
Chapter 2
Semi-tensor Product of Matrices

2.1 Multiple-Dimensional Data

Roughly speaking, linear algebra mainly concerns two kinds of objects: vectors and
matrices. An n-dimensional vector is expressed as X = (x1, x2, . . . , xn). Its ele-
ments are labeled by one index, i, where xi is the ith element of X. For an m × n

matrix

A =

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎦

,

elements are labeled by two indices, i and j , where ai,j is the element of A located
in the ith row and j th column. In this way, it is easy to connect the dimension of a
set of data with the number of indices. We define the dimension of a set of data as
follows.

Definition 2.1 A set of data, labeled by k indices, is called a set of k-dimensional
data. Precisely,

X = {xi1,i2,...,ik | 1 ≤ ij ≤ nj , j = 1,2, . . . , k} (2.1)

is a set of k-dimensional data. The cardinal number of X, denoted by |X|, is |X| =
n1n2 · · ·nk .

In the following example we give an example of 3-dimensional data.

Example 2.1 Consider R
3, with its canonical basis {e1, e2, e3}. Any vector X ∈ R

3

may then be expressed as X = x1e1 + x2e2 + x3e3. When the basis is fixed, we
simply use X = (x1, x2, x3)

T to represent it. From simple vector algebra we know
that in R

3 there is a cross product, ×, such that for any two vectors X,Y ∈ R
3 we
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20 2 Semi-tensor Product of Matrices

have X × Y ∈ R
3, defined as follows:

X × Y = det

⎛
⎝
⎡
⎣

e1 e2 e3
x1 x2 x3
y1 y2 y3

⎤
⎦
⎞
⎠ . (2.2)

Since the cross product is linear with respect to X as well as Y , it is a bilinear
mapping. The value of the cross product is thus uniquely determined by its value on
the basis. Write

ei × ej = c1
ij e1 + c2

ij e2 + c3
ij e3, i, j = 1,2,3.

The coefficients form a set of 3-dimensional data,

{
ck
ij

∣∣ i, j, k = 1,2,3
}
,

which are called the structure constants. Structure constants are easily computable.
For instance,

e1 × e2 = det

⎛
⎝
⎡
⎣

e1 e2 e3
1 0 0
0 1 0

⎤
⎦
⎞
⎠= e3,

which means that c1
12 = c2

12 = 0, c3
12 = 1. Similarly, we can determine all the struc-

ture constants:

c1
11 = 0, c2

11 = 0, c3
11 = 0, c1

12 = 0, c2
12 = 0, c3

12 = 1,

c1
13 = 0, c2

13 = −1, c3
13 = 0, c1

21 = 0, c2
21 = 0, c3

21 = −1,

c1
22 = 0, c2

22 = 0, c3
22 = 0, c1

23 = 1, c2
23 = 0, c3

23 = 0,

c1
31 = 0, c2

31 = 1, c3
31 = 0, c1

32 = −1, c2
32 = 0, c3

32 = 0,

c1
33 = 0, c2

33 = 0, c3
33 = 0.

Since the cross product is linear with respect to the coefficients of each vec-
tor, the structure constants uniquely determine the cross product. For instance, let
X = 3e1 − e3 and Y = 2e2 + 3e3. Then

X × Y = 6e1 × e2 + 9e1 × e3 − 2e3 × e2 − 3e3 × e3

= 6
(
c1

12e1 + c2
12e2 + c3

12e3
)+ 9

(
c1

13e1 + c2
13e2 + c3

13e3
)

− 2
(
c1

32e1 + c2
32e2 + c3

32e3
)− 3

(
e1

33e1 + c2
33e2 + c3

33e3
)

= 2e1 − 9e2 + 6e3.

It is obvious that using structure constants to calculate the cross product in this
way is very inconvenient, but the example shows that the cross product is uniquely



2.1 Multiple-Dimensional Data 21

determined by structure constants. So, in general, to define a multilinear mapping it
is enough to give its structure constants.

Using structure constants to describe an algebraic structure is a powerful method.

Definition 2.2 [6] Let V be an n-dimensional vector space with coefficients in R.
If there is a mapping ∗ : V × V → V , called the product of two vectors, satisfying

{
(αX + βY) ∗ Z = α(X ∗ Z) + β(Y ∗ Z),

X ∗ (αY + βZ) = α(X ∗ Y) + β(X ∗ Z)
(2.3)

(where α,β ∈ R, X,Y,Z ∈ V ), then (V ,∗) is called an algebra.
Let (V ,∗) be an algebra. If the product satisfies associative law, i.e.,

(X ∗ Y) ∗ Z = X ∗ (Y ∗ Z), X,Y,Z ∈ V, (2.4)

then it is called an associative algebra.

R
3 with the cross product is obviously an algebra. It is also easy to check that it

is not an associative algebra.
Let V be an n-dimensional vector space and (V ,∗) an algebra. Choosing a basis

{e1, e2, . . . , en}, the structure constants can be obtained as

ei ∗ ej =
n∑

k=1

ck
ij ek, i, j = 1,2, . . . , n.

Although the structure constants {ck
ij | i, j, k = 1,2, . . . , n} depend on the choice of

basis, they uniquely determine the structure of the algebra. It is also easy to convert
a set of structure constants, which correspond to a basis, to another set of structure
constants, which correspond to another basis. For an algebra, the structure constants
are always a set of 3-dimensional data.

Next, we consider an s-linear mapping on an n-dimensional vector space. Let V

be an n-dimensional vector space and let φ : V × V × · · · × V︸ ︷︷ ︸
s

→ R, satisfying (for

any 1 ≤ i ≤ s, α,β ∈ R)

φ(X1,X2, . . . , αXi + βYi, . . . ,Xs−1,Xs)

= αφ(X1,X2, . . . ,Xi, . . . ,Xs−1,Xs) + βφ(X1,X2, . . . , Yi, . . . ,Xs−1,Xs).

(2.5)

Equation (2.5) shows the linearity of φ with respect to each vector argument. Choos-
ing a basis of V , {e1, e2, . . . , en}, the structure constants of φ are defined as

φ(ei1, ei2, . . . , eis ) = ci1,i2,...,is , ij = 1,2, . . . , n, j = 1,2, . . . , s.

Similarly, the structure constants, {ci1,i2,...,is | i1, . . . , is = 1,2, . . . , n}, uniquely de-
termine φ. Conventionally, φ is called a tensor, where s is called its covariant degree.
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It is clear that for a tensor with covariant degree s, its structure constants form a set
of s-dimensional data.

Example 2.2

1. In R
3 we define a three linear mapping as

φ(X,Y,Z) = 〈X × Y,Z〉, X,Y,Z ∈ R
3,

where 〈·, ·〉 denotes the inner product. Its geometric interpretation is the volume
of the parallelogram with X, Y , Z as three adjacent edges [when (X,Y,Z) form
a right-hand system, the volume is positive, otherwise, the volume is negative].
It is obvious that φ is a tensor with covariant degree 3.

2. In R
3 we can define a four linear mapping as

ψ(X,Y,Z,W) = 〈X × Y,Z × W 〉, X,Y,Z,W ∈ R
3.

Obviously, ψ is a tensor of covariant degree 4.

Next, we consider a more general case. Let μ : V → R be a linear mapping on V ,

μ(ei) = ci, i = 1, . . . , n.

Then, μ can be expressed as

μ = c1e
∗
1 + c2e

∗
2 + · · · + cne

∗
n,

where e∗
i : V → R satisfies

e∗
i (ej ) = δi,j =

{
1, i = j,

0, i �= j.

It can be seen easily that the set of linear mappings on V forms a vector space, called
the dual space of V and denoted by V ∗.

Let X = x1e1 + x2e2 +· · ·+ xnen ∈ V and μ = μ1e
∗
1 +μ2e

∗
2 +· · ·+μne

∗
n ∈ V ∗.

When the basis and the dual basis are fixed, X ∈ V can be expressed as a column
vector and μ ∈ V ∗ can be expressed as a row vector, i.e.,

X = (a1, a2, . . . , an)
T, μ = (c1, c2, . . . , cn).

Using these vector forms, the action of μ on X can be expressed as their matrix
product:

μ(X) = μX =
n∑

i=1

aici, μ ∈ V ∗,X ∈ V.

Let φ : V ∗ × · · · × V ∗︸ ︷︷ ︸
t

×V × · · · × V︸ ︷︷ ︸
s

→ R be an (s + t)-fold multilinear map-

ping. Then, φ is said to be a tensor on V with covariant degree s and contravariant
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degree t . Denote by T s
t the set of tensors on V with covariant degree s and con-

travariant degree t .
If we define

c
i1,i2,...,is
j1,j2,...,jt

:= φ
(
ei1, ei2, . . . , eis , e

∗
j1

, e∗
j2

, . . . , e∗
jt

)
,

then
{
c
i1,i2,...,is
j1,j2,...,jt

∣∣1 ≤ i1, . . . , is , j1, . . . , jt ≤ n
}

is the set of structure constants of φ. Structure constants of φ ∈ T s
t form a set of

(s + t)-dimensional data.
Next, we consider how to arrange higher-dimensional data. In linear algebra one-

dimensional data are arranged as a column or a row, called a vector, while two-
dimensional data are arranged as a rectangle, called a matrix. In these forms matrix
computation becomes a very convenient and powerful tool for dealing with one-
or two-dimensional data. A question which then naturally arises is how to arrange
three-dimensional data. A cubic matrix approach has been proposed for this pur-
pose [1, 2] and has been used in some statistics problems [8–10], but, in general,
has not been very successful. The problem is: (1) cubic matrices cannot be clearly
expressed in a plane (i.e., on paper), (2) the conventional matrix product does not
apply, hence some new product rules have to be produced, (3) it is very difficult to
generalize this approach to even higher-dimensional cases.

The basic idea concerning the semi-tensor product of matrices is that no matter
what the dimension of the data, they are arranged in one- or two-dimensional form.
By then properly defining the product, the hierarchy structure of the data can be
automatically determined. Hence the data arrangement is important for the semi-
tensor product of data.

Definition 2.3 Suppose we are given a set of data S with
∏k

i=1 ni elements and, as
in (2.1), the elements of x are labeled by k indices. Moreover, suppose the elements
of x are arranged in a row (or a column). It is said that the data are labeled by indices
i1, . . . , ik according to an ordered multi-index, denoted by Id or, more precisely,

Id(i1, . . . , ik;n1, . . . , nk),

if the elements are labeled by i1, . . . , ik and arranged as follows: Let it , t = 1, . . . , k,
run from 1 to nt with the order that t = k first, then t = k − 1, and so on, until t = 1.
Hence, xα1,...,αk

is ahead of xβ1,...,βk
if and only if there exists 1 ≤ j ≤ k such that

αi = βi, i = 1, . . . , j − 1, αj < βj .

If the numbers n1, . . . , nk of i1, . . . , ik are equal, we may use

Id(i1, . . . , ik;n) := Id(i1, . . . , ik;n, . . . , n).

If ni are obviously known, the expression of Id can be simplified as

Id(i1, . . . , ik) := Id(i1, . . . , ik;n1, . . . , nk).
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Example 2.3

1. Assume x = {xijk | i = 1,2,3; j = 1,2; k = 1,2}. If we arrange the data accord-
ing to the ordered multi-index Id(i, j, k), they are

x111, x112, x121, x122, x211, x212, x221, x222, x311, x312, x321, x322.

If they are arranged by Id(j, k, i), they become

x111, x211, x311, x112, x212, x312, x121, x221, x321, x122, x222, x322.

2. Let x = {x1, x2, . . . , x24}. If we use λ1, λ2, λ3 to express the data in the form
ai = aλ1,λ2,λ3 , then under different Id’s they have different arrangements:
(a) Using the ordered multi-index Id(λ1, λ2, λ3;2,3,4), the elements are ar-

ranged as

x111 x112 x113 x114
x121 x122 x123 x124
x131 x132 x133 x134

...

x231 x232 x233 x234.

(b) Using the ordered multi-index Id(λ1, λ2, λ3;3,2,4), the elements are ar-
ranged as

x111 x112 x113 x114
x121 x122 x123 x124
x211 x212 x213 x214

...

x321 x322 x323 x324.

(c) Using the ordered multi-index Id(λ1, λ2, λ3;4,2,3), the elements are ar-
ranged as

x111 x112 x113
x121 x122 x123
x211 x212 x213

...

x421 x422 x423.

Note that in the above arrangements the data are divided into several rows, but
this is simply because of spatial restrictions. Also, in this arrangement the hierarchy
structure of the data is clear. In fact, the data should be arranged into one row.

Different Id’s, corresponding to certain index permutations, cause certain per-
mutations of the data. For convenience, we now present a brief introduction to the
permutation group. Denote by Sk the permutations of k elements, which form a
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group called the kth order permutation group. We use 1, . . . , k to denote the k ele-
ments. If we suppose that k = 5, then S5 consists of all possible permutations of five
elements: {1,2,3,4,5}. An element σ ∈ S5 can be expressed as

σ =
⎡
⎣

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
2 3 1 5 4

⎤
⎦ ∈ S5.

That is, σ changes 1 to 2, 2 to 3, 3 to 1, 4 to 5, and 5 to 4. σ can also be simply
expressed in a rotational form as

σ = (1,2,3)(4,5).

Let μ ∈ S5 and

μ =
⎡
⎣

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
4 3 2 1 5

⎤
⎦ .

The product (group operation) on S5 is then defined as

μσ =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
2 3 1 5 4
↓ ↓ ↓ ↓ ↓
3 2 4 5 1

⎤
⎥⎥⎥⎥⎦

,

that is, μσ = (1,3,4,5).
If, in (2.1), the data x are arranged according to the ordered multi-index

Id(i1, . . . , ik), it is said that the data are arranged in a natural order. Of course, they
may be arranged in the order of (iσ (1), . . . , iσ (k)), that is, letting index iσ (k) run from
1 to nσ(k) first, then letting iσ (k−1) run from 1 to nσ(k−1), and so on. It is obvious
that a different Id corresponds to a different data arrangement.

Definition 2.4 Let σ ∈ Sk and x be a set of data with
∏k

i=1 ni elements. Arrange
x in a row or a column. It is said that x is arranged by the ordered multi-index
Id(iσ (1), . . . , iσ (k);nσ(1), . . . , nσ(k)) if the indices i1, . . . , ik in the sequence are run-
ning in the following order: first, iσ (k) runs from 1 to nσ(k), then iσ (k−1) runs from
1 to nσ(k−1), and so on, until, finally, iσ (1) runs from 1 to nσ(1).

We now introduce some notation. Let a ∈ Z and b ∈ Z+. As in the programming
language C, we use a%b to denote the remainder of a/b, which is always nonnega-
tive, and [t] for the largest integer that is less than or equal to t . For instance,

100%3 = 1, 100%7 = 2, (−7)%3 = 2,
[

7

3

]
= 2, [−1.25] = −2.



26 2 Semi-tensor Product of Matrices

It is easy to see that

a =
[a

b

]
b + a%b. (2.6)

Next, we consider the index-conversion problem. That is, we sometimes need
to convert a single index into a multi-index, or vice versa. Particularly, when we
need to deform a matrix into a designed form using computer, index conversion is
necessary. The following conversion formulas can easily be proven by mathematical
induction.

Proposition 2.1 Let S be a set of data with n = ∏k
i=1 ni elements. The data are

labeled by single index as {xi} and by k-fold index, by the ordered multi-index
Id(λ1, . . . , λk;n1, . . . , nk), as

S = {sp | p = 1, . . . , n} = {sλ1,...,λk
| 1 ≤ λi ≤ ni; i = 1, . . . , k}.

We then have the following conversion formulas:

1. Single index to multi-index. Defining pk := p − 1, the single index p can be
converted into the order of the ordered multi-index Id(i1, . . . , ik;n1, . . . , nk) as
(λ1, . . . , λk), where λi can be calculated recursively as

⎧⎨
⎩

λk = pk%nk + 1,

pj = [pj+1
nj+1

], λj = pj %nj + 1, j = k − 1, . . . ,1.
(2.7)

2. Multi-index to single index. From multi-index (λ1, . . . , λk) in the order of
Id(i1, . . . , ik;n1, . . . , nk) back to the single index, we have

p =
k−1∑
j=1

(λj − 1)nj+1nj+2 · · ·nk + λk. (2.8)

The following example illustrates the conversion between different types of in-
dices.

Example 2.4 Recalling the second part of Example 2.3, we may use different types
of indices to label the elements.

1. Consider an element which is x11 in single-index form. Converting it into the
order of Id(λ1, λ2, λ3;2,3,4) by using (2.7), we have

p3 = p − 1 = 10,

λ3 = p3%n3 + 1 = 10%4 + 1 = 2 + 1 = 3,

p2 =
[
p3

n3

]
=
[

10

2

]
= 2,

λ2 = p2%n2 + 1 = 2%3 + 1 = 2 + 1 = 3,
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p1 =
[
p2

n2

]
=
[

2

4

]
= 0,

λ1 = p1%n1 + 1 = 0%2 + 1 = 1.

Hence x11 = x133.
2. Consider the element x214 in the order of Id(λ1, λ2, λ3;2,3,4). Using (2.8), we

have

p = (λ1 − 1)n2n3 + (λ2 − 1)n3 + λ3 = 1 · 3 · 4 + 0 + 4 = 16.

Hence x214 = x16.
3. In the order of Id(λ2, λ3, λ1;3,4,2), the data are arranged as

x111 x211 x112 x212
x113 x213 x114 x214

...

x131 x231 x132 x232
x133 x233 x134 x234.

For this index, if we want to use the formulas for conversion between nat-
ural multi-index and single index, we can construct an auxiliary natural multi-
index yΛ1,Λ2,Λ3 , where Λ1 = λ2, Λ2 = λ3, Λ3 = λ1 and N1 = n2 = 3, N2 =
n3 = 4, N3 = n1 = 2. Then, bi,j,k is indexed by (Λ1,Λ2,Λ3) in the order of
Id(Λ1,Λ2,Λ3;N1,N2,N3). In this way, we can use (2.7) and (2.8) to convert
the indices.

For instance, consider x124. Let x124 = y241. For y241, using (2.7), we have

p = (Λ1 − 1)N2N3 + (Λ2 − 1)N3 + Λ3

= (2 − 1) × 4 × 2 + (4 − 1) × 2 + 1 = 8 + 6 + 1 = 15.

Hence

x124 = y241 = y15 = x15.

Consider x17 again. Since x17 = y17, using (2.6), we have

p3 = p − 1 = 16, Λ3 = p3%N3 + 1 = 1,

p2 = [p3/N3] = 8, Λ2 = p2%N2 + 1 = 1,

p1 = [p2/N2] = 2, Λ1 = p1%N1 + 1 = 3.

Hence x17 = y17 = y311 = x131.

From the above argument one sees that a set of higher-dimensional data, labeled
by a multi-index, can be converted into a set of 1-dimensional data, labeled by
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Table 2.1 The prisoner’s
dilemma P1\P2 A1 A2

A1 −1, −1 −9, 0

A2 0, −9 −6, −6

single-index. A matrix, as a set of 2-dimensional data, can certainly be converted
into a set of 1-dimensional data. Consider a matrix

A =
⎡
⎢⎣

a11 a12 · · · a1n

...
...

...

am1 am2 · · · amn

⎤
⎥⎦ .

The row-stacking form of A, denoted by Vr(A), is a row-by-row arranged nm-
vector, i.e.,

Vr(A) = (a11, a12, . . . , a1n, . . . , am1, am2, . . . , amn)
T. (2.9)

The column-stacking form of A, denoted by Vc(A), is the following nm-vector:

Vc(A) = (a11, a21, . . . , am1, . . . , a1n, a2n, . . . , amn)
T. (2.10)

From the definition it is clear that we have the following result.

Proposition 2.2

Vc(A) = Vr
(
AT), Vr(A) = Vc

(
AT). (2.11)

Finally, we give an example for multidimensional data labeled by an ordered
multi-index.

Example 2.5

1. Consider the so-called prisoner’s dilemma [5]. Two suspects are arrested and
charged with a crime and each prisoner has two possible strategies:

A1: not confess (or be mum); A2: confess (or fink).

The payoffs are described by a payoff bi-matrix, given in Table 2.1.
For instance, if prisoner P1 chooses “mum” (A1) and P2 chooses “fink” (A2),

P1 will be sentenced to jail for nine months and P2 will be released. Now, if we
denote by

ri
j,k, i = 1,2, j = 1,2, k = 1,2,

the payoff of Pi as P1 takes strategy j and P2 takes strategy k, then {ri
j,k} is a set

of 3-dimensional data. We may arrange it into a payoff matrix as

Mp =
[

r1
11 r1

12 r1
21 r1

22

r2
11 r2

12 r2
21 r2

22

]
=
[−1 −9 0 −6

−1 0 −9 −6

]
. (2.12)
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2. Consider a game with n players. Player Pi has ki strategies and the payoff of Pi

as Pj takes strategy sj , j = 1, . . . , n, is

ri
s1,...,sn

, i = 1, . . . , n; sj = 1, . . . , kj , j = 1, . . . , n.

Then, {ri
s1,...,sn

} is a set of (n + 1)-dimensional data. Arranging it with i as the
row index and its column by the ordered multi-index Id(s1, . . . , sn; k1, . . . , kn),
we have

Mg =
⎡
⎢⎣

r1
11···1 · · · r1

11···kn
· · · r1

1k2···kn
· · · r1

k1k2···kn

...

rn
11···1 · · · rn

11···kn
· · · rn

1k2···kn
· · · rn

k1k2···kn

⎤
⎥⎦ . (2.13)

Mg is called the payoff matrix of game g.

2.2 Semi-tensor Product of Matrices

We consider the conventional matrix product first.

Example 2.6 Let U and V be m- and n-dimensional vector spaces, respectively.
Assume F ∈ L(U × V,R), that is, F is a bilinear mapping from U × V to R.
Denote by {u1, . . . , um} and {v1, . . . , vn} the bases of U and V , respectively. We
call S = (sij ) the structure matrix of F , where

sij = F(ui, vj ), i = 1, . . . ,m, j = 1, . . . , n.

If we let X =∑m
i=1 xiui ∈ U , otherwise written as X = (x1, . . . , xm)T ∈ U , and

Y =∑n
i=1 yivi ∈ V , otherwise written as Y = (y1, . . . , yn)

T ∈ V , then

F(X,Y ) = XTSY. (2.14)

Denoting the rows of S by S1, . . . , Sm, we can alternatively calculate F in two
steps.

Step 1: Calculate x1S
1, x2S

2, . . . , xmSm and take their sum.
Step 2: Multiply

∑m
i=1 xiS

i by Y (which is a standard inner product).

It is easy to check that this algorithm produces the same result. Now, in the first
step it seems that we have (S1 · · ·Sn) × X. This calculation motivates a new algo-
rithm, which is defined as follows.

Definition 2.5 Let T be an np-dimensional row vector and X a p-dimensional
column vector. Split T into p equal blocks, named T 1, . . . , T p , which are 1 × n

matrices. Define a left semi-tensor product, denoted by �, as

T � X =
p∑

i=1

T ixi ∈ R
n. (2.15)
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Using this new product, we reconsider Example 2.6 and propose another algo-
rithm.

Example 2.7 (Example 2.6 continued) We rearrange the structure constants of F

into a row as

T : Vr(S) = (s11, . . . , s1n, . . . , sm1, . . . , smn),

called the structure matrix of F . This is a row vector of dimension mn, labeled by
the ordered multi-index Id(i, j ;m,n). The following algorithm provides the same
result as (2.14):

F(X,Y ) = T � X � Y. (2.16)

It is easy to check the correctness of (2.16), but what is its advantage? Note
that (2.16) realized the product of 2-dimensional data (a matrix) with 1-dimensional
data by using the product of two sets of 1-dimensional data. If, in this product,
2-dimensional data can be converted into 1-dimensional data, we would expect that
the same thing can be done for higher-dimensional data. If this is true, then (2.16)
is superior to (2.14) because it allows the product of higher-dimensional data to be
taken. Let us see one more example.

Example 2.8 Let U , V , and W be m-, n-, and t-dimensional vector spaces, re-
spectively, and let F ∈ L(U × V × W,R). Assume {u1, . . . , um}, {v1, . . . , vn}, and
{w1, . . . ,wt } are the bases of U , V , and W , respectively. We define the structure
constants as

sijk = F(ui, vj ,wk), i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . , t.

The structure matrix S of F can be constructed as follows. Its data are labeled by
the ordered multi-index Id(i, j, k;m,n, t) to form an mnt-dimensional row vector
as

S = (s111, . . . , s11t , . . . , s1n1, . . . , s1nt , . . . , smn1, . . . , smnt ).

Then, for X ∈ U , Y ∈ V , Z ∈ W , it is easy to verify that

F(X,Y,Z) = S � X � Y � Z.

Observe that in a semi-tensor product, � can automatically find the “pointer” of
different hierarchies and then perform the required computation.

It is obvious that the structure and algorithm developed in Example 2.8 can be
used for any multilinear mapping. Unlike the conventional matrix product, which
can generally treat only one- or two-dimensional data, the semi-tensor product of
matrices can be used to deal with any finite-dimensional data.

Next, we give a general definition of semi-tensor product.
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Definition 2.6

(1) Let X = (x1, . . . , xs) be a row vector, Y = (y1, . . . , yt )
T a column vector.

Case 1: If t is a factor of s, say, s = t ×n, then the n-dimensional row vector
defined as

X � Y :=
t∑

k=1

Xkyk ∈ R
n (2.17)

is called the left semi-tensor inner product of X and Y , where

X = (
X1, . . . ,Xt

)
, Xi ∈ R

n, i = 1, . . . , t.

Case 2: If s is a factor of t , say, t = s × n, then the n-dimensional column
vector defined as

X � Y :=
t∑

k=1

xkY
k ∈ R

n (2.18)

is called the left semi-tensor inner product of X and Y , where

Y = ((
Y 1)T

, . . . ,
(
Y t
)T)T

, Y i ∈ R
n, i = 1, . . . , t.

(2) Let M ∈ Mm×n and N ∈ Mp×q . If n is a factor of p or p is a factor of n, then
C = M �N is called the left semi-tensor product of M and N , where C consists
of m × q blocks as C = (Cij ), and

Cij = Mi
� Nj , i = 1, . . . ,m, j = 1, . . . , q,

where Mi = Rowi (M) and Nj = Colj (N).

Remark 2.1

1. In the first item of Definition 2.6, if t = s, the left semi-tensor inner product be-
comes the conventional inner product. Hence, in the second item of Definition
2.6, if n = p, the left semi-tensor product becomes the conventional matrix prod-
uct. Therefore, the left semi-tensor product is a generalization of the conventional
matrix product. Equivalently, the conventional matrix product is a special case of
the left semi-tensor product.

2. Throughout this book, the default matrix product is the left semi-tensor product,
so we simply call it the “semi-tensor product” (or just “product”).

3. Let A ∈ Mm×n and B ∈ Mp×q . For convenience, when n = p, A and B are said
to satisfy the “equal dimension” condition, and when n = tp or p = tn, A and B

are said to satisfy the “multiple dimension” condition.
4. When n = tp, we write A 
t B; when p = tn, we write A ≺t B .
5. So far, the semi-tensor product is a generalization of the matrix product from the

equal dimension case to the multiple dimension case.
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Example 2.9

1. Let X = [2 −1 1 2], Y = [−2 1]T. Then

X � Y = [
2 −1

]× (−2) + [
1 2

]× 1 = [−3 4
]
.

2. Let

X =
⎡
⎣

2 1 −1 3
0 1 2 −1
2 −1 1 1

⎤
⎦ , Y =

[−1 2
3 2

]
.

Then

X � Y =
⎡
⎣

(21) × (−1) + (−13) × 3 (21) × 2 + (−13) × 2
(01) × (−1) + (2 − 1) × 3 (01) × 2 + (2 − 1) × 2
(2 − 1) × (−1) + (11) × 3 (2 − 1) × 2 + (11) × 2

⎤
⎦

=
⎡
⎣

−5 8 2 8
6 −4 4 0
1 4 6 0

⎤
⎦ .

Remark 2.2

1. The dimension of the semi-tensor product of two matrices can be determined by
deleting the largest common factor of the dimensions of the two factor matrices.
For instance,

Ap×qr � Br×s � Cqst×l = (A � B)p×qs � Cqst×l = (A � B � C)pt×l .

In the first product, r is deleted, and in the second product, qs is deleted.
This is a generalization of the conventional matrix product: for the conventional
matrix product, Ap×sBs×q = (AB)p×q , where s is deleted.

2. Unlike the conventional matrix product, for the semi-tensor product even A � B

and B � C are well defined, but A � B � C = (A � B) � C may not be well
defined. For instance, A ∈ M3×4, B ∈ M2×3, C ∈ M9×1.

In the conventional matrix product the equal dimension condition has certain
physical interpretation. For instance, inner product, linear mapping, or differential
of compound multiple variable function, etc. Similarly, the multiple dimension con-
dition has its physical interpretation, e.g., the product of different-dimensional data,
tensor product, etc.

We give one more example.

Example 2.10 Denote by Δk the set of columns of the identity matrix Ik , i.e.,

Δk = Col{Ik} = {
δi
k

∣∣ i = 1,2, . . . , k
}
.

Define

L = {
B ∈ M2m×2n

∣∣m ≥ 1, n ≥ 0,Col(B) ⊂ Δ2m

}
. (2.19)
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The elements of L are called logical matrices. It is easy to verify that the semi-
tensor product � : L ×L → L is always well defined. So, when we are consider-
ing matrices in L , we have full freedom to use the semi-tensor product. (The formal
definition of a logical matrix is given in the next chapter.)

Comparing the conventional matrix product, the tensor product, and the semi-
tensor product of matrices, it is easily seen that there are significant differences be-
tween them. For the conventional matrix product, the product is element-to-element,
for the tensor product, it is a product of one element to a whole matrix, while for the
semi-tensor product, it is one element times a block of the other matrix. This is one
reason why we call this new product the “semi-tensor product”.

The following example shows that in the conventional matrix product, an illegal
term may appear after some legal computations. This introduces some confusion
into the otherwise seemingly perfect matrix theory. However, if we extend the con-
ventional matrix product to the semi-tensor product, it becomes consistent again.
This may give some support to the necessity of introducing the semi-tensor product.

Example 2.11 Let X,Y,Z,W ∈ R
n be column vectors. Since Y TZ is a scalar, we

have
(
XY T)(ZWT)= X

(
Y TZ

)
WT = (

Y TZ
)(

XWT) ∈ Mn. (2.20)

Again using the associative law, we have

(
Y TZ

)(
XWT)= Y T(ZX)WT. (2.21)

A problem now arises: What is ZX? It seems that the conventional matrix product
is flawed.

If we consider the conventional matrix product as a particular case of the semi-
tensor product, then we have

(
XY T)(ZWT)= Y T

� (Z � X) � WT. (2.22)

It is easy to prove that (2.22) holds. Hence, when the conventional matrix product is
extended to the semi-tensor product, the previous inconsistency disappears.

The following two examples show how to use the semi-tensor product to perform
multilinear computations.

Example 2.12

1. Let (V ,∗) be an algebra (refer to Definition 2.2) and {e1, e2, . . . , en} a basis of V .
For any two elements in this basis we calculate the product as

ei ∗ ej =
n∑

k=1

ck
ij ek, i, j, k = 1,2, . . . , n. (2.23)
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We then have the structure constants {ck
ij }. We arrange the constants into a matrix

as follows:

M =

⎡
⎢⎢⎢⎢⎢⎣

c1
11 c1

12 · · · c1
1n · · · c1

nn

c2
11 c2

12 · · · c2
1n · · · c2

nn

...

cn
11 cn

12 · · · cn
1n · · · cn

nn

⎤
⎥⎥⎥⎥⎥⎦

. (2.24)

M is called the structure matrix of the algebra.
Let X,Y ∈ V be given as

X =
n∑

i=1

aiei, Y =
n∑

i=1

biei .

If we fix the basis, then X,Y can be expressed in vector form as

X = (a1, a2, . . . , an)
T, Y = (b1, b2, . . . , bn)

T.

In vector form, the vector product of X and Y can be simply calculated as

X ∗ Y = M � X � Y. (2.25)

2. Consider the cross product on R
3. Its structure constants were obtained in Ex-

ample 2.1. We can arrange them into a matrix as

Mc =
⎡
⎣

0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎤
⎦ . (2.26)

Now, if

X = 1√
3

⎡
⎣

1
−1
1

⎤
⎦ , Y = 1√

2

⎡
⎣

1
0

−1

⎤
⎦ ,

then we have

X × Y = McXY =
⎡
⎣

0.4082
0.8165
0.4082

⎤
⎦ .

When a multifold cross product is considered, this form becomes very conve-
nient. For instance,

X × Y × · · · × Y︸ ︷︷ ︸
100

= M100
c XY 100 =

⎡
⎣

0.5774
−0.5774
0.5774

⎤
⎦ .
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Example 2.13 Let φ ∈ T s
t (V ). That is, φ is a tensor on V with covariant order s and

contra-variant order t . Suppose that its structure constants are {ci1,i2,...,is
j1,j2,...,jt

}. Arrange
it into a matrix by using the ordered multi-index Id(i1, i2, . . . , is;n) for columns and
the ordered multi-index Id(j1, j2, . . . , jt ;n) for rows. The matrix turns out to be

Mφ =

⎡
⎢⎢⎢⎢⎢⎣

c11···1
11···1 · · · c11···n

11···1 · · · cnn···n
11···1

c11···1
11···2 · · · c11···n

11···2 · · · cnn···n
11···2

...

c11···1
nn···n · · · c11···n

nn···n · · · cnn···n
nn···n

⎤
⎥⎥⎥⎥⎥⎦

. (2.27)

It is the structure matrix of the tensor φ. Now, assume ωi ∈ V ∗, i = 1,2, . . . , t , and
Xj ∈ V , j = 1,2, . . . , s, where ωi are expressed as rows, and Xj are expressed as
columns. Then

φ(ω1, . . . ,ωt ,X1, . . . ,Xs) = ωtωt−1 · · ·ω1MφX1X2 · · ·Xs, (2.28)

where the product symbol � is omitted.

Next, we define the power of a matrix. The definition is natural and was used in
the previous example.

Definition 2.7 Given a matrix A ∈ Mp×q such that p%q = 0 or q%p = 0, we
define An,n > 0, inductively as

{
A1 = A,

Ak+1 = Ak
� A, k = 1,2, . . . .

Remark 2.3 It is easy to verify that the above An is well defined. Moreover, if p =
sq , where s ∈ N, then the dimension of Ak is skq ×q; if q = sp, then the dimension
of Ak is p × skp.

Example 2.14

1. If X is a row or a column, then according to Definition 2.7, Xn is always well
defined. Particularly, when X,Y are columns, we have

X � Y = X ⊗ Y. (2.29)

When X,Y are rows,

X � Y = Y ⊗ X. (2.30)

In both cases,

Xk = X ⊗ · · · ⊗ X︸ ︷︷ ︸
k

. (2.31)
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2. Let X ∈ R
n, Y ∈ R

q be column vectors and A ∈ Mm×n, B ∈ Mp×q . Then,

(AX) � (BY ) = (A ⊗ B)(X � Y). (2.32)

Particularly,

(AX)k = (A ⊗ · · · ⊗ A︸ ︷︷ ︸
k

)Xk. (2.33)

3. Let X ∈ R
m, Y ∈ R

p be row vectors and A,B be matrices (as in 2. above). Then

(XA) � (YB) = (X � Y)(B ⊗ A). (2.34)

Hence,

(XA)k = Xk(A ⊗ · · · ⊗ A︸ ︷︷ ︸
k

). (2.35)

4. Consider the set of real kth order homogeneous polynomials of x ∈ R
n and de-

note it by Bk
n . Under conventional addition and real number multiplication, Bk

n

is a vector space. It is obvious that xk contains a basis (xk itself is not a basis be-
cause it contains redundant elements). Hence, every p(x) ∈ Bk

n can be expressed

as p(x) = Cxk , where the coefficients C ∈ R
nk

are not unique. Note that here
x = (x1, x2, . . . , xn)

T is a column vector.

In the rest of this section we describe some basic properties of the semi-tensor
product.

Theorem 2.1 As long as � is well defined, i.e., the factor matrices have proper
dimensions, then � satisfies the following laws:

1. Distributive law:
{

F � (aG ± bH) = aF � G ± bF � H,

(aF ± bG) � H = aF � H ± bG � H, a,b ∈ R.
(2.36)

2. Associative law:

(F � G) � H = F � (G � H). (2.37)

(We refer to Appendix B for the proof.)
The block multiplication law also holds for the semi-tensor product.

Proposition 2.3 Assume A 
t B (or A ≺t B ). Split A and B into blockwise forms
as

A =
⎡
⎢⎣

A11 · · · A1s

...
...

Ar1 · · · Ars

⎤
⎥⎦ , B =

⎡
⎢⎣

B11 · · · B1t

...
...

Bs1 · · · Bst

⎤
⎥⎦ .
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If we assume Aik 
t Bkj ,∀ i, j, k (correspondingly, Aik ≺t Bkj ,∀ i, j, k ), then

A � B =
⎡
⎢⎣

C11 · · · C1t

...
...

Cr1 · · · Crt

⎤
⎥⎦ , (2.38)

where

Cij =
s∑

k=1

Aik
� Bkj .

Remark 2.4 We have mentioned that the semi-tensor product of matrices is a gen-
eralization of the conventional matrix product. That is, if we assume A ∈ Mm×n,
B ∈ Mp×q , and n = p, then

A � B = AB.

Hence, in the following discussion the symbol � will be omitted, unless we want
to emphasize it. Throughout this book, unless otherwise stated, the matrix product
will be the semi-tensor product, and the conventional matrix product is its particular
case.

As a simple application of the semi-tensor product, we recall an earlier example.

Example 2.15 Recall Example 2.5. To use a matrix expression, we introduce the
following notation. Let δi

n be the ith column of the identity matrix In. Denote by P

the variable of players, where P = δi
n means P = Pi , i.e., the player under consid-

eration is Pi . Similarly, denote by xi the strategy chosen by the ith player, where
xi = δ

j
ki

means that the j th strategy of player i is chosen.

1. Consider the prisoner’s dilemma. The payoff function can then be expressed as

rp(P, x1, x2) = P T
� Mp � x1 � x2, (2.39)

where Mp is the payoff matrix, as defined in (2.12).
2. Consider the general case. The payoff function is then

rg(P, x1, x2, . . . , xm) = P T
� Mg �

n
i=1 xi, (2.40)

where Mg is defined in (2.13).

2.3 Swap Matrix

One of the major differences between the matrix product and the scalar product is
that the scalar (number) product is commutative but the matrix product is not. That
is, in general,

AB �= BA.
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Since the semi-tensor product is a generalization of the conventional matrix product,
it would be absurd to expect it to be commutative. Fortunately, with some auxiliary
tools, the semi-tensor product has some “commutative” properties, called pseudo-
commutative properties. In the sequel, we will see that the pseudo-commutative
properties play important roles, such as separating coefficients from the variables,
which makes it possible for the calculation of polynomials of multiple variables to
be treated in a similar way as the calculation of polynomials of a single variable. The
swap matrix is the key tool for pseudo-commutativity of the semi-tensor product.

Definition 2.8 A swap matrix W[m,n] is an mn × mn matrix, defined as follows.
Its rows and columns are labeled by double index (i, j), the columns are arranged
by the ordered multi-index Id(i, j ;m,n), and the rows are arranged by the ordered
multi-index Id(j, i;n,m). The element at position [(I, J ), (i, j)] is then

w(IJ ),(ij) = δ
I,J
i,j =

{
1, I = i and J = j,

0, otherwise.
(2.41)

Example 2.16

1. Letting m = 2, n = 3, the swap matrix W[m,n] can be constructed as follows.
Using double index (i, j) to label its columns and rows, the columns of W are
labeled by Id(i, j ;2,3), that is, (11,12,13,21,22,23), and the rows of W are
labeled by Id(j, i;3,2), that is, (11,21,12,22,13,23). According to (2.41), we
have

(11) (12) (13) (21) (22) (23)

W[2,3] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

(21)

(12)

(22)

(13)

(23)

.

2. Consider W[3,2]. Its columns are labeled by Id(i, j ;3,2), and its rows are labeled
by Id(j, i;2,3). We then have

(11) (12) (21) (22) (31) (32)

W[3,2] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(11)

(21)

(31)

(12)

(22)

(32)

.

The swap matrix is a special orthogonal matrix. A straightforward computation
shows the following properties.
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Proposition 2.4

1. The inverse and the transpose of a swap matrix are also swap matrices. That is,

WT[m,n] = W−1
[m,n] = W[n,m]. (2.42)

2. When m = n, (2.42) becomes

W[n,n] = WT[n,n] = W−1
[n,n]. (2.43)

3.

W[1,n] = W[n,1] = In. (2.44)

Since the case of m = n is particularly important, for compactness, we denote it
as

W[n] := W[n,n].

From (2.42) it is clear that W[m,n] is an orthogonal matrix. This is because, when
used as a linear mapping from R

mn to R
mn, it changes only the positions of the

elements but not the values.
A swap matrix can be used to convert the matrix stacking forms, as described in

the following result.

Proposition 2.5 Let A ∈ Mm×n. Then

⎧⎨
⎩

W[m,n]Vr(A) = Vc(A),

W[n,m]Vc(A) = Vr(A).
(2.45)

For double-index-labeled data {aij }, if it is arranged by Id(i, j ;m,n), then the
swap matrix W[m,n] can convert its arrangement to the order of Id(j, i;n,m) and
vice versa. This is what the “swap” refers to. This property can also be extended to
the multiple index-case. We give a rigorous statement for this.

Corollary 2.1 Let the data {aij | 1 ≤ i ≤ m,1 ≤ j ≤ n} be arranged by the ordered
multi-index Id(i, j ;m,n) as a column X. Then

Y = W[m,n]X

is the same data {aij } arranged in the order of Id(j, i;n,m).
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Example 2.17

1. Let X = (x11, x12, x13, x21, x22, x23). That is, {xij } is arranged by the ordered
multi-index Id(i, j ;2,3). A straightforward computation shows

Y = W[23]X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x11
x12
x13
x21
x22
x23

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

x11
x21
x12
x22
x13
x23

⎤
⎥⎥⎥⎥⎥⎥⎦

.

That is, Y is the rearrangement of the elements xij in the order of Id(j, i;3,2).
2. Let X = (x1, x2, . . . , xm)T ∈ R

m, Y = (y1, y2, . . . , yn)
T ∈ R

n. We then have

X ⊗ Y = (x1y1, x1y2, . . . , x1yn, . . . , xmy1, xmy2, . . . , xmyn)
T,

Y ⊗ X = (y1x1, y1x2, . . . , y1xm, . . . , ynx1, ynx2, . . . , ynxm)T

= (x1y1, x2y1, . . . , xmy1, . . . , x1yn, x2yn, . . . , xmyn)
T.

They both consist of {xiyj }. However, in X ⊗ Y the elements are arranged in the
order of Id(i, j ;m,n), while in Y ⊗ X the elements are arranged in the order of
Id(j, i;n,m). According to Corollary 2.1 we have

Y ⊗ X = W[m,n](X ⊗ Y). (2.46)

It is easy to check that XY = X ⊗ Y , so we have

YX = W[m,n]XY. (2.47)

The following proposition comes from the definition.

Proposition 2.6

1. Let X = (xij ) be a set of data arranged as a column vector by the ordered multi-
index Id(i, j ;m,n). Then W[m,n]X is a column with the same data, arranged by
the ordered multi-index Id(j, i;n,m).

2. Let ω = (ωij ) be a set of data arranged by the ordered multi-index Id(i, j ;m,n).
Then ωW[n,m] is a row with the same set of data, arranged by the ordered multi-
index Id(j, i;n,m).

A swap matrix can be used for multiple-index-labeled data and can swap two
special indices. This allows a very useful generalization of the previous proposition,
which we now state as a theorem.
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Theorem 2.2

1. Let X = (xi1,...,ik ) be a column vector with its elements arranged by the ordered
multi-index Id(i1, . . . , ik ; n1, . . . , nk). Then

[In1+···+nt−1 ⊗ W[nt ,nt+1] ⊗ Int+2+···+nk
]X

is a column vector consisting of the same elements, arranged by the ordered
multi-index Id(i1, . . . , it+1, it , . . . , tk;n1, . . . , nt+1, nt , . . . , nk).

2. Let ω = (ωi1,...,ik ) be a row vector with its elements arranged by the ordered
multi-index Id(i1, . . . , ik;n1, . . . , nk). Then

ω[In1+···+nt−1 ⊗ W[nt+1,nt ] ⊗ Int+2+···+nk
]

is a row vector consisting of the same elements, arranged by the ordered multi-
index Id(i1, . . . , it+1, it , . . . , tk;n1, . . . , nt+1, nt , . . . , nk).

W[m,n] can be constructed in an alternative way which is convenient in some
applications. Denoting by δi

n the ith column of the identity matrix In, we have the
following.

Proposition 2.7

W[m,n] = [
δ1
n � δ1

m · · · δn
n � δ1

m · · · δ1
n � δm

m · · · δn
n � δm

m

]
. (2.48)

For convenience, we provide two more forms of swap matrix:

W[m,n] =
⎡
⎢⎣

Im ⊗ δ1
n

T

...

Im ⊗ δn
n

T

⎤
⎥⎦ (2.49)

and, similarly,

W[m,n] = [
In ⊗ δ1

m, . . . , In ⊗ δm
m

]
. (2.50)

The following factorization properties reflect the blockwise permutation property
of the swap matrix.

Proposition 2.8 The swap matrix has the following factorization properties:

W[p,qr] = (Iq ⊗ W[p,r])(W[p,q] ⊗ Ir ) = (Ir ⊗ W[p,q])(W[p,r] ⊗ Iq), (2.51)

W[pq,r] = (W[p,r] ⊗ Iq)(Ip ⊗ W[q,r]) = (W[q,r] ⊗ Ip)(Iq ⊗ W[p,r]). (2.52)

2.4 Properties of the Semi-tensor Product

In this section some fundamental properties of the semi-tensor product of matrices
are introduced. Throughout, it is easily seen that when the conventional matrix prod-
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uct is extended to the semi-tensor product, almost all its properties continue to hold.
This is a significant advantage of the semi-tensor product.

Proposition 2.9 Assuming that A and B have proper dimensions such that � is
well defined, then

(A � B)T = BT
� AT. (2.53)

The following property shows that the semi-tensor product can be expressed by
the conventional matrix product plus the Kronecker product.

Proposition 2.10

1. If A ∈ Mm×np , B ∈ Mp×q , then

A � B = A(B ⊗ In). (2.54)

2. If A ∈ Mm×n, B ∈ Mnp×q , then

A � B = (A ⊗ Ip)B. (2.55)

(We refer to Appendix B for the proof.)
Proposition 2.10 is a fundamental result. Many properties of the semi-tensor

product can be obtained through it. We may consider equations (2.54) and (2.55)
as providing an alternative definition of the semi-tensor product. In fact, the name
“semi-tensor product” comes from this proposition. Recall that for A ∈ Mm×n and
B ∈ Mp×q , their tensor product satisfies

A ⊗ B = (A ⊗ Ip)(In ⊗ B). (2.56)

Intuitively, it seems that the semi-tensor product takes the “left half” of the product
in the right-hand side of (2.56) to form the product.

The following property may be considered as a direct corollary of Proposi-
tion 2.10.

Proposition 2.11 Let A and B be matrices with proper dimensions such that A�B

is well defined. Then:

1. A � B and B � A have the same characteristic functions.
2. tr(A � B) = tr(B � A).
3. If A and B are invertible, then A � B ∼ B � A, where “∼” stands for matrix

similarity.
4. If both A and B are upper triangular (resp., lower triangular, diagonal, orthog-

onal) matrices, then A � B is also an upper triangular (resp., lower triangular,
diagonal, orthogonal) matrix.

5. If both A and B are invertible, then A � B is also invertible. Moreover,

(A � B)−1 = B−1
� A−1. (2.57)
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6. If A ≺t B , then

det(A � B) = [
det(A)

]t
det(B). (2.58)

If A 
t B , then

det(A � B) = det(A)
[
det(B)

]t
. (2.59)

The following proposition shows that the swap matrix can also perform the swap
of blocks in a matrix.

Proposition 2.12

1. Assume

A = (A11, . . . ,A1n, . . . ,Am1, . . . ,Amn),

where each block has the same dimension and the blocks are labeled by double
index {i, j} and arranged by the ordered multi-index Id(i, j ;m,n). Then

AW[n,m] = (A11, . . . ,Am1, . . . ,A1n, . . . ,Amn)

consists of the same set of blocks, which are arranged by the ordered multi-index
Id(j, i;n,m).

2. Let

B = (
BT

11, . . . ,B
T
1n, . . . ,B

T
m1, . . . ,B

T
mn

)T
,

where each block has the same dimension and the blocks are labeled by double
index {i, j} and arranged by the ordered multi-index Id(i, j ;m,n). Then

W[m,n]B = (
BT

11, . . . ,B
T
m1, . . . ,B

T
1n, . . . ,M

T
mn

)T

consists of the same set of blocks, which are arranged by the ordered multi-index
Id(j, i;n,m).

The product of a matrix with an identity matrix I has some special properties.

Proposition 2.13

1. Let M ∈ Mm×pn. Then

M � In = M. (2.60)

2. Let M ∈ Mm×n. Then

M � Ipn = M ⊗ Ip. (2.61)

3. Let M ∈ Mpm×n. Then

Ip � M = M. (2.62)
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4. Let M ∈ Mm×n. Then

Ipm � M = M ⊗ Ip. (2.63)

In the following, some linear mappings of matrices are expressed in their stacking
form via the semi-tensor product.

Proposition 2.14 Let A ∈ Mm×n, X ∈ Mn×q , Y ∈ Mp×m. Then

Vr(AX) = A � Vr(X), (2.64)

Vc(YA) = AT
� Vc(Y ). (2.65)

Note that (2.64) is similar to a linear mapping over a linear space (e.g., R
n). In

fact, as X is a vector, (2.64) becomes a standard linear mapping.
Using (2.64) and (2.65), the stacking expression of a matrix polynomial may also

be obtained.

Corollary 2.2 Let X be a square matrix and p(x) be a polynomial, expressible as
p(x) = q(x)x + p0. Then

Vr
(
p(X)

)= q(X)Vr(X) + p0Vr(I ). (2.66)

Using linear mappings on matrices, some other useful formulas may be ob-
tained [4].

Proposition 2.15 Let A ∈ Mm×n and B ∈ Mp×q . Then

(Ip ⊗ A)W[n,p] = W[m,p](A ⊗ Ip), (2.67)

W[m,p](A ⊗ B)W[q,n] = (B ⊗ A). (2.68)

In fact, (2.67) can be obtained from (2.68).

Proposition 2.16 Let X ∈ Mm×n and A ∈ Mn×s . Then

XA = (
Im ⊗ V T

r (Is)
)
W[s,m]ATVc(X). (2.69)

Roughly speaking, a swap matrix can swap a matrix with a vector. This is some-
times useful.

Proposition 2.17

1. Let Z be a t-dimensional row vector and A ∈ Mm×n. Then

ZW[m,t]A = AZW[n,t] = A ⊗ Z. (2.70)

2. Let Y be a t-dimensional column vector and A ∈ Mm×n. Then

AW[t,n]Y = W[t,m]YA = A ⊗ Y. (2.71)
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The following lemma is useful for simplifying some expressions.

Lemma 2.1 Let A ∈ Mm×n. Then

W[m,q] � A � W[q,n] = Iq ⊗ A. (2.72)

The semi-tensor product has some pseudo-commutative properties. The follow-
ing are some useful pseudo-commutative properties. Their usefulness will become
apparent later.

Proposition 2.18 Suppose we are given a matrix A ∈ Mm×n.

1. Let Z ∈ R
t be a column vector. Then

AZT = ZTW[m,t]AW[t,n] = ZT(It ⊗ A). (2.73)

2. Let Z ∈ R
t be a column vector. Then

ZA = W[m,t]AW[t,n]Z = (It ⊗ A)Z. (2.74)

3. Let X ∈ R
m be a row vector. Then

XTA = [
Vr(A)

]T
X. (2.75)

4. Let Y ∈ R
n be a row vector. Then

AY = Y TVc(A). (2.76)

5. Let X ∈ R
m be a column vector and Y ∈ R

n a row vector. Then

XY = YW[m,n]X. (2.77)

Proposition 2.19 Let A ∈ Mm×n and B ∈ Ms×t . Then

A ⊗ B = W[s,m] � B � W[m,t] � A = (Im ⊗ B) � A. (2.78)

Example 2.18 Assume

A =
[
a11 a12
a21 a22

]
, B =

⎡
⎣

b11 b12
b21 b22
b31 b32

⎤
⎦ ,

where m = n = 2, s = 3 and t = 2. Then

W[3,2] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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W[2,2] =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

W[3,2] � B � W[2,2] � A =

⎡
⎢⎢⎢⎢⎢⎢⎣

b11 b12 0 0
b21 b22 0 0
b31 b32 0 0
0 0 b11 b12
0 0 b21 b22
0 0 b31 b32

⎤
⎥⎥⎥⎥⎥⎥⎦

�

[
a11 a12
a21 a22

]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a11b31 a11b32 a12b31 a12b32
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22
a21b31 a21b32 a22b31 a22b32

⎤
⎥⎥⎥⎥⎥⎥⎦

= A ⊗ B.

As a corollary of the previous proposition, we have the following.

Corollary 2.3 Let C ∈ Ms×t . Then, for any integer m > 0, we have

W[s,m] � C � W[m,t] = Im ⊗ C. (2.79)

Finally, we consider how to express a matrix in stacking form and vice versa, via
the semi-tensor product.

Proposition 2.20 Let A ∈ Mm×n. Then

Vr(A) = A � Vr(In), (2.80)

Vc(A) = W[m,n] � A � Vc(In). (2.81)

Conversely, we can retrieve A from its row- or column-stacking form.

Proposition 2.21 Let A ∈ Mm×n. Then

A = [
Im ⊗ V T

r (In)
]
� Vr(A) = [

Im ⊗ V T
r (In)

]
� W[n,m] � Vc(A). (2.82)

As an elementary application of semi-tensor product, we consider the following
example.

Example 2.19 In mechanics, it is well known that the angular momentum of a rigid
body about its mass center is

H =
∫

r × (ω × r)dm, (2.83)
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Fig. 2.1 Rotation

where r = (x, y, z) is the position vector, starting from the mass center, and ω =
(ωx,ωy,ωz)

T is the angular speed. We want to prove the following equation for
angular momentum (2.84), which often appears in the literature:

⎡
⎣

Hx

Hy

Hz

⎤
⎦=

⎡
⎣

Ix −Ixy −Izx

−Ixy Iy −Iyz

Izx −Iyz Iz

⎤
⎦
⎡
⎣

ωx

ωy

ωz

⎤
⎦ , (2.84)

where

Ix =
∫ (

y2 + z2)dm, Iy =
∫ (

z2 + x2)dm, Iz =
∫ (

x2 + y2)dm,

Ixy =
∫

xy dm, Iyz =
∫

yzdm, Izx =
∫

zx dm.

Let M be the moment of the force acting on the rigid body. We first prove that
the dynamic equation of a rotating solid body is

dH

dt
= M. (2.85)

Consider a mass dm, with O as its rotating center, r as the position vector (from
O to dm) and df the force acting on it (see Fig. 2.1). From Newton’s second law,

df = a dm = dv

dt
dm

= d

dt
(ω × r)dm.

Now, consider the moment of force on it, which is

dM = r × df = r × d

dt
(ω × r)dm.

Integrating this over the solid body, we have

M =
∫

r × d

dt
(ω × r)dm. (2.86)
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We claim that

r × d

dt
(ω × r) = d

dt

[
r × (ω × r)

]
,

RHS = d

dt
(r) × (ω × r) + r × d

dt
(ω × r)

= (ω × r) × (ω × r) + r × d

dt
(ω × r)

= 0 + r × d

dt
(ω × r) = LHS.

(2.87)

Applying this to (2.86), we have

M =
∫

d

dt

[
r × (ω × r)

]
dm

= d

dt

∫
r × (ω × r)dm

= d

dt
H.

Next, we prove the angular momentum equation (2.84). Recall that the structure
matrix of the cross product (2.26) is

Mc =
⎡
⎣

0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

⎤
⎦ ,

and for any two vectors X,Y ∈ R
3, their cross product is

X × Y = McXY. (2.88)

Using this, we have

H =
∫

r × (ω × r)dm

=
∫

McrMcωr dm

=
∫

Mc(I3 ⊗ Mc)rωr dm

=
∫

Mc(I3 ⊗ Mc)W[3,9]r2ω dm

=
∫

Mc(I3 ⊗ Mc)W[3,9]r2 dmω

:=
∫

Ψ r2 dmω,
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where

Ψ = Mc(I3 ⊗ Mc)W[3,9]

=
⎡
⎣

0 0 0 0 −1 0 0 0 −1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 −1 0 0 0 0

⎤
⎦.

We then have

Ψ r2 =
⎡
⎣

y2 + z2 xy −xz

−xy x2 + z2 −yz

−xz −yz x2 + y2

⎤
⎦ .

Equation (2.84) follows immediately.

2.5 General Semi-tensor Product

In previous sections of this chapter the semi-tensor product considered was the left
semi-tensor product of matrices. Throughout this book the default semi-tensor prod-
uct is the left semi-tensor product, unless otherwise stated. In this section we will
discuss some other kinds of semi-tensor products.

According to Proposition 2.10, an alternative definition of the left semi-tensor
product is

A � B =
{

(A ⊗ It )B, A ≺t B,

A(B ⊗ It ), A 
t B.
(2.89)

This proceeds as follows. For a smaller-dimensional factor matrix, we match it
on the right with an identity matrix of proper dimension such that the conventional
matrix product is possible. The following definition then becomes natural.

Definition 2.9 Suppose we are given matrices A and B . Assuming A ≺t B or A 
t

B , we define the right semi-tensor product of A and B as

A � B =
{

(It ⊗ A)B, A ≺t B,

A(It ⊗ B), A 
t B.
(2.90)

Most properties of the left semi-tensor product hold for the right semi-tensor
product. In Proposition 2.22 we assume the matrices have proper dimensions such
the product � is defined. In addition, for items 5–10 A and B are assumed to be two
square matrices.

Proposition 2.22

1. Associative law:

(mA � B) � C = A � (B � C). (2.91)
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Distributive law:

(A + B) � C = A � C + B � C, C � (A + B) = C � A + C � B. (2.92)

2. Let X and Y be column vectors. Then,

X � Y = Y ⊗ X. (2.93)

Let X and Y be row vectors. Then,

X � Y = X ⊗ Y. (2.94)

3.

(A � B)T = BT
� AT. (2.95)

4. Let M ∈ Mm×pn. Then,

M � In = M. (2.96)

Let M ∈ Mm×n. Then,

M � Ipn = Ip ⊗ M. (2.97)

Let M ∈ Mpm×n. Then,

Ip � M = M. (2.98)

Let M ∈ Mm×n. Then,

Ipm � M = Ip ⊗ M. (2.99)

5. A � B and B � A have the same characteristic function.
6.

tr(A � B) = tr(B � A). (2.100)

7. If A and B are orthogonal (upper triangular, lower triangular) matrices, then so
is A � B .

8. If A and B are invertible, then A � B ∼ B � A.
9. If A and B are invertible, then

(A � B)−1 = B−1
� A−1. (2.101)

10. If A ≺t B , then

det(A � B) = [
det(A)

]t det(B). (2.102)

If A 
t B , then

det(A � B) = det(A)
[
det(B)

]t
. (2.103)
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A question which naturally arises is whether we can define the right semi-tensor
product in a similar way as in Definition 2.6, i.e., in a “row-times-column” way. The
answer is that we cannot. In fact, a basic difference between the right and the left
semi-tensor products is that the right semi-tensor product does not satisfy the block
product law. The row-times-column rule is ensured by the block product law. This
difference makes the left semi-tensor product more useful. However, it is sometimes
convenient to use the right semi-tensor product.

We now consider some relationships between left and right semi-tensor products.

Proposition 2.23 Let X be a row vector of dimension np, Y a column vector of
dimension p. Then,

X � Y = XW[p,n] � Y. (2.104)

Conversely, we also have

X � Y = XW[n,p] � Y. (2.105)

If dim(X) = p and dim(Y ) = pn, then

X � Y = X � W[n,p]Y. (2.106)

Conversely, we also have

X � Y = X � W[p,n]Y. (2.107)

In the following, we introduce the left and right semi-tensor products of matrices
of arbitrary dimensions. This will not be discussed beyond this section since we have
not found any meaningful use for semi-tensor products of arbitrary dimensions.

Definition 2.10 Let A ∈ Mm×n, B ∈ Mp×q , and α = lcm(n,p) be the least com-
mon multiple of n and p. The left semi-tensor product of A and B is defined as

A � B = (A ⊗ I α
n
)(B ⊗ I α

p
). (2.108)

The right semi-tensor product of A and B is defined as

A � B = (I α
n

⊗ A)(I α
p

⊗ B). (2.109)

Note that if n = p, then both the left and right semi-tensor products of arbitrary
matrices become the conventional matrix product. When the dimensions of the two
factor matrices satisfy the multiple dimension condition, they become the multiple
dimension semi-tensor products, as defined earlier.

Proposition 2.24 The semi-tensor products of arbitrary matrices satisfy the follow-
ing laws:
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1. Distributive law:

(A + B) � C = (A � C) + (B � C), (2.110)

(A + B) � C = (A � C) + (B � C), (2.111)

C � (A + B) = (C � A) + (C � B), (2.112)

C � (A + B) = (C � A) + (C � B). (2.113)

2. Associative law:

(A � B) � C = A � (B � C), (2.114)

(A � B) � C = A � (B � C). (2.115)

Almost all of the properties of the conventional matrix product hold for the left or
right semi-tensor product of arbitrary matrices. For instance, we have the following.

Proposition 2.25

1. {
(A � B)T = BT

� AT,

(A � B)T = BT
� AT.

(2.116)

2. If M ∈ Mm×pn, then
{

M � In = M,

M � In = M.
(2.117)

If M ∈ Mpm×n, then
{

Im � M = M,

Im � M = M.
(2.118)

In the following, A and B are square matrices.
3. A � B and B � A (A � B and B � A) have the same characteristic function.
4. {

tr(A � B) = tr(B � A),

tr(A � B) = tr(B � A).
(2.119)

5. If both A and B are orthogonal (resp., upper triangular, lower triangular, diago-
nal) matrices, then A � B (A � B) is orthogonal (resp., upper triangular, lower
triangular, diagonal).

6. If both A and B are invertible, then A � B ∼ B � A ( A � B ∼ B � A ).
7. If both A and B are invertible, then

{
(A � B)−1 = B−1

� A−1,

(A � B)−1 = B−1
� A−1.

(2.120)
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8. The determinant of the product satisfies
{

det(A � B) = [det(A)] α
n [det(B)] α

p ,

det(A � B) = [det(A)] α
n [det(B)] α

p .
(2.121)

Corollary 2.4 Let A ∈ Mm×n, B ∈ Mp×q . Then

C = A � B = (
Cij

)
, i = 1, . . . ,m, j = 1, . . . , q, (2.122)

where

Cij = Ai
� Bj ,

Ai = Rowi (A), and Bj = Colj (B).
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