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In the companion letter in this issue (“Bayesian Spiking Neurons I: In-
ference”), we showed that the dynamics of spiking neurons can be in-
terpreted as a form of Bayesian integration, accumulating evidence over
time about events in the external world or the body. We proceed to de-
velop a theory of Bayesian learning in spiking neural networks, where
the neurons learn to recognize temporal dynamics of their synaptic in-
puts. Meanwhile, successive layers of neurons learn hierarchical causal
models for the sensory input. The corresponding learning rule is local,
spike-time dependent, and highly nonlinear. This approach provides a
principled description of spiking and plasticity rules maximizing infor-
mation transfer, while limiting the number of costly spikes, between
successive layers of neurons.

1 Introduction

It has long been thought that one goal of learning in neural networks is to
find the underlying structure in the sensory world by detecting patterns of
correlations (or more generally, dependencies) in the input (Barlow, 2001).
Hebbian-style learning rules (Hebb, 1949) find such correlations (Hebb,
1984; Bishop, 1995; Bell & Sejnowski, 1995) and have strong experimen-
tal support (Bliss & Collingridge, 1993). However, recent evidence suggests
that synaptic long-term plasticity rules depend not only on the average coac-
tivation of the pre- and postsynaptic inputs, but also on the exact temporal
structure of their spike trains (Markram & Tsodyks, 1996). This suggests
that spikes, and how they are specifically arranged in time, provide the
basis for learning interesting structure in the input.

We proposed previously that the basic meaning of a spike is the occur-
rence of new, unpredictable probabilistic information or, more precisely, an
increase in the probability of a particular event. Meanwhile, we proposed
that propagation of spikes in cortical networks corresponds to propagation
of beliefs in a corresponding Bayesian network (Frey, 1998; Jordan, 1974;
Weiss & Freeman, 2001). However, we used a labeled line approach where
each neuron was assumed to represent a specific meaning (corresponding
to a binary variable). Here, we consider that this selectivity develops, in an
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unsupervised fashion, from the statistics of the input spike train. Thus, not
only the synaptic strength but also the time constant of synaptic integration
and the spike generation mechanism are adapted to the spatiotemporal
structure of its input. More precisely, Bayesian neurons learn to recognize
that a particular subgroup of their synapses tends to switch together from a
less active to a more active state and vice versa, with particular probabilities.
This is interpreted as caused by an underlying binary variable, switching
randomly ON or OFF, and modulating the rates of synaptic input. Con-
sequently, neurons adapt their integrative properties to match how fast
the state varies, while the synaptic strengths reflect the coherence of each
synapse with this modulation.

The learning rule is directly derived from the Viterbi algorithm (Viterbi,
1967), corresponding to an expectation-maximization algorithm in the con-
text of hidden Markov models (HMMs). Regardless of its biophysical im-
plementation, this learning rule is highly nonlinear and depends on the
structure of the input and output spike trains beyond a simple combination
of contributions from pairs of input and output spikes. Complex and non-
linear interactions ensure that spikes contribute to learning only when they
are highly informative in the context of the entire spike train. This makes a
rich set of predictions that can be compared with experimental data.

2 Bayesian Inference in Single Neurons

In this section we briefly summarize the model of Bayesian spiking
neuron developed in the companion paper in this issue: “Bayesian Spiking
Neurons I: Inference.”

2.1 Synaptic Integration. We considered that individual neurons as-
sume that their synaptic input is generated by a hidden Markov chain (see
Figure 1A). Thus, each neuron codes for a particular time-varying binary
hidden variable xt , switching from state 0 to 1 and vice versa with transi-
tion probabilities rondt = P(xt+dt = 1|xt = 0) and roffdt = P(xt+dt = 0|xt =
1). Second, we considered that the state of the hidden variable causes a col-
lection of N synapses to fire with state-dependent rates. We represented this
synaptic input by a vector of binary variable st = [si

t ]i=1,...,N, where si
t = 1

when the synapse number i fires in the time interval [t, t + dt). Each synapse
was activated with a particular probability, P(si

t = 1|xt = 1) = q i
ondt, if the

state is 1 and P(si
t = 1|xt = 0) = q i

offdt if the state is 0.
Inference in this hidden Markov model can be performed by a recurrent

process. The log-odds ratio of the hidden state at time t, Lt = log
( P(xt=1|s0→t )

P(xt=0|s0→t )

)
,

obeys a differential equation in the limit of small dt:

L̇ = ron(1 + e−L ) − roff(1 + e L ) + ∑
i wiδ

(
si

t − 1
) − θ. (2.1)
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Figure 1: Building and learning hierarchical generative models with neural
networks. (A) Bottom: One single neuron learning and inferring about the state
of a particular, temporally varying hidden variable. Top: The generative model
corresponds to a hidden Markov model (HMM). (B) Two neurons representing
two hidden variables, one causing the other (bottom). We suppose that the state
of the lowest variable in the hierarchy is independent when one knows its cause,
as represented by the dashed arrows in the corresponding generative model
(top). (C) Three neurons representing a variable causing two other variables.
Only x2

t has a temporal dynamics.

wi , the synaptic weights, describe how informative a synapse i is about the
state of the hidden variable, wi = log

( q i
on

q i
off

)
. The bias, θ , is determined by

how informative it is to receive no spikes, for example, θ = ∑
i q i

on − q i
off.

The leaky term (the left-hand side of equation 2.1) depends on the transition
rates. The synaptic drive, It = ∑

i wiδ(si
t − 1) − θ , is the total contribution

of all synaptic events.

2.2 Generation of the Output Spike Train, Ot . We used the same con-
vention for Ot as for si

t , for example, Ot = 1 when an output spike is fired
between time [t, t + dt) and 0 otherwise.

We proposed that a neuron compares online the odds for its hidden
variable, Lt , with a prediction Gt computed from its output spike train. A
spike is emitted when the odds (a leaky integration of the synaptic input
st) exceed the prediction (a leaky integration of the output spike train Ot).
Gt is indeed what a downstream neuron would obtain as estimates for the
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log-odds of xt , log
(

P(xt=1|O0→t )
P(xt=0|O0→t )

)
, if it was integrating the output spikes with

a synaptic weight of go and no bias.
Thus, the dynamical equations relating the input and the output spike

trains are:

L̇ = ron
(
1 + e−L) − roff

(
1 + e L) + ∑

i wiδ(si
t − 1) − θ

Ġ = ron
(
1 + e−G) − roff

(
1 + eG) + goδ(Ot − 1)

Ot = 1 if and only if Lt > Gt + go

2
. (2.2)

Here the jump in threshold after a spike, go (a positive constant) is the only
free parameter, the other parameters being constrained by the statistics of
the synaptic input st .

3 Learning the Parameters

In this section, we show that the parameters of the generative model, ron,
roff, wi , θ , corresponding respectively to the temporal dynamics, synaptic
weights, and bias, can be learned by the neuron from the statistics of its input
spike train. This holds for a single neuron receiving Poisson-distributed
synaptic inputs, as described in the companion letter in this issue. More
important, the same learning rule can be applied to the output spike trains
coming from other Bayesian neurons. As a consequence, these neurons can
be used as building blocks to represent hierarchies of hidden causes for
their input.

The output spike trains of the Bayesian neurons are close to inhomoge-
neous Poisson processes, whose rates depend on the state of xt (see section
3 of the companion letter). Thus, we propose to apply a learning rule de-
signed for HMMs with Poisson input to estimate the statistics of the hidden
variable xt from the output spike train Ot . This corresponds to approxi-
mating the output spikes as temporally independent observations of the
hidden state. This will necessarily be suboptimal, since there are some tem-
poral dependencies, albeit small, between the output spikes. However, we
show through simulations that the information loss resulting from this ap-
proximation is minimal and depends critically on the postspike jump go .

We first describe the “exact” learning rule from a model consisting of
a single neuron with Poisson-distributed input, as described in the previ-
ous section (see Figure 1A). We then proceed to show that model neurons
can also learn the proper parameters when their inputs come from other
Bayesian neurons rather than purely Poisson-distributed synaptic inputs.

3.1 Learning in Single Neurons with Poisson Input. The parameters
of a hidden Markov chain (see Figure 1A) can be learned by an expectation-
maximization (EM) algorithm, a variant of the Viterbi algorithm (Viterbi,
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1967). This algorithm finds the parameters maximizing the probability of
observing the stream of noisy data given the model. This is done by al-
ternating an expectation step, where the expected value of xt is computed
given the observations and the current set of parameters, and a maximiza-
tion step, which updates the parameters so as to maximize the likelihood
of the observations given the expected value of xt .

Here we propose a version of the EM algorithm that can be implemented
by a single neuron: at each time, the neuron updates the sufficient statistics
of its hidden variable according to its new synaptic input (expectation step)
and updates the synaptic weights and transition rates accordingly (maxi-
mization step). Thus, expectation and maximization steps are not tempo-
rally separated, and the parameters are updated online without requiring
a memory for long sequences of input data.

3.1.1 Expectation Step. For the expectation step, several sufficient statis-
tics are computed online from the observed synaptic input, given the
current set of weights and transition rates (see the letter appendix). Val-
ues of interest are the expected state, or time spent in the ON state,
τon(t) = ∫ t

t−τ
P(xu = 1|s0→t)du; the expected number of ON→OFF transi-

tions Non→off(t) = ∫ t
t−τ

P(xu = 1, xu+du = 0|s0→t)du; one spike-triggered ex-
pectation per synapse (the expected number of input spikes while in the
ON state) Ni

on(t) = ∫ t
t−τ

δ(si
u − 1)P(xu = 1|s0→t)du; and the mean number of

input spikes from each synapse Ni = ∫ t
t−τ

δ(si
u − 1)du. τ represents a finite

sliding temporal window on which these expected values are computed
(see the appendix for a more rigorous description). We propose that for
the sake of learning the statistics of its input, each neuron estimates two
global averages and two local spike-triggered averages per synapse. τon(t),
Non→off(t), and Ni

on(t) can be derived recurrently from the synaptic input in
the same way as Lt and Gt .

3.1.2 Maximization Step. In standard (batch) implementations of EM,
parameters are updated once the expectation step has been completed on
a suitably long temporal window. In neurons, we propose that expectation
and maximization steps occur simultaneously and online, the weights and
transition rates being updated according to the online expected values. One
can show that this algorithm converges toward the estimate for batch EM
(see the appendix).

Thus, the sufficient statistics for xt , computed online from the synaptic
input, are used to update the parameters as follow:

wi (t) = log
(

Ni
on(t)

Ni (t) − Ni
on(t)

)
− log

(
τon(t)

1 − τon(t)

)

θ (t) =
∑

i

Ni (t) − Ni
on(t)

1 − τon(t)
− Ni

on(t)
τon(t)
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ron(t) = Non→off(t)
1 − τon(t)

roff(t) = Non→off(t)
τon(t)

(3.1)

More intuitively, learning a weight corresponds to estimating how much
more (or less) probable than average was xt when a spike was received from
that synapse. Thus, the weights are positively or negatively incremented
depending on whether the probability of xt tends to be larger or smaller than
its running average at the moment of the synaptic input. Similarly, learning
the bias corresponds to estimating how much more (or less) probable than
average was xt when no spike is received. Both of these rules are Hebbian
since learning occurs when presynaptic spikes correlate with postsynaptic
activity. Learning the transition rates corresponds to estimating how often
xt switches state. In effect, this amounts to computing temporal derivatives
of the expected state.

3.2 Learning in Networks. So far, we have considered learning in a
Bayesian neuron faced with the problem of estimating the statistics of an
underlying hidden variable from its Poisson distributed synaptic inputs.
If we want to be able to use this neuron as a building block to represent
another level of hierarchy, we need to show that the same learning rules can
be applied with success to learn the statistics of hidden variables from the
Poisson-like output spike trains of other Bayesian neurons. The problem
here is that even if the spiking dynamics ensures that the output spike train
is as close as possible from a Poisson process, it is not usually perfectly Pois-
son (see the companion letter). Small deviations from perfect independence
between interspike intervals might be sufficient to induce strong deviations
between the true and the learned parameters, and thus hinder the trans-
mission of information between layers. In this section, we show through
simulations that this does not appear to be the case. Thus, the output spike
trains of Bayesian neurons can indeed be treated as Poisson for all practical
purposes.

3.2.1 Learning a One-to-One Connection Between Two Bayesian Neurons.
As a first step, we consider the case when a Bayesian neuron (neuron
2) receives input from another Bayesian neuron, (neuron 1) (see Figure
1B). The corresponding generative model consists of two coupled hidden
Markov chains, where the top variable x2 (the cause) ignores the temporal
dynamics of the bottom variable (x1). This is represented by the fact that
temporal prediction arrows from x1

t to x1
t+dt are dashed in Figure 1B. This

specifically means that the state of x1 at time t does not depend on the state
at time t − dt if one knows the state of x2

t (x1
t is conditionally independent of

the past). This corresponds, for example, to the case when an object causes
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the presence of a particular feature: the visual feature at time t depends on
the presence of the object at time t, but not on whether this feature was
present at t − dt, since the feature does not exist by itself. (For a detailed
discussion, see the companion letter.)

Moreover, we suppose that in this very simplified situation, x2 has no
consequence other than x1 (i.e., neuron 2 receives no input other than neu-
ron 1), and x1 has no other cause than x2 (i.e., neuron 1 sends a connection
to neuron 2 only). As a consequence, the two neurons will learn to represent
the same hidden variable x1 = x2 = x (see Figure 1B).

Neuron 1 learns the parameters describing the statistics of xt from its
Poisson input st using the EM algorithm. After learning, its log-odds ratio
L1

t corresponds to the probability of xt given the past synaptic inputs s0→t .
Neuron 2, applying the same learning rule on the output spike train O1

t ,
learns a weight w12, a bias θ2, and transition rates r2

on and r2
off, and estimates

the log-odds ratio of xt by the following differential equation:

L̇2
t = r2

on(1 + e−L2
t ) − r2

off(1 + e L2
t ) + w12 O1

t − θ2. (3.2)

Applying the EM algorithm on the output spike train and using this
equation to infer the probability of xt given past inputs corresponds to con-
sidering that the spike train O1

t provides temporally independent evidence
for xt , that is, O1

t depends on xt but not on O1
t−dt (i.e., O1

t is an inhomoge-
neous Poisson process whose rate depends on the state). In order to show
that this approximation is correct, we looked at the discrepancy between
the true and the learned probabilities. Indeed, L2

t can be considered an esti-
mate of the true probability L1

t or, alternatively, as a decoding of the output
spike train O1

t . A good match between L1
t and L2

t would provide evidence
that the learning algorithm (designed for Poisson inputs) is efficient even
when applied on the output spike trains of Bayesian neurons, and thus,
that approximating O1

t as a Poisson process is not detrimental. This is also
a measure of how efficient the encoding of the log-odds L1

t is by the output
spike train O1

t .
Examples of L1

t and L2
t temporal profiles are plotted in Figure 2. The

solid line corresponds to the true log-odds L1
t , the thick dotted line to the

estimated log-odds L2
t , and the thin dotted line (visible only on Figure 2A)

to the true log-odds, Lt , computed directly from the parameters of the
generative model. In order to learn w12 (corresponding to the jumps of
thick dotted line after a spike), the bias θ2, and the transition rates r2

on and
r2

off, we sampled xt and the synaptic input st according to the statistics of
the HMM, and applied the neural dynamical equation (see equation 2.2).
The output spike train O1

t was then used as a training sequence for the
learning algorithm (see equation 3.1). After convergence of the parameters
(i.e., when they fluctuate by less than 1% of their value during more than
10τ ), we applied equation 3.2 to get L2

t . In this illustrative example, we used
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Figure 2: Learning and decoding performance as a function of the jump in
threshold, g0. (A) Log-odds L1

t (solid line) computed from the synaptic input st

with the parameters learned by neuron 1. The log-odds after learning closely
matched the true log-odds Lt(dotted line) computed with the true parameters
of the HMM. (B) A neuron (neuron 2) can learn to decode the log-odds ratio of
another neuron (neuron 1), L1

t (blue solid line). To do so, it needs to learn w12

and θ2 from neuron 1’s output firing rate O1
t (horizontal lines). The resulting

estimate, L2
t (thick grey dots), closely matches the original log probability ratio.

In this example, g0 = 4 for neuron 1. (C) Same as B for g0 = 1.5. (D) Same as B
for g0 = 0.5. For larger g0, the output spike train become sparser (i.e., with fewer
spikes) at the cost of neglecting small fluctuations in probability. The shaded
area represent time when xt = 1.

arbitrarily chosen parameters: r1
on = 0.001, r1

off = 0.01, 50 synapses to neuron
1 with q i

on = 0.03(corresponding to 30 spikes per seconds), q i
off = 0.02, dt =

0.1 ms, 30 synapses to neuron 1 with q i
on = 0.02, q i

off = 0.03, τ = 100,000dt
(10 seconds).

By repeating the procedure 100 times with different initial random set-
tings of the parameters, we found that the parameters learned by neuron
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1 closely matched the true parameters of the HMM: q̂ 1
on = 0.03 ± 0.005,

q̂ 1
off = 0.02 ± 0.004, r̂1

on = 0.001 ± 0.0006, r̂1
off = 0.01 ± 0.003. As a conse-

quence, the log-odds L1
t (computed by neuron 1 using the parameters

learned by the online EM algorithm) closely matched the true log-odds
Lt (computed using the true parameters of generative model). This is illus-
trated in Figure 2A.

Figure 2B illustrates the match between L1
t and L2

t when go = 4 for neuron
1. Note that on average, neuron 1 receives about 1000 spikes in a second
from its synaptic input st but fires, on average, seven spikes per second.
Despite this high level of compression, the log-odds computed by neuron
2 (L2

t ) closely matches the log-odds computed by neuron 1 (L1
t ).

3.2.2 go and the Trade-Off Between the Quality and Cost of the Code. We used
this simple model to investigate in more detail the role of the postspike jump
in threshold go . go represents the increase in the probability for xt = 1 that
is required for the neuron to decide to fire an output spike. As we have seen
in the companion letter, Bayesian neurons are analogous to leaky integrate-
and-fire neurons, where go corresponds to the reset in membrane potential
after a spike. go is the only free parameter that is not constrained by the
statistics of xt , and it directly sets the input-output gain of the neuron, since
the output rate is approximately Ō = 1

go
[̄I]+ (see the companion letter).

We varied go in neuron 1 from 4 (see Figure 2B) to 1.5 (see Figure 2C)
and 0.5 (see Figure 2D). For better comparison, we used the same synaptic
input s1

t to neuron 1 for producing the three plots. Thus, the three panels
correspond to the neural responses, after training, to the same exact input,
and only go varies. The log probability ratio of neuron 1, L1

t , is thus identical
in the three panels. What varies is the output spike train fired by neuron 1,
O1

t (thick vertical lines), and the log-odds L2
t estimated from this output

spike train by neuron 2, as well as the weight and bias learned by neuron 2,
w12 and θ2. We found in our simulation w12 = 2.8 and θ2 = −0.06 for go =
0.5, w12 = 2.5 and θ2 = −0.02 for go = 1.5, and w12 = 2.13 and θ2 = −0.005
for go = 4.

As go increases, the number of spikes fired by neuron 1 decreases. The
output representation in Figure 2B corresponding to go = 4 (on average, 7
spikes per second, or approximately 1 output spike for 150 input spikes) is
much sparser than in Figure 2D corresponding to go = 0.5 (on average, 50
spikes per second—i.e., 1 output spike for 25 input spikes). This is because
the output firing rate is approximately proportional to the inverse of go .

The cost of saving spikes is to lose precision in the representation of L1
t .

Thus, small fluctuations in probability are neglected. The match between
real and decoded log-odds degrades as go gets larger. However, the match
is still remarkably good even for very large go .

We can conclude from this example, confirmed by numerous simulations
performed with different sets of parameters, that the model is remarkably
efficient in recovering a good estimate of the log-odds from an extremely
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sparse output spike train. In fact, the neural dynamics and spike generation
rules ensure that output spikes are fired at the right time in order to rep-
resent, as sparsely as possible, the log-odds ratio. go , the postspike jump,
controls the cost-accuracy trade-off—the cost being the number of spikes
and the accuracy the representation of small fluctuations in probability of
the hidden state.

3.2.3 Multiple Layers. The ultimate goal of our approach is to be able
to use the model neuron described in the companion letter as a building
block for constructing progressively more complex Bayesian networks or
progressively more elaborate hierarchical causal models for the sensory
input, motor output and behavioral tasks. A complete proof of this claim
goes beyond the scope of this letter; however, we can already verify that the
probabilistic evidence can be correctly transmitted in a restricted family of
Bayesian networks.

This restricted family is described in the companion letter. It corresponds
to hierarchical trees of binary variables, where only the variables at the top
of the hierarchy have a temporal dynamics of their own (see Figure 1C).
Inference in this restricted family corresponds to propagating beliefs from
the consequences (e.g., the visual features, such as stripes) to the causes (e.g.,
the objects causing these features, such as tigers). Here we consider only this
form of processing (feedforward). Feedback processing, corresponding to
propagating beliefs from the causes to the consequences, will be considered
in future work.

Inference in these models is implemented by a neural network with a
treelike structure that matches the structure of the underlying generative
model (see Figures 1C, 3A, and 3C). Here, different layers of neurons cor-
respond to different layers of causality. We use the online EM algorithm
described previously to learn the weights of the connections between two
layers and the temporal dynamics (transition rates) of each neuron. Each
neuron acts as an information filter, learning to transmit synaptic events
caused by a slowly varying hidden state (i.e., correlated) and to discard
other (uncorrelated) synaptic events. This ensures that the neuron trans-
mits most of the useful information to the next layer. However, due to
the overly convergent nature of these networks, this information will be
concentrated in much fewer spikes on the top layers, and fluctuations in
synaptic inputs lacking interesting correlations will be lost.

In Figures 3 and 4, we describe the learning performance in a particular
example. In this very simple “world,” 4-pixel-long horizontal bars can ap-
pear and disappear at random nonoverlapping locations on a 3 × 12 retina
(rbar

on = 0.05, rbar
off = 0.1 at each of the nine possible locations). The presence

of a bar modulates the firing rates of lateral geniculate nucleus (LGN) units
whose receptive fields overlap with these bars (light shaded unit, q i

on = 0.08,
q i

off = 0.02; dark shaded units, q i
on = 0.04, q i

off = 0.075). Moreover, horizon-
tal bars can also be caused by the presence of a 12-pixel-long horizontal
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Figure 3: The generative model and the corresponding neural network for
a toy world composed of bars and contours. (A) Generative model used to
generate the spiking input st (from the “retina” to the “LGN”). On a 3 × 12
retina, a contour consists of three nonoverlapping horizontal bars, each 4 pixels
long, aligned on the center. The presence of this contour (x4

t = 1) results in the
presence of horizontal bars at the corresponding locations. The contour appears
and disappears randomly. To make the task more difficult, this contour is em-
bedded in “noise,” that is, bars can also appear independently and randomly
at any of the nine possible nonoverlapping locations. In turn, these horizontal
bars result in a particular probability of emitting a spike for LGN units (shaded
units). For clarity, only three of the nine possible horizontal bars (V1 units) are
represented. (B) Three possible images generated by the generative model. As
contours and bars can appear and disappear over time, these three panels can
be thought of as frames of a movie. (C) Corresponding spiking neural network.
LGN cells, detecting light or dark pixels, connect to V1 cells detecting horizontal
bars, which themselves connect to V2 contour detectors.

contour. The contour is composed of three bars appearing at collinear loca-
tions in the center of the retina. These contours appear and disappear ran-
domly (r contour

on = 0.005, r contour
off = 0.01). The interaction between contours

and spontaneously generated bars corresponds to a nonexclusive “or” re-
lationship.

We used the corresponding generative model (see Figures 3A and 3B)
to generate lateral geniculate nucleus (LGN) spike trains. These LGN spike
trains were then used as a training set for a three-layer neural network (see
Figure 3C).

For all neurons, the initial weights wi from the LGN to the V1 layer
and from the V1 layer to the V2 neuron were sampled from a normal
distribution, the biases were set at θi = 0, and the initial transition rates
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Figure 4: Learning performance on a multilayer network of Bayesian neurons.
(A) Weights from the LGN layer to V1 bar detectors, learned by the approximate
online EM algorithm (solid line). These weights are close to the real weights
predicted by the generative model (dotted line). (B) Log probability ratio of the
V2 contour detector neuron on one particular trial (dark solid line) together with
its output spike train (thick vertical lines). Light dotted line: Performance on an
ideal observer (see the text). Shaded areas indicate periods when the contour
was present.

were set at ron = roff = 0.1 for both bar neurons and the contour neuron. The
connection strengths, biases, and transition rates for the V1 and V2 neurons
were then learned using the online EM algorithm (see equation 3.1), with
τ = 100,000dt and dt = 0.1 ms, using solely the LGN spike train generated
previously. Learning was stopped when the parameters fluctuated by less
than 5% of their value for 10τ . This learning process was repeated 150 times
with different initial settings of the parameters to verify the convergence
and stability of the learning algorithm.

Approximately half of the bar neurons became “off neurons” in the
sense that they represented the absence, rather than the presence, of a bar.
Depending on the initial random settings of the parameters, the top V2
neuron learned to detect either the presence or the absence of the contour
(x4

t = 1 in Figure 3A could correspond to “contour present” or “contour
absent”). This does not affect the performance of the network, since p(x4

t =
1) = 1 − p(x4

t = 0).
We found a good match between the “real” synaptic weights (defined by

the generative model) and the learned synaptic weights (see Figure 4A). The
estimated transition rates were noisier, since they are second-order statis-
tics, which are harder to estimate from streams of noisy data. However, on
multiple repetition of the learning procedure with different initial parame-
ters, the estimated transition rates were unbiased (r̂ contour

on = 0.005 ± 0.0005,
r̂ contour

off = 0.01 ± 0.004, r̂bar
on = 0.05 ± 0.01, and r̂bar

off = 0.1 ± 0.04 for bars not
belonging to the contour).

We compared the performance of the network with the performance of
an ideal observer for detecting the contour (see Figure 4B). To obtain the
ideal observer performance, we performed exact online inference directly
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on the LGN input, taking the LGN inputs as a noisy observation of a contour,
thus bypassing the bar layer. As illustrated in Figure 4B, the ideal observer
outperforms the network only marginally.

Note that we used a generative model for the sensory data (i.e., the LGN
spikes) with several coexisting temporal dynamics: both the bars and the
contour can appear and disappear on their own. Thus, taken as a whole, this
generative model violates the restriction that we put at the beginning: that
only the object at the top of a hierarchy should have a temporal dynamic.
However, neurons in the corresponding neural network receive no feedback
connections, and thus they ignore the existence of variables that are higher
in the hierarchy. From the point of view of each neuron, its hidden variable
xt has a temporal dynamic and is the highest in the hierarchy, while its
log-odds Lt corresponds to the posterior probability of xt when considering
only a subpart of the generative model corresponding to xt and all its
children.

One might wonder why we had to go through the V1 local bar detec-
tor at all in order to compute the probability of a contour. This probability
could be computed directly from the LGN input. However, the number
of synaptic contacts from the LGN to the V2 cell needed for such a com-
putation is very large. One of the merits of the hierarchical model is to
recode relevant probabilistic information into a sparse format, so that many
weakly informative LGN spikes can be recoded in a few much more infor-
mative V1 spikes. Thus, the number of synapses can be kept to a reasonable
level.

Even more important, more elaborate generative models (that is, more
complicated worlds) will not allow such short-cuts. For example, local bars
could be caused by many different events, such as contours, textures, or
shadows. These different potential causes would need to compete in order
to select the real underlying causes of the sensory input. Also, contours
can increase the probability of the presence of a local edge when the avail-
able local LGN information would be insufficient for detecting this edge.
Feedback from V2 to V1 or lateral connections within V1 could be used to
clean up the noise and solve ambiguities by sharing probabilistic informa-
tion between collinear edges arranged along a likely contour. Lateral and
feedback interactions have a crucial role for perceptual tasks that cannot be
represented by a treelike generative model as in Figure 3. Image segmen-
tation is an example of sensory processing that cannot be purely bottom
up (Lee & Mumford, 2003). Our preliminary work shows that these com-
putations can be successfully implemented and learned with recurrently
connected Bayesian spiking neurons, with feedforward, feedback, and lat-
eral connections, allowing the implementation of hierarchical causal model
of the sensory inputs or the tasks. However, these go beyond the scope of
this letter, focusing on single neurons as the building blocks of these more
complex networks. The network computations will be extended in future
work.
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4 Prediction for Spike-Time-Dependent Plasticity

The learning rules governing plasticity depend on the temporal structure of
the input spike trains received at all synapses. Testing directly the prediction
of the model for synaptic plasticity is difficult, since all the synaptic input
received by a cortical neuron will never be directly available experimentally.
Typically one can record a single input spike train si

t and the output spike
train Ot .

Fortunately, the output spike train of the model neuron, Ot , directly
reflects the global belief state of the neuron. We have already seen that a
good estimate of p(xt|s0→t) can be recovered from Ot (see Figure 2). Thus,
one can predict the changes induced in synaptic strength just by looking at
the input spike train at a single synapse and the output spike train. Similarly,
one can predict the change in transition rates ron and roff just by looking
at the output spike trains. Note that we do not claim here that learning is
based on the output spike train (the online EM algorithm presented here is
applied strictly on the input spikes).

For these reasons, we chose to express our predictions for synaptic plas-
ticity in terms of input and output spike-times, since output spikes are a
direct expression of the log-odds of xt , are easily measurable, and describe
the true output of the neuron.

The next section describes how the temporal profile of the odds for xt is
reconstructed from the output spike train in a temporal window of length
T , O0→T (see Figure 5A).

4.1 Predicting the Odds of xt from the Output Spike Train. If we
consider that the output spikes are temporally independent observations
for the state xt , then the probability of the hidden state, P(t) = P(xt|O0→T ),
is a product of the contribution from past and future output spikes, P(t) =
1
Z Pb(t)Pf (t), where Pf (t) = P(xt|O0→t) and Pb(t) = P(Ot+dt→T |xt), and Z is
a normalization constant. To keep up with our previous notation, the log-
odds ratio of xt , L tot

t , is given by L tot
t = L f

t + Lb
t , the sum of the forward

log-odds, L f
t = log( P f (t)

1−P f (t) ), and backward log-odds Lb
t = log( Pb (t)

1−Pb (t) ).
The forward log-odds are equivalent to the log-odds ratio Lt , considered

previously, but computed from the output spike train:

L̇ f = ron(1 + e−L f
) − roff(1 + e L f

) + wo Ot − θo . (4.1)

This is equivalent to another neuron’s estimate of Lt based on the output
firing rate (see the grey dots in Figure 2). wo is the output weight, and θo

the output bias.
The backward log-odds Lb

t represent what is known about the initial
state after observing a stream of subsequent output spikes. It is computed
by integrating the inputs, but backward rather than forward in time. Taking
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Figure 5: Spike-time-dependent learning implementing expectation-
maximization. (A) The forward and backward expectations for the hidden state
can be estimated from the output spike train by propagating evidence forward
and backward in time (see the text). (B) The resulting spike-time-dependent
plasticity rule is nonlinear and depends on the structure of the output spike
train. Here we plot the predicted synaptic changes in response to repeated
coupling of input and output spikes as a function of the delay between
them. The synaptic weight is enhanced when the input and output spikes
are coincident within a particular temporal window. This temporal window,
however, depends on the detailed structure of the output spike train. The
different curves correspond to different firing rates of the postsynaptic neuron
(not counting the training pairs). Circles: zero firing rate. Dots: firing rate
equal to −θo . Squares: firing rate equal to −θo + 0.01. (C) Contribution of an
output (postsynaptic) spike (spike 1) occurring immediately after an input
(presynaptic) spike as a function of the timing of another output spike (spike 2).
The contribution is defined as the difference between the weight when spike 1
is present and when spike 1 is absent, for identical timing of the presynaptic
spike and spike 2. Solid line: output firing rate at −θo . Dashed line: output firing
rate at 0. (D) Changes in weight in response to paired input-output pulses of
activity (see the text). The change in synaptic weight is plotted as a function of
the mean belief for xt= 1, L̄tot, and the amplitude of the input pulses.
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the limit for small dt (see appendix A in the companion letter), the function
HT (t) = Lb

T−t obeys the following differential equation:

ḢT = ron(1 − e HT ) − roff(1 − e−HT ) + wo Ot − θo . (4.2)

The output weight, wo , is a positive constant, corresponding to a transient
increase in the probability of xt = 1 reflected by the output spike. The bias θo

is a (small) positive constant, corresponding to a decrease in the probability
of xt = 1 reflected by the absence of an output spike. These parameters
can be learned, together with the transition rates ron and roff, by online
expectation maximization applied to Ot (it is equivalent to learning r2

on, r2
off,

w12, and θ12 in section 3.2). The log-odds computed in this way are a good
match to the true log-odds computed from all input spike trains (see section
3.2, Figure 2). For all practical purposes, we chose ron = 0.001, roff = 0.01,
wo = 1, and θo = −0.01. The exact values of these parameters do not affect
the qualitative results reported here.

Once the probability of xt has been computed from the output spike
trains, we can use it to estimate the new weights and the new transition
rates, using the standard Viterbi algorithm. In particular, the new weights
wi

new are given by

wi
new = log

(
P̄i

s̄i − P̄i

)
− log

(
P̄

1 − P̄

)
, (4.3)

where

P̄=
∫ T

0
P(t)dt (4.4)

P̄i =
∫ T

0
δ(si

t − 1)P(t)dt (4.5)

s̄i =
∫ T

0
δ(si

t − 1)dt. (4.6)

In the following simulations, we chose an initial weight of wi = 0.5.

4.2 Learning as a Function of Input-Output Spike Synchrony. We
have seen that synaptic weights are potentiated or depressed depending
on whether the probability of xt = 1 conditioned on an input spike is larger
or smaller than its expected value. Output spikes express an increase in
probability for xt = 1. Thus, the weights will be increased or decreased as a
function of the synchrony between input and output spikes. Figure 5B de-
scribes the predicted change in synaptic weight (from an initial input weight
wi = 0.5) in response to 100 repeated input-output spike pairs, spaced by
100 ms, as a function of the delay between input and output spikes. We
estimated the log-odds L tot

t from the output spike train using the procedure
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described in the previous section (see Figure 5A). More exactly we applied
equations 4.1 and 4.2 to the output spike train Ot .

4.3 Dependence on the Output Firing Rate. The synaptic weight is
increased when input and output spikes are coincident within a particu-
lar temporal window. However, the size of this temporal window greatly
depends on the level of activity of the postsynaptic neuron. Figure 5D il-
lustrates the change in weight following 100 repeated pairings of input and
output spikes as a function of the delay between them. Successive pairs
are spaced by 200 ms. Moreover, we suppose that the postsynaptic neu-
ron also fires additional spikes at random times (according to a Poisson
process) in addition to the spikes belonging to the training pairs. The learn-
ing window is the longest (i.e., learning is the most efficient) when the
postsynaptic firing rate is around − θo

wo
= −θo . In this case, the postsynaptic

neuron’s average log-odds is kept at the level of the prior Lo = log( ron
roff

).
Thus, learning is the most efficient, and occurs on the most permissive tem-
poral window, when the postsynaptic neuron has no useful information
about xt (reflected by either the presence or the absence of output spikes),
that is, when the postsynaptic neuron is in a complete state of uncertainty.
The width of the temporal window for long-term potentiation also depends
on ron and roff. It is related to the effective time constant of the postsynaptic
neuron, τL̄ = 1

rone−̄L+roffeL̄
, where L̄ is the neutrally stable log-odds for xt (see

the companion letter).

4.4 Temporal Interactions Between Output Spikes. More generally,
learning depends on the entire input and output spike train and cannot be
reduced to a combination of contribution from pairs of input-output spikes,
as it is usually described in the literature. This is due to the nonlinearities in
probabilistic computation. Figure 5C shows the contribution of a particular
postsynaptic spike (spike 1) to learning as a function of the timing of a
second postsynaptic spike (spike 2) when both occur just after a presynaptic
spike (spike 0). The contribution of a postsynaptic spike is defined as the
difference in the predicted synaptic weight when this spike is present rather
than absent. Let us first place ourselves in the optimal situation for learning:
the firing rate of the postsynaptic neuron is around −θo

wo
. If all input-output

spike pairs contributed independently to learning, the contribution of each
output spike should be constant regardless of the timing of other spikes.
However, we found that the contribution of spike 1 depended critically
on whether spike 2 occurred between input spike 0 and spike 1 or after
spike 1 (see Figure 5C). In this example spike 2 masks the contribution of
spike 1, and there is an apparent competition among input-output spike
pairs spike0-spike1 and spike0-spike2 (plain line). If we now consider a
case when the output firing rate is 0 (and as a consequence, the neuron
belief about xt is much below the prior, at approximately L̄ = Lo − 2), the
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picture is very different. This time spike 1 unmasks spike 2, and the two
pairs appear to cooperate rather than compete (dashed line).

Both types of interactions have been reported in different preparations
in vitro (Froemke & Dan, 2002; Wang, Gerkin, Nauen, & Bi, 2005). In fact, the
presence of apparent competition versus cooperation for successive output
spikes depends not only on the output firing rates but also on go and
the transition rates. Cooperation occurs when the first output spike brings
the neuron’s belief Lt closer to the prior, leading to a strong influence of the
second output spike (very informative in this context). Competition occurs
when the first spike brings Lt far above the prior, leading to a weaker effect
of the second output spike. Thus, we predict no generic description for
interactions between input and output spike pairs in terms of cooperation
or competition. Rather, the effect critically depends on the context (in a way
that can be predicted by our model).

4.5 LTP or LTD as a Function of Pre- and Postsynaptic Activity. By im-
plementing the online EM, we ensure that the weights converge to the true
conditional probabilities (or exactly how informative a synapse is about
the hidden state). Thus, we avoid the unbounded growth of the weights
usually associated with Hebbian learning rules, without introducing addi-
tional competition or weight normalization (Senn & Buchs, 2003). This rule
is comparable to a BCM rule (Bienenstock, Cooper, & Munro, 1988) where
weights are potentiated or depressed depending on the mean activity of the
pre- and postsynaptic neuron.

This is illustrated in Figure 5C. Here, we plot the change in synaptic
weight in response to pairing 10 100 ms pulses of presynaptic activity with
10 simultaneous 100 ms pulses of postsynaptic activity, spaced by 1 second.
The output firing rate during the pulse of postsynaptic activity is constant
(100 spikes per second). The base input firing rate (outside of the pulse) is
20 spikes per seconds. During the pulse of presynaptic activity, the input
firing rate is varied from 20 spikes per second (i.e., there is no input pulse)
to five (the presynaptic firing rate is five times larger than the base rate
during the input pulse, at 100 spikes per second). In addition, we varied
the base output firing rate outside the pulse. The results are plotted as a
function of the resulting mean belief for xt = 1, L̄tot. As we can see on Figure
5D, the input weight wi is potentiated when the presynaptic pulse is strong
but also when the mean level of certainty of the postsynaptic neuron L̄tot is
low. The weight is depressed otherwise. The zero contour for the change
in weights (i.e., when the coupled pulses result in neither potentiation
nor depression of the weight; thick grey line in Figure 5C) corresponds to
the case when the strength of the coupling between the input and output
spike trains is exactly compatible with the initial synaptic weight before
learning, set at wi = 0.5 (i.e., when the right-hand side of equation 4.3
is 0.5).
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5 Discussion and Conclusion

We proposed previously that leaky integrate-and-fire neurons act as
Bayesian integrators, accumulating evidence about the state of a particular
hidden variable. They emit spikes to signal an increase in the probability of
this variable. In this letter, we show that single neurons could learn the statis-
tics of this hidden variable from their input, using unsupervised learning
inspired from the field of machine learning. The model is self-consistent—
the spiking output of one neuron can be used as input and training set
for another neuron. Thus, these neurons can be used as building blocks
for learning a hierarchy of hidden causes for the sensory input, successive
layers of neuron corresponding to successive levels in the hierarchy.

5.1 Synaptic Spike-Time Dependent Plasticity. Online expectation
maximization requires neurons to estimate online several sufficient statis-
tics to describe their input (two global statistics and two local statistics
per synapse). These statistics can be thought as leaky integration of the
synaptic input st on a much slower timescale than inference (i.e., synap-
tic integration to compute Lt). As a result, using bayesian principles, we
can predict the changes in synaptic weights and neural dynamics resulting
from particular input-output spike patterns, on various timescales, with
only one free parameter, the “jump” go . Roughly, the weights measure
the input-output synchrony. The neural dynamics adapt to account for the
probability of the neuron to switch from an inactive to an active state, and
vice versa.

The resulting learning rule is local, since it is based on input-triggered
averages of the postsynaptic activity. It is comparable to a BCM rule
(Bienenstock et al., 1988) since weights are increased or decreased depend-
ing on whether pre- and postsynaptic activity is above or below their aver-
age value. As a consequence, learning depends on the covariance between
pre- and postsynaptic spiking activity.

It has been shown that both long-term potentiation (LTP) and long-term
depression (LTD) can be obtained at the same synaptic site by pairing
presynaptic pulses of activity with postsynaptic depolarization (Lisman &
Spruston, 1986; Artola, Brocher, & Singer, 1990; Dudek & Bear, 1992). The
sign of the change in synaptic strength depends on both the presynaptic
stimulation rate and the amplitude of postsynaptic depolarization. LTP is
observed if the postsynaptic potential is above a particular threshold, and
LTD occurs otherwise (Artola et al., 1990). Similarly, LTP is observed if the
presynaptic stimulation rate is above a particular threshold, and LTD oc-
curs otherwise (Dudek & Bear, 1992). This is predicted by our model if we
consider that the membrane potential is proportional to Lt (see the com-
panion letter). Low presynaptic firing rate and low postsynaptic potential
lead to LTD, and LTP is observed in the reversed situation. The presy-
naptic and postsynaptic activity thresholds for LTP or LTD depend on the
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synaptic strength (i.e., the synapse is potentiated only if the induced statis-
tical dependency between presynaptic spikes and postsynaptic activation is
stronger than predicted by the initial synaptic strength). To our knowledge,
this prediction has not been tested experimentally.

Another critical aspect of the Bayesian learning rule is its dependence
on precise input and output spike times. Spike-time-dependent plasticity
rules have been observed in various brain areas (Markram & Tsodyks,
1996). These experiments have been performed in vitro by inducing input
and output spikes through extracellular or intracellular current injection. A
presynaptic spike occurring just before a postsynaptic spike induces LTP,
while the reverse situation induces LTD. In contrast, our model predicts
LTP when pre- and postsynaptic spikes co-occur within a short temporal
window, regardless of their temporal order, and LTD when output spikes
or input spikes occur in isolation.

Note that plasticity in our model does not truly require postsynaptic
spikes, since the online EM algorithm is strictly applied to the synaptic
input. In contrast, backpropagating action potential (bAp) is essential for
the expression of antisymmetric spike-timing-dependent plasticity (STDP)
in vitro (Markram, Lübke, Frotscher, & Sakmann, 1997; Sjöstrom, Turri-
giano, & Nelson, 1996), even if they are neither necessary nor sufficient for
inducing LTP or LTD (Lisman & Spruston, 1986). Thus, it would seem that
the Bayesian learning rule described in this letter might account for synap-
tic plasticity based on presynaptic spikes and postsynaptic depolarization,
but not for bAP-dependent antisymmetric STDP.

However, preliminary results suggest that in a more general context,
Bayesian learning also accounts for antisymmetric STDP. We found that LTD
when an input spike immediately follows an output spike is required in the
presence of feedback connections going from the causes (the tiger) to the
consequences (the stripes). Feedback connections are needed to perform full
Bayesian inference since the presence of a tiger increases the probability of
stripes, not just the other way around. In contrast, the networks considered
here have only feedforward connections. A network with feedforward and
feedback connections contains many loops. As a result, a neuron needs to
“decide” whether a synaptic event is new information or just a result of
one of its own spikes reverberated through the network. One way to solve
this problem is to predict away the reverberated spikes, an operation that
results in depression of synaptic strength if the input spike occurs right after
an output spike (and thus is likely to be a reverberated spike). However,
this goes beyond the scope of this letter, concentrating on feedforward
processing. Learning and inference in recurrent neural networks will be
considered in future work.

How well experimental data fit with the model predictions and whether
they can account for STDP in vitro or in vivo requires further scrutiny. With
the model as it is, we can still note some qualitative similarities between
the results of experiments probing in vitro plasticity and nonlinearities
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observed in our model. Experiments with spike triplets (Froemke & Dan,
2002) and quadruplets (Wang et al., 2005) have shown that synaptic plas-
ticity depends not only on input-output spike pairs, but also on the exact
local configuration of the input and output spike in the trains (Yao & Dan,
2005; Froemke & Dan, 2002; Froemke, Tsay, Raad, Long, & Dan, 2006; Wang
et al., 2005). This suggest that spike-dependent plasticity rules are not ap-
propriately described in terms of input-output pairs but rather depend, as
in our model, on the entire history of input and output spikes.

In particular, competition (Froemke & Dan, 2002; Froemke et al., 2006) be-
tween successive input-output spike pairs has been reported. The contribu-
tion of input and output spikes to LTP or LTD is diminished by immediately
preceding spikes. This can also be the case in our model, as illustrated in
Figure 5C (solid line). This result seems to contradict other reports of co-
operation between successive spike pairs (Sjöstrom et al., 1996; Wang et al.,
2005). For example, in most experiments, LTP or LTD requires the repetition
of a sufficient number of spike pairs, above a minimal frequency (10 Hz).
Cooperation between pairs is also observed in our model (as illustrated in
Figure 5C, dashed line). More generally, we predict that the ability of an
input-output spike pair to induce LTP is strong if the log-odds of xt at the
time of the input spike is close to the prior and weak otherwise. A preceding
spike could bring the log-odds closer (cooperation) or further (competition)
from this prior, depending on the statistics of xt and the previous history of
spikes. In any case, we expect cooperation at long interspike intervals (e.g.,
LTP requires a minimal frequency of 10 Hz to bring p(xt) close to the prior)
and competition at short interspike intervals (e.g., the first spikes in a burst
contributes the most to the potentiation of the synapse).

5.2 Plasticity in Neural Dynamics. Time is an important dimension for
dealing with a perpetually changing world, and it is essential to consider
this dimension in a spike-based code. The properties of the temporal dy-
namics of a neuron (such as the time constant for synaptic integration) are
as important as its synaptic strength in defining how it will respond to its
input. Strikingly, aspects dealing with plasticity of the temporal dynamics
of synaptic integration and spike generation are rarely considered as forms
of learning. However, these dynamics depend on many parameters, such
as position on the dendrite, distributions, and types of receptors, all subject
to short-term and long-term activity-dependent changes.

We propose that neurons learn to adapt their own integrative properties
to the temporal statistics of their input. This will be reflected, for example, in
the temporal constant for synaptic integration (τL̄ ). They learn the transition
rates by estimating the rate at which xt switches ON and OFF. Changes
in the time constant of integration could be implemented by changes in
channel densities, structural changes (shape or position on the dendrite
of the synapse), selection of particular receptor types (i.e., AMPA versus
NMDA receptors), or selection of particular subtypes of neuron. Whether



Bayesian Spiking Neurons II: Learning 139

neurons or neural circuits can adapt to the temporal statistics of their input
and on which timescale is a question that remains largely to be explored.

5.3 Learning Stability. Another time constant important for the learn-
ing performance of the Bayesian neuron is the temporal window for estimat-
ing the new parameters, τ ≈ 1

η
(see equation A.12). In fact, while inference

corresponds to integrating the synaptic input with a short time time con-
stant τL̄ , learning can be considered as a synaptic integration with a much
longer time constant τ . τ is a meta-parameter that should also be adjusted
to the higher-order temporal statistics of the sensory input. In a word were
the parameters of the HMM never to change, τ should be infinitely large
to limit the fluctuations of the learned parameters around their true value.
However, if the parameters of the HMM change over time, for example, if
the stimulus suddenly becomes faster or more informative, a large τ would
prevent the neuron from adapting to this new context. Similarly, the neuron
can afford a shorter time τ in more informative contexts. This trade-off is
described in more detail elsewhere (Mongillo & Deneve, 2006).

5.4 Different Kinds of Spike-Dependent Adaptation. We propose a
specific interpretation for spike-dependent adaptation, or, as it is equiv-
alent in the model, the reset in membrane potential after a spike. Spike
adaptation ensures that neurons convey new information about the stim-
ulus that has not been conveyed by previous spikes. The amplitude of the
jump go corresponds specifically to the strength of new synaptic evidence
needed to fire spike. For example, go = log(2) implies that a spike is fired
whenever the occurrence of new synaptic events multiplies the odds for
xt = 1 by 2. Meanwhile, go controls the input-output gain, since Ō ≈ Ī

go
.

go itself might, and should, be adapted to the information received by
the neuron. Indeed, neurons have limited dynamical range, while the in-
formation contained in their synaptic input, expressed by the mean input
Ī, is likely to vary several orders of magnitudes with the context. For ex-
ample, high-contrast stimuli are much more informative than low-contrast
stimuli. In a highly informative context, small fluctuations in probability
are uninteresting. Thus, one might want to limit the cost of firing spikes
with a large go . On the other hand, in a low informative context, small
fluctuations in probability are potentially meaningful. Small go will allow a
precise representation of the probability without costing too many spikes.
There is now a wide body of evidence that neurons in various sensory sys-
tems adapt their response gain to match their own dynamical range with
the range of input they receive, thus maximizing information transfer (for
a review, see Wainwright, 1999). In the H1 motion-sensitive neuron of the
fly, for example, adaptation to the range of stimulus motion is so fast that it
is of the order of the performance achievable by an ideal observer (Fairhall,
Lewen, Bialek, & de Ruyter van Steveninck, 2001).
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In our case, this would correspond to adapting go (an adaptation of
spike-based adaptation) so that it is proportional to the mean input when
the stimulus is present, Īon = ∑

i wi q i
on − θ . Note, however, that changing

go also changes the meaning of an output spike. In our framework, this is
not a problem since an efferent neuron does not need to know go in order
to interpret the output spikes. The weights wi and bias θ can be adjusted
online to compensate for changes in the information content of a spike
simply by applying the online EM algorithm on a fast timescale. Thus,
synaptic short-term plasticity could collaborate with spike adaptation in
order to perform the same computation with many fewer spikes in highly
informative contexts.

5.5 Limitations and Extensions of This Approach. This work proposes
a simple neural implementation of Bayesian inference and learning in cor-
responding hierarchical generative models. However, since we considered
networks with only pairwise interactions (i.e., synaptic transfer) between
the variables, we were strongly limited in which generative models we
could implement. One obvious limitation of our approach is that it uses
only binary variables. We are currently exploring straightforward exten-
sion of the approach to multistate variables and continuous variables.

Another strong limitation is that we did not consider cases when vari-
ables can have several potential causes. This is due to the well-known
problem of explaining away in hierarchical generative models: alternative
causes to the same event must compete for the evidence they receive from
this event (Frey, 1998). A related issue is that we did not implement feedback
processing, that is, propagation of evidence from the causes to the conse-
quences. We are currently developing more complex recurrent spiking net-
works that implement both explaining away and feedback propagation of
evidence. These spiking networks can perform only approximate inference.

Finally, this approach is limited to very simple temporal dynamics where
only objects at the top of the hierarchy can have an independent history.
This assumption will not be valid for more complex dynamics with several
interacting dynamical processes, such as the motion of an object, described
by position, speed, and acceleration. One solution could be to group vari-
ables, for example, to use one neuron for each combination of position,
speed, and acceleration. This is clearly a costly solution in terms of number
of neurons and connections, but cortical neurons do seem to respond pref-
erentially to particular combinations of statistically or dynamically related
states (Poggio, 1990).

Appendix: Online Expectation-Maximization Algorithm

Learning consists of maximizing the likelihood of the observable sequence
s0→t with respect to the model parameters—the transition (ron, roff) and the
emission rates (qon, qoff).
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In order to do this, we use the expectation-maximization (EM) algo-
rithm, an iterative optimization technique for maximum-likelihood estima-
tion when the data set is incomplete or has missing values. In our case,
the missing values, as they are not directly observable, are the sequence of
hidden states x0→T that produced the observable sequence s0→t .

For simulations, and also for some parts of the theory, it is convenient
to formulate the learning algorithm in discrete time with step size dt. The
continuous time limit, where necessary, is obtained by taking dt → 0. In the
case of HMM, the EM algorithm reduces to a reestimation of the parameters:
the Baum-Welch reestimation formulas (see Rabiner, 1989).

For example, an estimate of the transition rate from the ON to OFF state,
roff, is obtained as the expected number of transitions ON→OFF over a
given time interval T , Non→o f f (T), divided by the time spent in the ON
state over the same time interval, τon(T), and the time step dt:

Non→o f f (T) =
T∑

t=1

1∑
i=0

1∑
j=0

[i · (1 − j)] · P(xt−dt = i, xt = j |s0→t) (A.1)

≡ E

(
T∑

t=1

xt−dt · (1 − xt)|s0→T

)

τon(T) =
T∑

t=0

1∑
i=0

i · P(xt = i |s0→t) ≡ E

(
T∑

t=0

xt|s0→T

)
(A.2)

roff = 1
dt

· Non→off(T)
τon(T)

. (A.3)

Equation A.3 computes a reestimate of roff as a function of the current
parameters’ values, which are used in computing the left-hand side of
equation A.3 via equations A.1 and A.2. Analogous reestimation formulas
hold for the remaining parameters:

ron = 1
dt

· Non→off(T)
T − τon(T)

(A.4)

qon = 1
dt

· N(sp)
on (T)

τon(T)
(A.5)

qoff = 1
dt

· N(sp)(T) − N(sp)
on (T)

T − τon(T)
, (A.6)
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where N(sp)
on (T) is the expected number of spikes during time interval T ,

fired while in the ON state, and N(sp)(T) is the total number of spikes in the
same interval. Note that in equation A.4, we take No f f →on(T) = Non→o f f (T)
in the limit of large T . It can be shown that any function of the type

φ(T) = E

(
T∑

t=1

h(xt−dt, xt, st)|s0→T

)
(A.7)

can be computed recursively with T in the following way. Let φ j (T) be

φ j (T) = E

(
T∑

t=1

h(xt−dt, xt, st)|xT = j, s0→T

)
· P(xT = j |s0→T ). (A.8)

Clearly,
∑

j φ j (T) = φ(T). From probability calculus, the following recur-
rence relation for the φ j ’s holds true:

φ j (T) =
∑

i

mi j (sT , s0→T−dt) · [φi (T − dt)

+ h(i, j, sT ) · P(xT−dt = i |s0→T−dt)] , (A.9)

where

mi j (sT , s0→T−dt) = P(sT |xT = j) · P(xT = j |xT−dt = i)
P(sT |s0→T−dt)

. (A.10)

The expected number of transitions ON→OFF, Non→o f f (T), the expected
number of spikes while in the ON state, N(sp)

on (T), and the expected time
spent in the ON state, τon(T), are in the form of equation A.7, for suitably
chosen h(xt−dt, xt, st), that is,




h(xt−dt, xt, st) = δ(xt−dt − 1) · δ(xt) → Non→off

h(xt−dt, xt, st) = δ(xt − 1) · δ(st − 1) → N(sp)
on

h(xt−dt, xt, st) = δ(xt − 1) → τon,

(A.11)

where δ(·) is the Kronecker delta. Thus, the statistics required for reesti-
mating the model parameters via equations A.3 to A.6 can be computed
online via equations A.9 and A.10. In order to deal with infinite observable
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sequences, we compute the online averages equation A.7 on a sliding time
window according to

φ(T) = E

(
T∑

t=1

eη·(T−t)h(xt−dt, xt, st)|s0→T

)
, (A.12)

where η is a suitably chosen decay factor (i.e., it should be much longer
than the fastest timescale in the system). Hereafter, eη·(T−t) is referred to as a
forgetting function. For constant model parameters, φ(T) in equation A.12
is, to a good approximation, the expectation value of

∑
t h(xt−dt, xt, st) over

a time window of length τ ∼ 1/η ending at time step T . Then we use the
current sufficient statistics to obtain a new estimate of the parameters,

θ (T) = H(φ(T)), (A.13)

where θ (T) indicates the model parameters at time step T and H(·) is
a compact notation for the map, equations A.3 to A.6. The new model
parameters are then used to update the online sufficient statistics in the next
time step according to equations A.9 and A.10. To summarize, the online
learning algorithm works in the following way. Starting with an initial
guess for the parameters, at each time step, the online sufficient statistics,
equation A.12, are updated depending on their value at the previous time
step, φ(T − dt), the actual input, sT , and on the parameters estimate at the
previous time step, θ (T − dt),

φ(T) = F (φ(T − dt), sT , θ (T − dt)), (A.14)

where F (·) is a compact notation for the map, equations A.9 and A.10. Then
the current sufficient statistics is used to obtain a new estimate at the current
time step via equation A.13. The learning algorithm does not require any
extra storage of incoming data; it is completely online and updates the
model parameters as soon as new data are available. Furthermore, it can be
shown that for suitably chosen forgetting functions, the online algorithm
is equivalent to a stochastic approximation for obtaining the maximum
likelihood estimate for the parameters and, in this sense, it is equivalent to
the batch EM algorithm (Mongillo & Deneve, 2006).
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