tools include a chain rule for computing the time derivative along the neural network
solutions of a nondifferentiable Lyapunov function, and a comparison principle for this time derivative, which yields conditions for exponential
convergence or convergence in finite time. By means of the Lyapunov-like approach, a general result is proved on global exponential convergence
toward a unique equilibrium point of the neural network solutions. Moreover, new results on global convergence in finite time are established,
which are applicable to neuron activations with jump discontinuities, or neuron activations modeled by means of continuous (non-Lipschitz)
Hölder functions.
c© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It clearly emerges, in the recent literature, that there is
an increasing interest in the use of neural network models
with discontinuous or non-Lipschitz neuron activations. Next,
we highlight the crucial role played by such nonsmooth
activations, by discussing some applications taken from the
field of continuous-time neural optimization solvers and the
field of computational models based on analog recurrent neural
networks.

In [1], a class of additive neural networks possessing
activations with jump discontinuities has been introduced, and
the issue of global convergence toward a unique equilibrium
point has been addressed. We recall that global convergence
is important in the solution of optimization problems in real
time, since it prevents a network from the risk of getting
stuck at some local minimum of the energy function, see
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e.g. [2–14], and references therein. By exploiting the sliding
modes in the neural network dynamics, which are intrinsically
related to the presence of jump discontinuities, conditions for
global convergence in finite time have been established in
[1, Theorem 4]. As is discussed also in [15], the property
of convergence in finite time is especially desirable in the
design of real time neural optimization solvers, and it cannot be
achieved in smooth dynamical systems, since in that case there
can be only asymptotic convergence toward an equilibrium
point.

In a recent paper [16], a generalized nonlinear programming
circuit with a neural-like architecture has been introduced
to solve a large class of constrained optimization problems.
As in a penalty method, the dynamics is described by a
gradient system of an energy function, which is the sum of the
objective function and a barrier function preventing solutions
from staying outside the feasibility region. One crucial feature
is that, by using constraint neurons modeled by ideal diodes
with a vertical segment in the conducting region, the circuit in
[16] can implement an exact penalty method where the circuit
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equilibrium points coincide with the constrained critical points
of the objective function. This property enables the circuit to
compute the exact constrained optimal solution for interesting
classes of programming problems.

We remark that the results in [16] are in agreement with
the general theory in [17], according to which an exact
penalty method requires the use of a nondifferentiable barrier
function. Therefore, a neural network solver is necessarily
characterized by constraint nonlinearities with vertical straight
segments, which correspond to the generalized gradient of
the nondifferentiable barrier function. Along this line we can
also interpret the design procedure, which has been devised in
[18], for a class of neural networks with discontinuous neuron
activations aimed at solving linear programming problems via a
generalized gradient system based on an exact penalty function
method. A further related case concerns the discontinuous
neural networks proposed in the recent paper [19], which can
be used for finding the exact solution of underdetermined linear
systems of algebraic equations, as well as those arising in least
squares problems for support vector machines.

Finally, we mention the class of analog recurrent neural
networks proposed in [20], where a classical recurrent neural
network [21] is augmented with a few simple discontinuous
neuron activations (e.g., binary threshold functions). It is shown
that the use of these discontinuous activations permits us
to significantly increase the computation power, by enabling
operations as products or divisions on the network inputs, or
the implementation of other more complex recursive functions.
Another fundamental observation made in [20] is that the
same computation power can be achieved by simulating the
discontinuity with a “clear enough discontinuity”, i.e., by
replacing a discontinuous function with a continuous function
with a non-Lipschitz part, as for example a square root
function. Roughly speaking, this is due to the fact that
discontinuous functions and non-Lipschitz functions share the
peculiar property that even small variations of the neuron state
are able to produce significant changes in the neuron output.

In the first part of this paper (Sections 2 and 3), we
introduce some tools which enable to apply a generalized
Lyapunov-like approach to a class of differential equations
with discontinuous right-hand side. The tools include a general
chain rule for computing the time derivative along the solutions
of a nondifferentiable Lyapunov function, and a comparison
principle which gives conditions for exponential convergence,
or convergence in finite time. The second part of the paper
(Sections 4–6) is aimed at demonstrating the applicability of
the generalized Lyapunov approach. To this end, we exploit the
approach for obtaining further results on global convergence for
the class of additive neural networks with discontinuous neuron
activations introduced in [1]. More specifically, a general
condition ensuring global exponential convergence toward a
unique equilibrium point, with a known convergence rate,
is established in the case of neuron activations with jump
discontinuities. Furthermore, new conditions for convergence
in finite time, with a quantitative estimate of convergence time,
are obtained for a class of continuous non-Lipschitz neuron
activations modeled by means of Hölder functions. This class
includes the square root functions, and other classes of non-
Lipschitz functions of potential interest for the applications.
The paper ends with some concluding remarks (Section 7).

The results on global convergence are obtained by assuming
that the neural network interconnection matrix is Lyapunov
Diagonally Stable or it is modeled by an M-matrix or an
H -matrix. Such classes of matrices have been frequently
considered in the literature to address global convergence of
neural networks in the standard case of Lipschitz continuous
neuron activations, see, e.g., [5–7,9] and their references. The
concept of M-matrices and H -matrices is also at the basis
of well established techniques for the qualitative analysis of
large-scale interconnected dynamical systems [22,23]. The
reader is referred to [22,24,25] for a general treatment on the
quoted classes of matrices and a discussion of some of their
fundamental applications in engineering and physics.

Notation. Consider the column vectors x = (x1, . . . , xn)> ∈

Rn and y = (y1, . . . , yn)> ∈ Rn , where the symbol > means
the transpose. By 〈x, y〉 = x>y =

∑n
i=1 xi yi we mean the

scalar product of x, y, while ‖x‖ = 〈x, x〉
1/2

= (
∑n

i=1 x2
i )1/2

denotes the Euclidean norm of x . Let A ∈ Rn×n be a square
matrix. We denote by A> the transpose of A, and by A−1 the
inverse of A. Finally, by co (Q) we denote the closure of the
convex hull of set Q ⊂ Rn .

2. Preliminaries

In this section, we report a number of definitions and
properties concerning nonsmooth analysis, which are needed
in the development. The reader is referred to [26, Ch. 2] for a
thorough treatment.

2.1. Locally Lipschitz and regular functions

A function f : Rn
→ R is said to be Lipschitz near x ∈ Rn

if there exist `, ε > 0, such that we have | f (x2) − f (x1)| ≤

`‖x2 − x1‖, for all x1, x2 ∈ Rn satisfying ‖x1 − x‖ < ε and
‖x2 − x‖ < ε. If f is Lipschitz near any point x ∈ Rn , then f
is said to be locally Lipschitz in Rn .

Suppose that f : Rn
→ R is locally Lipschitz in Rn . Then,

f is differentiable for almost all (a.a.) x ∈ Rn (in the sense of
Lebesgue measure). Moreover, for any x ∈ Rn we can define
Clarke’s generalized gradient of f at point x , as follows

∂ f (x) = co
{

lim
n→∞

∇ f (xn) : xn → x, xn 6∈ N , xn 6∈ Ω
}

where Ω ⊂ Rn is the set of points where f is not differentiable,
and N ⊂ Rn is an arbitrary set with measure zero. It can
be proved that ∂ f (x) : Rn ( Rn is a set-valued map that
associates to any x ∈ Rn a non-empty compact convex subset
∂ f (x) ⊂ Rn .

A function f : Rn
→ R, which is locally Lipschitz near

x ∈ Rn , is said to be regular at x if the following holds. For all
directions v ∈ Rn , there exists the usual one-sided directional
derivative

f ′(x, v) = lim
ρ ↓ 0

f (x + ρv) − f (x)

ρ
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and we have f ′(x, v) = f 0(x, v), where

f 0(x, v) = lim sup
y→x
ρ ↓ 0

f (y + ρv) − f (y)

ρ

is the generalized directional derivative of f at x in the direction
v. The function f is said to be regular in Rn , if it is regular for
any x ∈ Rn .

Note that regular functions admit the directional derivative
for all directions v ∈ Rn , although the derivative may be
different for different directions. If a function is continuously
differentiable on Rn , then it is regular on Rn , but the converse
is not true (e.g., f (x) = |x | : R → R). A useful property is that
a locally Lipschitz and convex function in Rn is also regular in
Rn (see [26, Proposition 2.3.6]).

Finally, we observe that if f : Rn
→ R is locally Lipschitz

in Rn , then by virtue of [26, Theorem 2.5.1] the previous
definition of Clarke’s generalized gradient of f at x ∈ Rn is
equivalent to the following one

∂ f (x) = {ζ ∈ Rn
: f 0(x, v) ≥ 〈ζ, v〉 for all v ∈ Rn

}.

Moreover, for any v ∈ Rn we have [26, Proposition 2.1.2]

f 0(x, v) = max{〈ζ, v〉 : ζ ∈ ∂ f (x)}.

2.2. Hölder functions

Here, we define a class of continuous functions which is of
interest for the applications in this paper.

Given λ ∈ (0, 1], f : Rn
→ R is said to be a λ-Hölder

function near x ∈ Rn if there exist `, ε > 0, such that we have

| f (x2) − f (x1)| ≤ `‖x2 − x1‖
λ

for all x1, x2 ∈ Rn satisfying ‖x1 − x‖ < ε and ‖x2 − x‖ < ε.
When λ = 1, the definition reduces to that of a function

that is Lipschitz near x , however when λ ∈ (0, 1) a λ-Hölder
function near x is continuous at x but in general fails to be
Lipschitz near x .

3. Generalized Lyapunov approach

The goal of this section is to develop a Lyapunov-like
approach for studying global convergence of the solutions
to differential equations with discontinuous right-hand side
modeling a class of neural networks. We recall that, according
to Filippov’s theory, a solution to a differential equation
with discontinuous right-hand side is an absolutely continuous
function that satisfies a suitable differential inclusion associated
to the differential equation [27].

There are two main ingredients in the approach here
described: (1) a chain rule for computing the time derivative
of a nondifferentiable Lyapunov function along the solutions,
which is applicable in the nonsmooth setting considered in this
paper; (2) a comparison principle for this time derivative, which
gives sufficient conditions for ensuring the desired convergence
properties.

To be specific, we consider (candidate) Lyapunov functions
V with the following properties.
Assumption 1. Function V (x) : Rn
→ R is:

(i) Regular in Rn ;
(ii) positive definite, i.e., we have V (x) > 0 for x 6= 0, and

V (0) = 0;
(iii) radially unbounded, i.e., V (x) → +∞ as ‖x‖ → +∞.

Note that a Lyapunov function V as in Assumption 1 is not
necessarily differentiable. Suppose that x(t) : [0, +∞) → Rn

is absolutely continuous on any compact interval of [0, +∞).
The next property gives a chain rule for computing the time
derivative of the composed function V (x(t)) : [0, +∞) → R.

Property 1 (Chain Rule). Suppose that V satisfies
Assumption 1, and that x(t) : [0, +∞) → Rn is absolutely
continuous on any compact interval of [0, +∞). Then, x(t)
and V (x(t)) : [0, +∞) → R are differentiable for a.a. t ∈

[0, +∞), and we have

d
dt

V (x(t)) = 〈ζ, ẋ(t)〉 ∀ζ ∈ ∂V (x(t)).

Proof. Since V (x(t)) is the composition of a locally Lipschitz
function V (x) and an absolutely continuous function x(t), it
follows that V (x(t)) is absolutely continuous on any compact
interval of [0, +∞). Hence, V (x(t)) and x(t) are differentiable
for a.a. t ≥ 0.

Consider an instant t ∈ [0, +∞) such that x(t) and V (x(t))
are differentiable at t . Then, x(t + h) = x(t) + ẋ(t)h + o(h),
where o(h)/h → 0 as h → 0, and taking into account that V
is locally Lipschitz in Rn we obtain∣∣∣∣V (x(t) + ẋ(t)h + o(h)) − V (x(t)) − V (x(t) + ẋ(t)h) + V (x(t))

h

∣∣∣∣
=

∣∣∣∣V (x(t) + ẋ(t)h + o(h)) − V (x(t) + ẋ(t)h)

h

∣∣∣∣ ≤ `

∣∣∣∣o(h)

h

∣∣∣∣
for some ` > 0. Then,

d
dt

V (x(t)) = lim
h→0

V (x(t + h)) − V (x(t))

h

= lim
h→0

V (x(t) + ẋ(t)h) − V (x(t))

h
.

Because of the regularity of V , by letting h → 0+ we obtain

d
dt

V (x(t)) = V ′(x(t), ẋ(t))

= V 0(x(t), ẋ(t))

= max{〈ζ, ẋ(t)〉, ζ ∈ ∂V (x(t))}.

Similarly, by letting h → 0− and taking into account again that
V is regular we obtain

d
dt

V (x(t)) = −V ′(x(t), −ẋ(t))

= −V 0(x(t), −ẋ(t))

= V0(x(t), ẋ(t))

where

V0(x(t), ẋ(t)) = lim inf
y→x(t)

h ↓ 0

V (y + hẋ(t)) − V (y)

h

= min{〈ζ, ẋ(t)〉, ζ ∈ ∂V (x(t))}.
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Thus, we have shown that

d
dt

V (x(t)) = 〈ζ, ẋ(t)〉 ∀ζ ∈ ∂V (x(t)). �

The property that follows gives a general condition for
convergence.

Property 2 (Convergence). Suppose that V satisfies
Assumption 1, and that x(t) : [0, +∞) → Rn is absolutely
continuous on any compact interval of [0, +∞). Let v(t) =

V (x(t)), and suppose that there exists a continuous function
Υ : (0, +∞) → R, with Υ(σ ) > 0 for σ ∈ (0, +∞), such
that we have

v̇(t) ≤ −Υ(v(t)) (1)

for all t ≥ 0 such that v(t) > 0 and v(t) is differentiable at t .
Then,

lim
t→+∞

v(t) = 0

and

lim
t→+∞

x(t) = 0.

Proof. We begin by observing that if v(t0) = 0 for some t0 ≥ 0,
then we have v(t) = 0 for all t > t0. Otherwise, there exists
T > t0 such that v(T ) > 0. Let

ts = sup{t ∈ [t0, T ] : v(t) = 0}.

Hence, we have ts < T , v(ts) = 0 and v(t) > 0 for all
t ∈ (ts, T ]. From the absolute continuity of v(t), it follows that

0 < v(T ) = v(ts) +

∫ T

ts
v̇(τ )dτ =

∫ T

ts
v̇(τ )dτ

which contradicts the fact that v̇(t) ≤ −Υ(v(t)) < 0 for
a.a. t ∈ (ts, T ].

Then, consider the case where v(t) > 0 for all t ≥ 0. Being
v̇(t) ≤ 0 for a.a. t ≥ 0, it follows that v(t) is non-increasing for
t ≥ 0, hence there exists ε ≥ 0 such that v(t) → ε as t → +∞,
and v(t) ≥ ε for t ≥ 0. Suppose, for contradiction, that ε > 0
and let M = minσ ∈ [ε,v(0)] {Υ(σ )}. Due to the assumptions
on Υ , we have M > 0. Therefore, for a.a. t > 0 we obtain
v̇(t) ≤ −Υ (v(t)) ≤ −M , hence v(t) ≤ v(0) − Mt < ε for
sufficiently large t , which is a contradiction. Then, we conclude
that ε = 0, i.e., v(t) → 0 as t → +∞. Since V is positive
definite and radially unbounded, this implies that x(t) → 0 as
t → +∞. �

The next properties address exponential convergence and
convergence in finite time.

Property 3 (Exponential Convergence). Suppose that the
assumptions of Property 2 are satisfied, and that in particular
Υ(v) = av, for all v ∈ (0, +∞), where a > 0. Then, we have

0 ≤ v(t) ≤ v(0)e−at , t ≥ 0 (2)

i.e., v(t) converges exponentially to 0 with convergence rate a.
If, in addition, there exist c > 0 and ϑ > 0 such that

0 ≤ c ‖x‖
ϑ

≤ V (x) (3)

for all x ∈ Rn , then we have

‖x(t)‖ ≤

(
v(0)

c

) 1
ϑ

e−
a
ϑ

t , t ≥ 0 (4)

i.e., x(t) converges exponentially to x = 0 with convergence
rate a/ϑ .

Proof. If v(t) = 0 for some t ≥ 0, then the result of the
property is obvious. Consider an instant t such that v(t) > 0. By
recalling that v(t) is non-increasing for t ≥ 0, and accounting
for the assumptions on Υ in Property 2, we have

−

∫ t

0

v̇(τ )

Υ(v(τ ))
dτ =

∫ v(0)

v(t)

1
Υ(σ )

dσ

=

∫ v(0)

v(t)

dσ

aσ
=

1
a

ln
v(0)

v(t)

and, due to (1),

−

∫ t

0

v̇(τ )

Υ(v(τ ))
dτ ≥ t.

Hence,

1
a

ln
v(0)

v(t)
≥ t

which yields v(t) ≤ v(0)e−at .
If condition (3) is satisfied, then for all t ≥ 0 we have

c ‖x(t)‖ϑ
≤ v(0)e−at

from which the result on exponential convergence of x(t) to 0
immediately follows. �

Property 4 (Convergence in Finite Time). Suppose that the
assumptions of Property 2 are satisfied, and that Υ satisfies
the condition∫ v(0)

0

1
Υ(σ )

dσ = tφ < +∞. (5)

Then, we have

v(t) = 0, t ≥ tφ

and

x(t) = 0, t ≥ tφ

i.e., v(t) converges to 0 , and x(t) converges to x = 0, in finite
time tφ .

Next, tφ is explicitly evaluated for two particular functions
Υ satisfying condition (5).

(a) If Υ(σ ) = k > 0, for all σ ∈ (0, +∞), then

tφ =
v(0)

k
.
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(b) If Υ(σ ) = Qσµ, for all σ ∈ (0, +∞), where µ ∈ (0, 1)

and Q > 0, then

tφ =
v1−µ(0)

Q(1 − µ)
.

Proof. Suppose, for contradiction, that v(t) does not converge
to zero in finite time. In such a case, we would have v(t) > 0
for all t > 0. Let tg > tφ , where tφ is defined in (5). Then,
accounting for (1) we obtain

tφ =

∫ v(0)

0

1
Υ(σ )

dσ ≥

∫ v(0)

v(tg)

1
Υ(σ )

dσ

= −

∫ tg

0

v̇(τ )

Υ(v(τ ))
dτ ≥ tg

i.e., a contradiction.

Then, v(t) reaches 0 at an instant tr ≤ tφ , and by an argument
as in the proof of Property 2, it follows that v(t) = 0, and hence
x(t) = 0, for t ≥ tr.

The results given in (a) and (b) are simply obtained by
evaluating tφ in (5) for the considered functions Υ . �

Property 3 generalizes to nonsmooth dynamical systems an
analogous comparison result which has been widely employed
to prove exponential convergence in the context of smooth
neural networks defined by Lipschitz-continuous vector fields
[6,7,9,28]. Condition (5) in Property 4 represents a general
Nagumo-type condition for convergence in finite time. This
condition includes as special cases previous conditions in the
literature for ensuring convergence in finite time of nonsmooth
dynamical systems. For example, the result on convergence in
finite time given in [29, Theorem 2] is based on an assumption
as in the special case of condition (5) where Υ(σ ) = k > 0,
see point (a) of Property 4. A condition as in (a) of the same
property has been already employed in the context of neural
networks to prove convergence in finite time of discontinuous
dynamical systems for solving linear programming problems
[16,18].1 A further application of condition (a) of Property 4
concerns the result on convergence in finite time given in
[1, Theorem 4], for the state and output solutions of a class
of neural networks possessing neuron activations with jump
discontinuities. To the authors’ knowledge, a condition as in
point (b) of Property 4, where Υ(σ ) = Qσµ, has not been
considered up to now to address convergence in finite time of
neural networks.

1 It is worth noticing that in the quoted papers [16,18,29], a condition as in
point (a) of Property 4 was used to prove convergence in finite time to a set
of points where for some Lyapunov-like function V we have V (x) ≤ 0. The
result in Property 4 can be easily extended to encompass this more general
situation, by simply removing the hypothesis that V is positive definite (cf. (ii)
of Assumption 1). We have preferred to state Property 4 in the more restrictive
case where V is positive definite, since in the paper we are interested in
the application to prove global convergence in finite time toward a unique
equilibrium point for the solutions of a class of neural networks.
4. Neural network model

We consider additive neural networks whose dynamics
is described by the system of differential equations with
discontinuous right-hand side

ẋ = Bx + T g(x) + I (6)

where x ∈ Rn is the vector of neuron state variables, B =

diag(−b1, . . . ,−bn) ∈ Rn×n is a diagonal matrix with diagonal
entries −bi < 0, i = 1, . . . , n, modeling the neuron self-
inhibitions, and I ∈ Rn is the vector of neuron biasing inputs.
Moreover, the entries of matrix T ∈ Rn×n are the neuron
interconnections, while the components gi of the diagonal
mapping g(x) = (g1(x1), . . . , gn(xn))> : Rn

→ Rn are the
neuron activations.

As in [1], the neuron activations are modeled with the next
class of discontinuous functions.

Definition 1. We say that g ∈ D if and only if, for i = 1, . . . , n,
gi : R → R is a bounded non-decreasing piecewise continuous
function. The last property means that gi is continuous in R
except for countably many points of discontinuity where there
exist finite right and left limits, furthermore gi has a finite
number of discontinuities in any compact interval of R.

We consider for (6) solutions in the sense of Filippov [27].
Filippov’s solutions are known to be uniform approximations
of solutions of actual systems that possess nonlinearities with
very high slope [30,31]. Due to this reason, Filippov’s theory
has become a standard tool in several applications to control
problems and problems in mechanics involving the presence of
nonsmooth friction.

Let g ∈ D. A function x(t), t ∈ [ta, tb], is a solution of (6)
in the sense of Filippov, with initial condition x(ta) = x0 ∈ Rn ,
if the following hold [27]: x(t) is absolutely continuous on
[ta, tb], x(ta) = x0, and for a.a. t ∈ [ta, tb], x(t) satisfies the
differential inclusion

ẋ(t) ∈ Bx(t) + T co [g(x(t))] + I (7)

where we have let co [g(x)] = (co [g1(x1)], . . . , co [gn(xn)])> :

Rn ( Rn , and

co [gi (xi )] = [gi (x−

i ), gi (x+

i )] (8)

for i = 1, . . . , n. Note that co [gi (xi )] is an interval with
non-empty interior when gi is discontinuous at xi , while
co [gi (xi )] = {g(xi )} is a singleton when gi is continuous at
xi .

It is pointed out that the neuron activations gi are not
necessarily defined at their points of discontinuity. A solution
x(t) of (6) in the sense of Filippov corresponds to a solution
of the differential inclusion (7) where, at each point of
discontinuity, gi is defined as the interval co [gi (xi )] =

[gi (x−

i ), gi (x+

i )]. From a geometrical viewpoint, this means
that the inclusion (7) is simply obtained by filling in the jump
discontinuities of gi .

Let x(t), t ∈ [ta, tb], be a solution of (6), and suppose
det T 6= 0. Then, for a.a. t ∈ [ta, tb] we have

ẋ(t) = Bx(t) + T γ (t) + I (9)
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where

γ (t) = T −1(ẋ(t) − Bx(t) − I ) ∈ co [g(x(t))] (10)

is the output solution of (6) corresponding to x(t). It can be
easily verified that γ (t) is a bounded measurable function,
which is uniquely defined by the state solution x(t) for a.a. t ∈

[ta, tb].
An equilibrium point (EP) ξ ∈ Rn of (6) is a stationary

solution x(t) = ξ , t ≥ 0, of (6). Clearly, ξ ∈ Rn is an EP
of (6) if and only if ξ satisfies the following algebraic inclusion

0 ∈ Bξ + T co [g(ξ)] + I.

Let ξ be an EP of (N). Then, from (10) it turns out that

η = T −1(−Bξ − I ) ∈ co [g(ξ)] (11)

is the output equilibrium point (OEP) of (N) corresponding to
ξ .

From previous results [1], we have that if g ∈ D then for
any x0 ∈ Rn there is at least a solution x(t) of (6) with initial
condition x(0) = x0, which is defined and bounded for t ≥ 0.
Moreover, there exists at least an EP ξ ∈ Rn of (6).

The goal of this paper is to demonstrate the applicability of
the generalized Lyapunov approach in Section 3, by obtaining
stronger global convergence results for the neural networks
(6), with respect to those previously established in [1]. More
specifically, Property 3 is used to prove a new result on
global exponential convergence of the state solutions of (6)
(Section 5), while Property 4 is exploited to obtain new results
on global convergence in finite time for the state and output
solutions of (6) (Section 6).

5. Global exponential convergence

In this section, we address global exponential convergence
toward a unique EP of the state solutions of (6).

Let ξ be an EP of (6), with corresponding OEP η. We find
it useful to consider the change of variables z = x − ξ , which
transforms (6) into the differential equation

ż = Bz + T G(z) (12)

where G(z) = g(z+ξ)−η. If g ∈ D, then we also have G ∈ D.
Note that (12) has an EP, and a corresponding OEP, which are
both located at the origin. If z(t), t ≥ 0, is a solution of (12),
then we denote by

γ o(t) = T −1(ż(t) − Bz(t)) ∈ co [G(z(t))] (13)

the output solution of (12) corresponding to z(t), which is
defined for a.a. t ≥ 0.

Definition 2 ([24]). We say that matrix A ∈ Rn×n is Lyapunov
Diagonally Stable (LDS), if there exists a positive definite
diagonal matrix α = diag(α1, . . . , αn), such that (1/2)(αA +

A>α) is positive definite.
Suppose that −T ∈ LDS and, as in [1] consider for (12) the
(candidate) Lyapunov function

V (z) =

n∑
i=1

1
bi

z2
i + 2c

n∑
i=1

αi

∫ zi

0
Gi (ρ) dρ (14)

where c > 0 is a constant, and α = diag(α1, . . . , αn) is
a positive definite diagonal matrix such that (1/2)(α(−T ) +

(−T )>α) is positive definite. Note that V is a locally Lipschitz
and convex function on Rn , hence it is also regular in Rn

and it satisfies Assumption 1. Also note that, due to the jump
discontinuities of Gi , V is not differentiable.

The main result in this section is as follows.

Theorem 1. Suppose that g ∈ D and that −T ∈ LDS. Let z(t),
t ≥ 0, be any solution of (12), and v(t) = V (z(t)), t ≥ 0.
Then, we have

v̇(t) ≤ −bmv(t), for a.a. t ≥ 0

where bm = mini=1,...,m{bi } > 0, and hence

0 ≤ v(t) ≤ v(0) e−bmt , t ≥ 0

i.e., v(t) converges exponentially to 0 with convergence rate bm.
Furthermore, we have

‖z(t)‖ ≤

√
bMv(0) e−

bm
2 t , t ≥ 0 (15)

where bM = maxi=1,...,m{bi } > 0, i.e., z(t) is exponentially
convergent to 0 with convergence rate bm/2.

Before giving the proof, we note that Theorem 1 improves
the result in [1, Theorem 2], where under the same assumptions
only convergence of the state solutions was proved, moreover
no estimate of convergence rate was obtained. Theorem 1
is in agreement with previous results for neural networks
possessing Lipschitz continuous neuron activations, where
global exponential convergence with the same convergence rate
was established [6,7,9,28].

Proof of Theorem 1. We start by observing that, since each
Gi is monotone non-decreasing and 0 ∈ co [Gi (0)], it easily
follows that for any zi ∈ R we have

0 ≤

∫ zi

0
Gi (ρ)dρ ≤ ziζi ∀ζi ∈ co [Gi (zi )]. (16)

Let z(t), t ≥ 0, be any solution of (12), hence z(t) is
absolutely continuous on any compact interval of [0, +∞).
Since V is regular at any z(t), it is possible to apply the chain
rule of Property 1 in order to obtain that for a.a. t ≥ 0 we have

v̇(t) = 〈ζ, ż(t)〉 ∀ζ ∈ ∂V (z(t)). (17)

Below, we extend the argument used in the proof of [1,
Theorem 2], in order to prove by means of Property 3 that z(t)
is exponentially convergent to 0.

By evaluating the scalar product in (17), it has been proved
in [1, App. IV] that there exists λ > 0 such that for a.a. t ≥ 0
we have

v̇(t) ≤ −‖z(t)‖2
− ‖B−1 ż(t)‖2

− λ‖γ o(t)‖2

+ 2cz>(t)αBγ o(t)

≤ − ‖z(t)‖2
+ 2cz>(t)αBγ o(t). (18)
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Now, note that from (16) it follows that

2cz>(t)αBγ o(t) = −2c
n∑

i=1

αi bi zi (t)γ
o
i (t)

≤ −2c
n∑

i=1

αi bi

∫ zi (t)

0
Gi (ρ)dρ ≤ 0. (19)

Hence, we obtain

v̇(t) ≤ −

n∑
i=1

z2
i (t) − 2c

n∑
i=1

αi bi zi (t)γ
o
i (t)

≤ −bm

(
n∑

i=1

1
bi

z2
i (t) + 2c

n∑
i=1

αi

∫ zi (t)

0
Gi (ρ)dρ

)
= −bmv(t)

for a.a. t ≥ 0. By applying Property 3, we conclude that
v(t) ≤ v(0)e−bmt for all t ≥ 0.

Since αi > 0, and the graph of Gi is contained in the first
and third quadrant, we have

αi

∫ zi

0
Gi (ρ)dρ ≥ 0

for all zi ∈ R. Therefore,

V (z) =

n∑
i=1

1
bi

z2
i + 2c

n∑
i

αi

∫ zi

0
Gi (ρ)dρ

≥

n∑
i=1

1
bi

z2
i ≥

1
bM

‖z‖2 .

The result on exponential convergence of x(t) to 0 thus follows
from (4) of Property 3. �

6. Global convergence in finite time

This section is divided in two parts. First, we establish
a theorem on global convergence in finite time for LDS
interconnection matrices, which is valid for a class of non-
Lipschitz neuron activations (Section 6.1). Then, we prove a
second result on convergence in finite time (Section 6.2), which
requires the stronger assumption that the interconnection matrix
is an H -matrix (see Definition 4), but is applicable to a larger
class of non-Lipschitz neuron activations.

6.1. LDS-matrices

Suppose that −T ∈ LDS, and consider for (12) the
Lyapunov function V defined in (14). Let

θD = {i ∈ {1, . . . , n} : Gi is discontinuous at zi = 0}

and θC = {1, . . . , n} \ θD .
In the next theorem we establish a result on global conver-

gence in finite time of the state and output solutions of (12).

Theorem 2. Suppose that g ∈ D, and that −T ∈ LDS.
Moreover, suppose that for any i ∈ θD we have Gi (0+) > 0 and
Gi (0−) < 0, while for any i ∈ θC there exist δi , Ki , K +

i > 0,
µi ∈ (0, 1) and µ+

i ∈ [0, 1), such that

Ki |ρ|
µi ≤ |Gi (ρ)| ≤ K +

i |ρ|
µ+

i , |ρ| < δi . (20)

Furthermore, suppose that

µM = max
i∈θC

{
2µi

1 + µ+

i

}
< 1. (21)

Let z(t), t ≥ 0, be any solution of (12), and v(t) = V (z(t)),
t ≥ 0. Moreover, let γ o(t), for a.a. t ≥ 0, be the output solution
of (12) corresponding to z(t). Then, there exists tδ > 0 such
that we have

v̇(t) ≤ −Qvµ(t), for a.a. t > tδ

where µ ∈ [µM, 1) and Q > 0. As a consequence, we have

v(t) = 0, ∀t ≥ tφ
z(t) = 0, ∀t ≥ tφ
γ o(t) = 0, for a.a. t ≥ tφ

where

tφ = tδ +
v1−µ(tδ)

Q(1 − µ)

i.e., v(t), z(t), and γ o(t) converge to zero in finite time tφ .

Prior to the proof, we give some remarks illustrating the
result in the theorem.

Remarks. 1. Theorem 2 is an extension of the result on global
convergence in finite time given in [1, Theorem 4]. Indeed,
Theorem 2 can be applied to the case where the neuron
activations Gi are either discontinuous at 0, or they are
modeled by non-Lipschitz functions in a neighborhood of 0.
Instead, [1, Theorem 4] requires that all neuron activations
be discontinuous at 0. Note that the left inequality in (20)
means that Gi grows at least as a µi -Hölder function, with
µi ∈ (0, 1), in a neighborhood of 0. Finally, it is observed
that the proof of Theorem 2 relies on condition (b) in
Property 4, while that of [1, Theorem 4] was based on a
condition analogous to that in (a) of Property 4. The proof
of Theorem 2 also yields a simple quantitative estimate of
the finite convergence time tφ , see (27).

2. It can be easily checked that the following classes of
continuous non-Lipschitz functions Gi satisfy assumptions
(20) and (21) of Theorem 3:
(1) For any i ∈ θC , (20) is satisfied by Gi with µi < 1/2;
(2) for any i ∈ θC , Gi is a µi -Holder function defined as

Gi (ρ) = ki sgn(ρ)|ρ|
µi

where µi ∈ (0, 1) and ki > 0.

Proof of Theorem 2. We need the following additional nota-
tions. Since −T ∈ LDS, there exists α = diag(α1, . . . , αn),
where αi > 0 for i = 1, . . . , n, such that (1/2)(α(−T ) +

(−T )>α) is positive definite. Let

αM = max
i∈θC

{αi } > 0.
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We also define

Km = min
i∈θC

{Ki } > 0, µ+
m = min

i∈θC
{µ+

i } ≥ 0.

For any i ∈ θD , we let

mi = min{−Gi (0−), Gi (0+)} > 0.

Since Gi has a finite number of discontinuities in any compact
interval of R, for any i ∈ θD there exists δi ∈ (0, 1]

such that Gi is a continuous function in [−δi , 0) ∪ (0, δi ].
For any i ∈ θD we define K +

i = supρ∈[−δi ,δi ]
{|Gi (ρ)|} =

max{−Gi (−δi ), Gi (δi )} > 0, and we let

K +

M = max{K +

1 , . . . , K +
n } > 0.

Finally, we let

δ = min

{
1, min {δ1, . . . , δn} , min

i∈θD

{(
mi

Km

) 2
µM

}}
> 0.

We are now in a position to address the theorem proof. It is
seen from (15) that for

t > tδ =
2

bm
ln
(√

bMv(0)

δ

)
(22)

we have z(t) ∈ [−δ, δ]n . Since by definition δ ∈ (0, 1], then
for t > tδ we also have |zi (t)|p2 ≤ |zi (t)|p1 ≤ 1, for any
p1, p2 > 0 such that p1 ≤ p2.

For t > tδ , let

P(t) = {i ∈ 1, . . . , n : zi (t) = 0} , θ
]
C (t) = θC \ P(t),

θ
]
D(t) = θD \ P(t).

For any i ∈ P(t), we have
∣∣γ o

i (t)
∣∣ ≥ 0 = zi (t), while for

any i ∈ θ
]
C (t) we have

∣∣γ o
i (t)

∣∣ = |Gi (zi (t)) | ≥ Ki |zi (t)|µi .

Moreover, for any i ∈ θ
]
D(t) we obtain mi ≤

∣∣γ o
i (t)

∣∣ =

|Gi (zi (t))| ≤ K +

i .
Suppose that v(t) is differentiable at t > tδ . Then, from (18)

and (19) we have

v̇(t) ≤ −λ
∥∥γ o(t)

∥∥2
= −λ

n∑
i=1

∣∣γ o
i (t)

∣∣2
≤ −λ

 ∑
i ∈ θ

]
C (t)

K 2
i |zi (t)|

2µi +

∑
i ∈ θ

]
D(t)

m2
i


≤ −λ

K 2
m

∑
i ∈ θ

]
C (t)

|zi (t)|
2µi +

∑
i ∈ θ

]
D(t)

m2
i



= −λK 2
m

 ∑
i ∈ θ

]
C (t)

|zi (t)|
2µi +

∑
i ∈ θ

]
D(t)

m2
i

K 2
m

 . (23)

Let µ ∈ (0, 1). Since zi (t) ≤ δi , we obtain

vµ(t) =

(
−z>(t)B−1z(t) + 2c

n∑
i=1

αi

∫ zi (t)

0
Gi (ρ) dρ

)µ
=

( ∑
i 6∈ P(t)

|zi (t)|2

bi
+ 2c

∑
i 6∈ P(t)

αi

∫ zi (t)

0
Gi (ρ) dρ

)µ

≤

 ∑
i 6∈ P(t)

|zi (t)|2

bi
+ 2c

∑
i ∈ θ

]
C (t)

αi

∫
|zi (t)|

0
K +

i ρµ+

i dρ

+ 2c
∑

i ∈ θ
]
D(t)

αi

∫
|zi (t)|

0
K +

i dρ


µ

=

 ∑
i 6∈ P(t)

|zi (t)|2

bi
+ 2c

∑
i ∈ θ

]
C (t)

αi K +

i
|zi (t)|1 +µ+

i

1 + µ+

i

+ 2c
∑

i ∈ θ
]
D(t)

αi K +

i |zi (t)|


µ

.

Since (a +b)µ ≤ aµ
+bµ for a, b ≥ 0 and µ ∈ (0, 1), we have

vµ(t) ≤

∑
i 6∈ P(t)

|zi (t)|2µ

bµ
m

+ (2c)µ

 ∑
i ∈ θ

]
C (t)

(
αi K +

i

1 + µ+

i

)µ

|zi (t)|
µ(1 +µ+

i )

+

∑
i ∈ θ

]
D(t)

(αi K +

i )µ|zi (t)|
µ

 .

Recall that µ+

i < 1, hence 2µ > µ
(
1 + µ+

i

)
and being

|zi (t)| ≤ δ ≤ 1, it follows that |zi (t)|2µ
≤ |zi (t)|µ

(
1+µ+

i

)
and

|zi (t)|2µ
≤ |zi (t)|µ. Therefore,

vµ(t) ≤

∑
i ∈ θ

]
C (t)

|zi (t)|µ(1+µ+

i )

bµ
m

+

∑
i ∈ θ

]
D(t)

|zi (t)|µ

bµ
m

+

(
2cαM K +

M

1 + µ+
m

)µ ∑
i ∈ θ

]
C (t)

|zi (t)|
µ(1+µ+

i )

+ (2cαM K +

M)µ
∑

i ∈ θ
]
D(t)

|zi (t)|
µ

≤

(
1

bµ
m

+

(
2cαM K +

M

1 + µ+
m

)µ) ∑
i ∈ θ

]
C (t)

|zi (t)|
µ(1+µ+

i )

+

(
1

bµ
m

+
(
2cαM K +

M

)µ) ∑
i ∈ θ

]
D(t)

|zi (t)|
µ .

If µ ∈ [µM, 1), then from (21) it follows that µ(1+µ+

i ) ≥ 2µi

and hence

vµ(t) ≤

(
1

bµ
m

+

(
2cαM K +

M

1 + µ+
m

)µ) ∑
i ∈ θ

]
C (t)

|zi (t)|
2µi
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+

(
1

bµ
m

+
(
2cαM K +

M

)µ) ∑
i ∈ θ

]
D(t)

|zi (t)|
µ

≤

(
1

bµ
m

+
(
2cαM K +

M

)µ)

×

 ∑
i ∈ θ

]
C (t)

|zi (t)|
2µi +

∑
i ∈ θ

]
D(t)

|zi (t)|
µ

 (24)

where we have taken into account that (2cαM K +

M)/(1 + µ+
m) ≤

2cαM K +

M.
Now, let us show that for any i ∈ θD we have |zi (t)|µ ≤

m2
i /K 2

m. There are the following two possibilities.

(a) m2
i /K 2

m ≥ 1. In this case, since |zi (t)| ≤ δ ≤ 1 we have

|zi (t)|
µ

≤ 1 ≤
m2

i

K 2
m

.

(b) m2
i /K 2

m < 1. Then, by the definition of δ we have

|zi (t)|
µ

≤ δµ
≤

(
mi

Km

) 2µ
µM

=

(
m2

i

K 2
m

) µ
µM

≤
m2

i

K 2
m

where we have considered that µ/µM ≥ 1.

Therefore, from (24) we have

vµ(t) ≤

(
1

bµ
m

+
(
2cαM K +

M

)µ)

×

 ∑
i ∈ θ

]
C (t)

|zi (t)|
2µi +

∑
i ∈ θ

]
D(t)

m2
i

K 2
m

 . (25)

Eqs. (23) and (25) thus yield

v̇(t) ≤ −λK 2
m

 ∑
i ∈ θ

]
C (t)

|zi (t)|
2µi +

∑
i ∈ θ

]
D(t)

m2
i

K 2
m


= −

λK 2
m

1
bµ

m
+
(
2cαM K +

M

)µ ( 1

bµ
m

+
(
2cαM K +

M

)µ)

×

 ∑
i ∈ θ

]
C (t)

|zi (t)|
2µi +

∑
i ∈ θ

]
D(t)

m2
i

K 2
m


≤ −

λK 2
m

1
bµ

m
+
(
2cαM K +

M

)µ vµ(t). (26)

In conclusion, we have shown that for a.a. t > tδ we have

v̇(t) ≤ −Qvµ(t)

where

Q =
λK 2

m
1

bµ
m

+
(
2cαM K +

M

)µ > 0.
By applying the result in Point (b) of Property 4, we obtain that
v(t) = 0 and z(t) = 0 for t ≥ tφ , where

tφ = tδ +
v1−µ(tδ)

Q(1 − µ)
(27)

and tδ is given in (22). Finally, (13) implies that γ o(t) = 0 for
a.a. t ≥ tφ . �

6.2. H-matrices

In this section, we suppose that the neuron interconnection
matrix belongs to a subclass of the LDS interconnection
matrices defined by means of the so called H -matrices.

Definition 3 ([24]). We say that matrix A ∈ Rn×n is an M-
matrix, if and only if we have Ai j ≤ 0 for each i 6= j , and all
successive principal minors of A are positive.

Definition 4 ([24]). We say that matrix A ∈ Rn×n is an H -
matrix if and only if the comparison matrix of A, which is
defined as

[M(A)]i j =

{
|Ai i |, i = j
−|Ai j |, i 6= j

(28)

is an M-matrix.

Suppose that −T is an H -matrix such that Ti i < 0 for
i = 1, . . . , n. Then, −T ∈ LDS [24]. Since M(−T ) is
an M-matrix, there exists a positive definite diagonal matrix
D = diag(d1, . . . , dn) such that DM(−T ) is strictly column-
sum dominant, i.e., we have

−d j T j j −

n∑
i=1
i 6= j

di |Ti j | > 0, j = 1, . . . , n.

Let us consider for (12) the (candidate) Lyapunov function

W (z) =

n∑
i=1

di |zi | (29)

which is positive definite and radially unbounded. Since W is
locally Lipschitz and convex in Rn , then W regular in Rn and
hence satisfies Assumption 1. Note that W is not differentiable.

The following holds.

Theorem 3. Suppose that g ∈ D, and that −T is an H-matrix
such that Ti i < 0 for i = 1, . . . , n. Moreover, suppose that for
any i ∈ θD we have Gi (0+) > 0 and Gi (0−) < 0, while for
any i ∈ θC there exist δi , Ki > 0, and µi ∈ (0, 1), such that

Ki |ρ|
µi ≤ |Gi (ρ)|, |ρ| < δi . (30)

Let z(t), t ≥ 0, be any solution of (12), and w(t) = W (z(t)),
t ≥ 0. Moreover, let γ o(t), for a.a. t ≥ 0, be the output solution
of (12) corresponding to z(t). Then, there exists tδ > 0 such
that we have

ẇ(t) ≤ −Qwµ(t), for a.a. t > tδ
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where

µ = max
i∈θC

{µi } ∈ (0, 1)

and Q > 0. As a consequence, we have

w(t) = 0, ∀t ≥ tφ
z(t) = 0, ∀t ≥ tφ
γ o(t) = 0, for a.a. t ≥ tφ

where

tφ = tδ +
w1−µ(tδ)

Q(1 − µ)

i.e., w(t), z(t), and γ o(t) converge to zero in finite time tφ .

Again, prior to the theorem proof we report some
observations illustrating the result.

Remarks. 1. Condition (30) of Theorem 3 is less restrictive
than conditions (20) and (21) in Theorem 3, and essentially
means that for all i ∈ θC each Gi should grow in a small
neighborhood of zero at least as a µi -Hölder function, where
µi ∈ (0, 1). As was already noted before, the hypothesis
−T is an H -matrix such that Ti i < 0 for i = 1, . . . , n,
is more restrictive than the hypothesis −T ∈ LDS made in
Theorem 2. However, it is known that there are large classes
of matrices of interest in the neural network applications,
such as those modeling cooperative neural networks, for
which the two concepts of H -matrices and LDS matrices
coincide [24].

2. The theorem proof gives a simple quantitative estimate of
the finite convergence time tφ , see relation (34) below.

Proof of Theorem 3. As in the proof of Theorem 2, we let

mi = min{Gi (0+), −Gi (0−)}

for each i ∈ θD , and

Km = min
i∈θC

{Ki }, µ = max
i∈θC

{µi }.

Note that µ ∈ (0, 1).
Let D = diag(d1, . . . , dn), with di > 0, i = 1, . . . , n, be

such that DM(−T ) is strictly column-sum dominant. We let

dM = max{d1, . . . , dn} > 0.

Moreover, for each j ∈ {1, . . . , n} define

1T j = −d j T j j −

n∑
i=1
i 6= j

di
∣∣Ti j

∣∣ > 0

and

1Tm = min {1T1, . . . ,1Tn} > 0.

Finally, we let

δ = min

{
1, min {δ1, . . . , δn} , min

i∈θD

{(
mi

Km

) 1
µ

}}
> 0.
Again, from (15) it follows that for

t > tδ =
2

bm
ln
(√

bMw(0)

δ

)
(31)

we have z(t) ∈ [−δ, δ]n .
Taking into account that z(t) and w(t) are differentiable for

a.a. t > tδ , consider t > tδ at which both z(t) and w(t) are
differentiable, and note that on the basis of (13) the output γ o

is well defined at t . Thus γ o is defined for a.a. t > tδ . Let

N (t) =
{
i ∈ 1, . . . , n : γ o

i (t) = 0
}

P(t) = {i ∈ 1, . . . , n : zi (t) = 0} .

For each z ∈ Rn , we have for (29)

∂W (z) = Dco [sign(z)]

where sign(z) = (sign(z1), . . . , sign(zn))>. Since as was
already noticed z(t) is Lipschitz near t , and W is regular at z(t),
it is possible to apply the chain rule in Property 1 to obtain that
for a.a. t ≥ tδ

ẇ(t) = 〈ζ, ż(t)〉 ∀ζ ∈ ∂W (z(t)).

If we let for j = 1, . . . , n and for a.a. t ≥ tδ

u j (t) =

{
sign(z j (t)) if z j (t) 6= 0
sign(γ o

j (t)) if z j (t) = 0

then we have Du(t) = D(u1(t), . . . , un(t))> ∈ ∂W (z(t)),
hence

ẇ(t) = u(t)> Dż(t) = u(t)> D(Bz(t) + T γ o(t))

= −

∑
i 6∈ P(t)

di bi |zi (t)| + u(t)> DT γ o(t)

≤ −u(t)> D(−T )γ o(t) (32)

where we have considered that when i 6∈ P(t) we have ui (t) =

sign(zi (t)) and zi (t) = |zi (t)| sign(zi (t)), moreover zi (t) = 0
when i ∈ P(t).

Now, note that if j 6∈ N (t) we have γ o
j (t) =

|γ o
j (t)| sign(γ o

j (t)) and then

u(t)> D(−T )γ o(t) =

n∑
i=1

n∑
j=1

(
−di Ti j

)
ui (t)γ

o
j (t)

=

n∑
j=1

γ o
j (t)

n∑
i=1

(
−di Ti j

)
ui (t)

=

∑
j 6∈ N (t)

∣∣∣γ o
j (t)

∣∣∣
−d j T j j u j (t) sign(γ o

j (t))

+

n∑
i=1
i 6= j

(
−di Ti j

)
ui (t) sign(γ o

j (t))


≥

∑
j ∈ P(t)\N (t)

∣∣∣γ o
j (t)

∣∣∣
−d j T j j sign2(γ o

j (t)) −

n∑
i=1
i 6= j

di
∣∣Ti j

∣∣

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+

∑
j 6∈ P(t)∪N (t)

∣∣∣γ o
j (t)

∣∣∣
− d j T j j sign(z j (t)) sign(γ o

j (t))

−

n∑
i=1
i 6= j

di
∣∣Ti j

∣∣
 .

For any j 6∈ N (t) we have sign2(γ o
j (t)) = 1, while for

j 6∈ P(t) ∪ N (t) we obtain z j (t) 6= 0 6= γ o
j (t), sign(z j (t)) =

sign(γ o
j (t)) 6= 0 and so sign(z j (t)) sign(γ o

j (t)) = 1. Therefore,

u(t)> D(−T )γ o(t)

≥

∑
j 6∈ (P(t)∪N (t))

∣∣∣γ o
j (t)

∣∣∣
−d j T j j −

n∑
i=1
i 6= j

di
∣∣Ti j

∣∣


≥

∑
j ∈ θC \(P(t)∪N (t))

1T j
∣∣G j (z j (t))

∣∣
+

∑
j ∈ θD\(P(t)∪N (t))

1T j m j

≥ 1Tm

( ∑
j ∈ θC \(P(t)∪N (t))

K j
∣∣z j (t)

∣∣µ j

+

∑
j ∈ θD\(P(t)∪N (t))

m j

)
.

Now, note that K j
∣∣z j (t)

∣∣µ j
≥ Km

∣∣z j (t)
∣∣µ for each j ∈ θC .

If instead j ∈ θD , we have z j (t) ≤ δ ≤ (m j/Km)1/µ, hence
z j (t)µ ≤ δµ

≤ m j/Km and Kmz j (t)µ ≤ m j . Under our
assumptions on the functions z j → G j (z j ), j = 1, . . . , n, for
j ∈ P(t) ∪ N (t) we have z j (t) = 0, hence

u(t)> D(−T )γ o(t) ≥ 1Tm Km

×

( ∑
j ∈ θC \(P(t)∪N (t))

∣∣z j (t)
∣∣µ +

∑
j ∈ θD\(P(t)∪N (t))

∣∣z j (t)
∣∣µ)

= 1Tm Km

(
n∑

j=1

∣∣z j (t)
∣∣µ) ≥ 1Tm Km

(
n∑

j=1

∣∣z j (t)
∣∣)µ

≥
1Tm Km

dµ
M

(
n∑

j=1

d j
∣∣z j (t)

∣∣)µ

= Qwµ(t) (33)

where we have let

Q =
1Tm Km

dµ
M

> 0.

By substituting (33) in (32), we conclude that we have

ẇ(t) ≤ −Qwµ(t)

for a.a. t ≥ tδ , where µ ∈ (0, 1).
By applying the result in Point (b) of Property 4, it follows

that we have w(t) = 0 and z(t) = 0 for t ≥ tφ , where

tφ = tδ +
w1−µ(tδ)

Q(1 − µ)
(34)
and tδ is given in (31). Finally, by exploiting (13) we also obtain
that γ o(t) = 0 for a.a. t ≥ tφ . �

7. Conclusion

The paper has proved results on global exponential
convergence toward a unique equilibrium point, and global
convergence in finite time, for a class of additive neural
networks possessing discontinuous neuron activations or
continuous non-Lipschitz neuron activations. The results are of
potential interest in view of the neural network applications for
solving global optimization problems in real time, where global
convergence toward an equilibrium point, fast convergence
speed and the ability to quantitatively estimate the convergence
time, are of crucial importance. The results have been proved
by means of a generalized Lyapunov-like approach, which has
been developed in the paper, and is suitable for addressing
convergence of nonsmooth dynamical systems described by
differential equations with discontinuous right-hand side.

An important open question is whether the results on global
convergence here obtained may be extended to more general
neural network models incorporating the presence of a delay in
the neuron interconnections. This topic goes beyond the scope
of the present paper and will constitute a challenging issue for
future investigations.
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[18] E.K.P. Chong, S. Hui, S.H. Żak, An analysis of a class of neural networks
for solving linear programming problems, IEEE Trans. Automat. Control
44 (1999) 1095–2006.

[19] L.V. Ferreira, E. Kaszkurewicz, A. Bhaya, Solving systems of linear
equations via gradient systems with discontinuous right hand sides:
Application to LS-SVM, IEEE Trans. Neural Netw. 16 (2) (2005)
501–505.

[20] R. Gavaldá, H.T. Siegelmann, Discontinuities in recurrent neural
networks, Neural Comput. 11 (1999) 715–745.

[21] H.T. Siegelmann, E.D. Sontag, Analog computation via neural networks,
Theoret. Comput. Sci. 131 (1994) 331–360.

[22] A.N. Michel, R.K. Miller, Qualitative Analysis of Large Scale Dynamical
Systems, Academic, New York, 1977.
[23] A.N. Michel, J.A. Farrell, W. Porod, Qualitative analysis of

neural networks, IEEE Trans. Circuits Syst. 36 (2) (1989)
229–243.

[24] D. Hershkowitz, Recent directions in matrix stability, Linear Algebr.
Appl. 171 (1992) 161–186.

[25] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, Academic, New York, 1979.

[26] F.H. Clarke, Optimization and Non-Smooth Analysis, John Wiley & Sons,
New York, 1983.

[27] A.F. Filippov, Differential equations with discontinuous right-hand side,
Transl. American Math. Soc. 42 (1964) 199–231.

[28] X.-B. Liang, J. Wang, Absolute exponential stability of neural networks
with a general class of activation functions, IEEE Trans. Circuits Syst. I
47 (8) (2000) 1258–1263.

[29] B.E. Paden, S.S. Sastry, Calculus for computing Filippov’s differential
inclusion with application to the variable structure control of robot
manipulator, IEEE Trans. Circuits Syst. 34 (1987) 73–82.

[30] V.I. Utkin, Sliding Modes and Their Application in Variable Structure
Systems, MIR Publishers, Moscow, 1978.

[31] J.P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin,
1984.


	Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations
	Introduction
	Preliminaries
	Locally Lipschitz and regular functions
	Hölder functions

	Generalized Lyapunov approach
	Neural network model
	Global exponential convergence
	Global convergence in finite time
	LDS-matrices
	H-matrices

	Conclusion
	References


