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High-Dimensional p-Norms

Gérard Biau and David M. Mason

Abstract Let X = (X1, . . . ,Xd) be aRd-valued random vector with i.i.d. compo-
nents, and let‖X‖p = (∑d

j=1 |Xj |p)1/p be itsp-norm, forp> 0. The impact of letting
d go to infinity on‖X‖p has surprising consequences, which may dramatically affect
high-dimensional data processing. This effect is usually referred to as thedistance
concentration phenomenonin the computational learning literature. Despite a grow-
ing interest in this important question, previous work has essentially characterized
the problem in terms of numerical experiments and incomplete mathematical state-
ments. In the present paper, we solidify some of the arguments which previously
appeared in the literature and offer new insights into the phenomenon.

1 Introduction

In what follows, forx = (x1, . . . ,xd) a vector ofRd and 0< p< ∞, we set

‖x‖p =

(
d

∑
j=1

|x j |p
)1/p

. (1)

It is recalled that forp≥ 1, ‖.‖p is a norm onRd (theLp-norm) but for 0< p< 1,
the triangle inequality does not hold and‖.‖p is sometimes called a prenorm. In the
sequel, we take the liberty to callp-norm a norm or prenorm of the form (1), with
p> 0.
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Now, letX = (X1, . . . ,Xd) be aRd-valued random vector with i.i.d. components.
The study of the probabilistic properties of‖X‖p as the dimensiond tends to infin-
ity has recently witnessed an important research effort in the computational learning
community (see, e.g., François et al., 2007, for a review).This activity is easily ex-
plained by the central role played by the quantity‖X‖p in the analysis of nearest
neighbor search algorithms, which are currently widely used in data management
and database mining. Indeed, finding the closest matching object in anLp-sense is
of significant importance for numerous applications, including pattern recognition,
multimedia content retrieving (images, videos, etc.), data mining, fraud detection
andDNA sequence analysis, just to name a few. Most of these real applications in-
volve very high-dimensional data (for example, pictures taken by a standard camera
consist of several million pixels) and the curse of dimensionality (whend → ∞)
tends to be a major obstacle in the development of nearest neighbor-based tech-
niques.

The effect on‖X‖p of letting d go large is usually referred to as thedistance
concentration phenomenonin the computational learning literature. It is in fact
a quite vague term that encompasses several interpretations. For example, it has
been observed by several authors (e.g., François et al., 2007) that, under appropriate
moment assumptions, the so-calledrelative standard deviation

√
Var‖X‖p/E‖X‖p

tends to zero asd tends to infinity. Consequently, by Chebyshev’s inequality(this
will be rigorously established in Section 2), for allε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p
−1

∣∣∣∣≥ ε
}
→ 0, asd → ∞.

This simple result reveals that the relative error made as consideringE‖X‖p in-
stead of the random value‖X‖p becomes asymptotically negligible. Therefore,
high-dimensional vectorsX appear to be distributed on a sphere of radiusE‖X‖p.

The distance concentration phenomenon is also often expressed by considering
an i.i.d.X sampleX1, . . . ,Xn and observing that, under certain conditions, therela-
tive contrast

max1≤i≤n‖Xi‖p−min1≤i≤n‖Xi‖p

min1≤i≤n‖Xi‖p

vanishes in probability asd tends to infinity, whereas thecontrast

max
1≤i≤n

‖Xi‖p− min
1≤i≤n

‖Xi‖p

behaves in expectation asd1/p−1/2 (Beyer et al., 1999; Hinneburg et al., 2000;
Aggarwal et al., 2001; Kabán, 2012). Thus, assuming that the query point is lo-
cated at the origin, the ratio between the largest and smallest p-distances from the
sample to the query point becomes negligible as the dimension increases, and all
points seem to be located at approximately the same distancefrom the origin. This
phenomenon may dramatically affect high-dimensional dataprocessing, analysis,
retrieval and indexing, insofar these procedures rely on some notion ofp-norm. Ac-
cordingly, serious questions are raised as to the validity of many nearest neighbor
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search heuristics in high dimension, a problem that can be further exacerbated by
techniques that find approximate neighbors in order to improve algorithmic perfor-
mance (Beyer et al., 1999).

Even if people have now a better understanding of the distance concentration
phenomenon and its practical implications, it is however our belief that there is still
a serious need to solidify its mathematical background. Indeed, previous work has
essentially characterized the problem in terms of numerical experiments and (often)
incomplete probabilistic statements, with missing assumptions and (sometimes) de-
fective proofs. Thus, our objective in the present paper is to solidify some of the
statements which previously appeared in the computationallearning literature. We
start in Section 2 by offering a thorough analysis of the behavior of the p-norm
‖X‖p (as a function ofp and the properties of the distribution ofX) as d → ∞.
Section 3 is devoted to the investigation of some new asymptotic properties of the
contrastmax1≤i≤n‖Xi‖p−min1≤i≤n‖Xi‖p, both asd→ ∞ andn→ ∞. For the sake
of clarity, most technical proofs are gathered in Section 4.

2 Asymptotic behavior of p-norms

2.1 Consistency

Throughout the document, the notation
P→ and

D→ stand for convergence in probabil-
ity and in distribution, respectively. The notationun = o(vn) andun = O(vn) mean,
respectively, thatun/vn → 0 andun ≤ Cvn for some constantC, asn → ∞. The
symbols oP(vn) and OP(vn) denote, respectively, a sequence of random variables

{Yn}n≥1 such thatYn/vn
P→ 0 andYn/vn is bounded in probability, asn→ ∞.

We start this section with a general proposition that plays akey role in the anal-
ysis.

Proposition 1. Let {Ud}d≥1 be a sequence of random variables such that Ud
P→ a,

and letϕ be a real-valued measurable function which is continuous ata. Assume
that:

(i) ϕ is bounded on[−M,M] for some M> |a|;
(ii) E|ϕ(Ud)|< ∞ for all d ≥ 1.

Then, as d→ ∞,
Eϕ(Ud)→ ϕ(a)

if and only if
E(ϕ (Ud)1{|Ud|> M})→ 0. (2)

Proof. The proof is easy. Condition(i) and continuity ofϕ at a allow us to apply
the bounded convergence theorem to get

E(ϕ(Ud)1{|Ud| ≤ M})→ ϕ(a).
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Since

Eϕ(Ud) = E(ϕ(Ud)1{|Ud| ≤ M})+E(ϕ(Ud)1{|Ud|> M}) ,

the rest of the proof is obvious.⊓⊔

We shall now specialize the result of Proposition 1 to the case when

Ud = d−1
d

∑
j=1

Yj :=Yd,

where{Yj} j≥1 is a sequence of i.i.d.Y random variables with finite meanµ . In
this case, by the strong law of large numbers,Ud → µ almost surely. The following
lemma gives two sufficient conditions for (2) to hold whenUd =Yd.

Lemma 1. let ϕ be a real-valued measurable function. Assume that one of thefol-
lowing two conditions is satisfied:

Condition 1 The function|ϕ | is convex onR andE|ϕ(Y)|< ∞.

Condition 2 For some s> 1,
limsup

d→∞
E
∣∣ϕ(Yd)

∣∣s < ∞.

Then (2) is satisfied for the sequence{Yd}d≥1 with a= µ and M> |µ |.

Proof. Suppose thatCondition 1 is satisfied. Then note that by the convexity as-
sumption

E
(∣∣ϕ(Yd)

∣∣1
{
|Yd|> M

})
≤ d−1

d

∑
j=1

E
(∣∣ϕ(Yj)

∣∣1
{
|Yd|> M

})

= E
(
|ϕ(Y)|1

{
|Yd|> M

})
.

SinceM > |µ |, we conclude that with probability one,|ϕ(Y)|1{|Yd| > M} → 0.
Also |ϕ(Y)|1{|Yd|> M} ≤ |ϕ(Y)|. Therefore, by the dominated convergence theo-
rem, (2) holds.

Next, notice by Hölder’s inequality with 1/r = 1−1/s that

E
(∣∣ϕ(Yd)

∣∣1
{
|Yd|> M

})
≤
(
E
∣∣ϕ(Yd)

∣∣s)1/s(
P
{
|Yd|> M

})1/r
.

SinceP{|Yd|> M}→ 0, (2) immediately follows fromCondition 2. ⊓⊔

Let us now return to the distance concentration problem, which has been dis-
cussed in the introduction. Recall that we denote byX = (X1, . . . ,Xd) aR

d-valued
random vector with i.i.d. X components. Whenever forp > 0 E|X|p < ∞, we set
µp = E|X|p. Also when Var|X|p < ∞, we shall writeσ2

p = Var|X|p. Proposition 1
and Lemma 1 yield the following corollary:
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Corollary 1. Fix p> 0 and r> 0.

(i) Whenever r/p< 1 andE|X|p < ∞,

E‖X‖r
p

dr/p
→ µ r/p

p , as d→ ∞,

whereas ifE|X|p = ∞, then

lim
d→∞

E‖X‖r
p

dr/p
= ∞.

(ii) Whenever r/p≥ 1 andE|X|r < ∞,

E‖X‖r
p

dr/p
→ µ r/p

p , as d→ ∞,

whereas ifE|X|r = ∞, then, for all d≥ 1,

E‖X‖r
p

dr/p
= ∞.

Proof. We shall apply Proposition 1 and Lemma 1 toY = |X|p, Yj = |Xj |p, j ≥ 1,
andϕ(u) = |u|r/p.

Proof of(i)

For the first part of(i), notice that withs= p/r > 1

E

∣∣∣∣∣ϕ
(

∑d
j=1 |Xj |p

d

)∣∣∣∣∣

s

=
∑d

j=1E|Xj |p
d

= E|X|p < ∞.

This shows that sufficientCondition 2 of Lemma 1 holds, which by Proposition 1
gives the result.

For the second part of(i) observe that for anyK > 0

E

(
∑d

j=1 |Xj |p
d

)r/p

≥ E

(
∑d

j=1 |Xj |p1
{
|Xj | ≤ K

}

d

)r/p

.

Observing that the right-hand side of the inequality converges to(E|X|p1{|X| ≤
K})r/p asd → ∞, we get for anyK > 0

liminf
d→∞

E

(
∑d

j=1 |Xj |p
d

)r/p

≥ E(|X|p1{|X| ≤ K})r/p .
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SinceK can be chosen arbitrarily large and we assume thatE|X|p = ∞, we see that
the conclusion holds.

Proof of(ii)

For the first part of(ii), note that in this caser/p ≥ 1, soϕ is convex. Moreover,
note that

E

∣∣∣∣∣ϕ
(

∑d
j=1 |Xj |p

d

)∣∣∣∣∣= E

(
∑d

j=1 |Xj |p
d

)r/p

≤ d−1
E|X|r

(by Jensen’s inequality)

< ∞.

Thus sufficientCondition 1 of Lemma 1 holds, which by Proposition 1 leads to the
result.

For the second part of(ii), observe that ifE|X|r = ∞, then, for alld ≥ 1,

E

(
∑d

j=1 |Xj |p
d

)r/p

≥ d−r/p
E|X|r = ∞.

⊓⊔

Applying Corollary 1 withp> 0 andr = 2 yields the following important result:

Proposition 2. Fix p> 0 and assume that0<E|X|m < ∞ for m= max(2, p). Then,
as d→ ∞,

E‖X‖p

d1/p
→ µ1/p

p

and
E‖X‖2

p

d2/p
→ µ2/p

p ,

which implies √
Var‖X‖p

E‖X‖p
→ 0, as d→ ∞.

This result, when correctly stated, corresponds to Theorem5 of François et al.
(2007). It expresses the fact that therelative standard deviationconverges towards
zero when the dimension grows. It is known in the computational learning literature
as thep-norm concentration in high-dimensional spaces. It is noteworthy that, by
Chebyshev’s inequality, for allε > 0,
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P

{∣∣∣∣
‖X‖p

E‖X‖p
−1

∣∣∣∣≥ ε
}
= P

{∣∣‖X‖p−E‖X‖p
∣∣≥ εE‖X‖p

}

≤ Var‖X‖p

ε2E2‖X‖p
→ 0, asd → ∞. (3)

That is,‖X‖p/E‖X‖p
P→ 1 or, in other words, the sequence{‖X‖p}d≥1 is relatively

stable (Boucheron et al., 2013). This property guarantees that the random fluctua-
tions of‖X‖p around its expectation are of negligible size when comparedto the ex-
pectation, and therefore most information about the size of‖X‖p is given byE‖X‖p

asd becomes large.

2.2 Rates of convergence

The asymptotic concentration statement of Corollary 1 can be made more precise
by means of rates of convergence, at the price of stronger moment assumptions.
To reach this objective, we first need a general result to control the behavior of a
function of an i.i.d. empirical mean around its true value. Thus, assume that{Yj} j≥1

are i.i.d.Y with meanµ and varianceσ2. As before, we define

Yd = d−1
d

∑
j=1

Yj .

Let ϕ be a real-valued function with derivativesϕ ′ andϕ ′′. Khan (2004) provides
sufficient conditions for

Eϕ(Yd) = ϕ(µ)+
ϕ ′′(µ)σ2

2d
+o(d−2)

to hold. The following lemma, whose assumptions are less restrictive, can be used
in place of Khan’s result (2004). For the sake of clarity, itsproof is postponed to
Section 4.

Lemma 2. Let{Yj} j≥1 be a sequence of i.i.d. Y random variables with meanµ and
varianceσ2, andϕ be a real-valued function with continuous derivativesϕ ′ andϕ ′′

in a neighborhood ofµ . Assume that for some r> 1,

E|Y|r+1 < ∞ (4)

and, with1/s= 1−1/r,
limsup

d→∞
E
∣∣ϕ(Yd)

∣∣s < ∞. (5)

Then, as d→ ∞,

Eϕ(Yd) = ϕ(µ)+
ϕ ′′(µ)σ2

2d
+o(d−1).
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The consequences of Lemma 2 in terms ofp-norm concentration are summarized
in the following proposition:

Proposition 3. Fix p> 0 and assume that0<E|X|m<∞ for m=max(4,3p). Then,
as d→ ∞,

E‖X‖p = d1/pµ1/p
p +O(d1/p−1)

and

Var‖X‖p =
µ2/p−2

p σ2
p

d1−2/pp2
+o(d−1+2/p),

which implies √
dVar‖X‖p

E‖X‖p
→ σp

pµp
, as d→ ∞.

Proposition 3 shows that for a fixed larged, the relative standard deviation
evolves withp as the ratioσp/(pµp). For instance, when the distribution ofX is
uniform,

µp =
1

p+1
and σp =

p
p+1

√
1

2p+1
.

In that case, we conclude that

√
dVar‖X‖p

E‖X‖p
→
√

1
2p+1

.

Thus, in the uniform setting, the limitingrelative standard deviationis a strictly
decreasing function ofp. This observation is often interpreted by saying thatp-
norms are more concentrated for larger values ofp. There are however distributions
for which this is not the case. A counterexample is given by a balanced mixture
of two standard Gaussian random variables with mean 1 and−1, respectively (see
François et al., 2007, page 881). In that case, it can be seenthat the asymptotic
relative standard deviationwith p ≤ 1 is smaller than for values ofp ∈ [8,30],
making fractional norms more concentrated.

Proof (Proposition 3).Fix p> 0 and introduce the functions onR

ϕ1(u) = |u|1/p and ϕ2(u) = |u|2/p.

Assume thatE|X|max(4,p) < ∞. Applying Corollary 1 we get that, asd → ∞,

E

(
∑d

j=1 |Xj |p
d

)2/p

→ µ2/p
p

and

E

(
∑d

j=1 |Xj |p
d

)4/p

→ µ4/p
p .
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This says that withr = 2 ands= 2, for i = 1,2,

limsup
d→∞

E

∣∣∣∣∣ϕi

(
∑d

j=1 |Xj |p
d

)∣∣∣∣∣

s

< ∞.

Now, letY = |X|p. If we also assume thatE|Y|r+1 = E|Y|3 = E|X|3p < ∞, we get
by applying Lemma 2 toϕ1 andϕ2 that for i = 1,2

Eϕi(Yd) = ϕi(µp)+
ϕ ′′

i (µp)σ2
p

2d
+o(d−1).

Thus, wheneverE|X|m < ∞, wherem= max(4,3p),

E|Yd|1/p = µ1/p
p +

1
p

(
1− p

p

) µ1/p−2
p σ2

p

2d
+o(d−1)

and

E|Yd|2/p = µ2/p
p +

1
p

(
2− p

p

) µ2/p−2
p σ2

p

d
+o
(
d−1) .

Therefore, we see that

Var|Yd|1/p = E|Yd|2/p−E
2|Yd|1/p

=
µ2/p−2

p σ2
p

dp2 +o
(
d−1) .

The identityYd = d−1 ∑d
j=1 |Xj |p yields the desired results.⊓⊔

We conclude the section with a corollary, which specifies inequality (3).

Corollary 2. Fix p> 0.

(i) If 0< E|X|m < ∞ for m= max(4,3p), then, for allε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p
−1

∣∣∣∣≥ ε
}
≤

σ2
p

ε2dp2µ2
p
+o(d−1).

(ii) If for some positive constant C,0< |X| ≤C almost surely, then, for p≥ 1 and
all ε > 0,

P

{∣∣∣∣
‖X‖p

E‖X‖p
−1

∣∣∣∣≥ ε
}
≤ 2exp

(
−ε2d2/p−1µ2/p

p

2C2 +o(d2/p−1)

)
.

Proof. Statement(i) is an immediate consequence of Proposition 3 and Cheby-
shev’s inequality. Now, assume thatp≥ 1, and letA= [−C,C]. Forx=(x1, . . . ,xd)∈
R

d, let g : Ad → R be defined by
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g(x) = ‖x‖p =

(
d

∑
j=1

|x j |p
)1/p

.

Clearly, for each 1≤ j ≤ d,

sup
(x1,...,xd)∈Ad

x′j∈A

∣∣g(x1, . . . ,xd)−g(x1, . . . ,x j−1,x
′
j ,x j+1, . . . ,xd)

∣∣

= sup
x∈Ad,x′j∈A

∣∣‖x‖p−‖x′‖p
∣∣ ,

wherex′ is identical tox, except on thej-th coordinate where it takes the valuex′j .
It follows, by Minkowski inequality (which is valid here since p≥ 1), that

sup
(x1,...,xd)∈Ad

x′j∈A

∣∣g(x1, . . . ,xd)−g(x1, . . . ,x j−1,x
′
j ,x j+1, . . . ,xd)

∣∣

≤ sup
x∈Ad

x′j∈A

‖x− x′‖p

= sup
(x,x′)∈A2

|x− x′| ≤ 2C.

Consequently, using the bounded difference inequality (McDiarmid, 1989), we ob-
tain

P

{∣∣∣∣
‖X‖p

E‖X‖p
−1

∣∣∣∣≥ ε
}
= P

{∣∣‖X‖p−E‖X‖p
∣∣≥ εE‖X‖p

}

≤ 2exp

(
−2(εE‖X‖p)

2

4dC2

)

= 2exp

(
−ε2d2/p−1µ2/p

p

2C2 +o(d2/p−1)

)
,

where, in the last inequality, we used Proposition 3. This concludes the proof. ⊓⊔

3 Minima and maxima

Another important question arising in high-dimensional nearest neighbor search
analysis concerns the relative asymptotic behavior of the minimum and maximum
p-distances to the origin within a random sample. To be precise, letX1, . . . ,Xn be an
i.i.d. X sample, whereX = (X1, . . . ,Xd) is as usual aRd-valued random vector with
i.i.d. X components. We will be primarily interested in this sectionin the asymp-
totic properties of the difference (thecontrast) max1≤i≤n‖Xi‖p−min1≤i≤d‖Xi‖p.
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In other words, given a data set and a fixed query point located—without loss of
generality—at the origin, we seek to analyze how much the distances to the farthest
and nearest neighbors differ.

Assume, to start with, thatn is fixed and onlyd is allowed to grow. Then an imme-
diate application of the law of large numbers shows that, wheneverµp =E|X|p <∞,
almost surely asd → ∞,

d−1/p
(

max
1≤i≤n

‖Xi‖p− min
1≤i≤n

‖Xi‖p

)
P→ 0.

Moreover, if 0< µp < ∞, then

max1≤i≤n‖Xi‖p

min1≤i≤n‖Xi‖p

P→ 1.

The above ratio is sometimes called therelative contrastin the computational learn-
ing literature. Thus, asd becomes large, all observations seem to be distributed at
approximately the samep-distance from the query point. The concept of nearest
neighbor (measured byp-norms) in high dimension is therefore less clear than in
small dimension, with resulting computational difficulties and algorithmic ineffi-
ciencies.

These consistency results can be specified by means of asymptotic distributions.
Recall that ifZ1, . . . ,Zn are i.i.d standard normal random variables, the sample range
is defined to be

Mn = max
1≤i≤n

Zi − min
1≤i≤n

Zi .

The asymptotic distribution ofMn is well known (see, e.g., David, 1981). Namely,
for anyx one has

lim
n→∞

P

{√
2logn

(
Mn−2

√
2logn+

loglogn+ log4π
2
√

2logn

)
≤ x

}

=

∫ ∞

−∞
exp
(
−t −e−t −e−(x−t)

)
dt.

For future reference, we shall sketch the proof of this fact here. It is well known that
with

an =
√

2logn and bn =
√

2logn− 1
2
(log logn+ log4π)√

2logn
(6)

we have (
an(max

1≤i≤n
Zi −bn),an( min

1≤i≤n
Zi +bn)

)
→ (E,−E′), (7)

whereE andE′ are independent,E = E′ andP{E ≤ x} = exp(−exp(−x)), −∞ <
x < ∞. (The asymptotic independence of the maximum and minimum part can be
inferred from Theorem 4.2.8 of Reiss, 1989, and the asymptotic distribution part
from Example 2 on page 71 of Resnick, 1987.) From (7) we get
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an(max
1≤i≤n

Zi − min
1≤i≤n

Zi)−2anbn
D→ E+E′.

Clearly,

P{E+E′ ≤ x}=
∫ ∞

−∞
exp
(
−e−(x−t)

)
exp(−e−t)e−tdt

=

∫ ∞

−∞
exp
(
−t −e−t −e−(x−t)

)
dt.

Our first result treats the case whenn is fixed andd → ∞.

Proposition 4. Fix p > 0 and assume that0 < E|X|p < ∞. Then, for fixed n, as
d → ∞,

d1/2−1/p
(

max
1≤i≤n

‖Xi‖p− min
1≤i≤n

‖Xi‖p

)
D→ σpµ1/p−1

p

p
Mn.

To our knowledge, this is the first statement of this type in the analysis of high-
dimensional nearest neighbor problems. In fact, most of theexisting results merely
bound the asymptotic expectation of the (normalized) difference and ratio between
the max and the min, but with bounds which are unfortunately not of the same order
in n as soon asn≥ 3 (see, e.g., Theorem 3 in Hinneburg et al., 2000).

One of the consequences of Proposition 4 is that, for fixedn, the difference be-
tween the farthest and nearest neighbors does not necessarily go to zero in probabil-
ity asd tends to infinity. Indeed, we see that the size of

max
1≤i≤n

‖Xi‖p− min
1≤i≤n

‖Xi‖p

grows asd1/p−1/2. For example, this difference increases with dimensionality as√
d for theL1 (Manhattan) metric and remains stable in distribution for theL2 (Eu-

clidean) metric. It tends to infinity in probability forp < 2 and to zero forp > 2.
This observation is in line with the conclusions of Hinneburg et al. (2000), who ar-
gue that nearest neighbor search in a high-dimensional space tends to be meaning-
less for norms with larger exponents, since the maximum observed distance tends
towards the minimum one. It should be noted, however, that the variance of the
limiting distribution depends on the value ofp.

Remark 1.Let Z1, . . . ,Zn be i.i.d standard normal random variables, and let

Rn =
max1≤i≤nZi

min1≤i≤nZi
.

Assumingµp > 0, one can prove, using the same technique, that

max1≤i≤n‖Xi‖p−d1/pµp

min1≤i≤n‖Xi‖p−d1/pµp

D→ Rn.
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Proof (Proposition 4).Denote byZn a centered Gaussian random vector inR
n, with

identity covariance matrix. By the central limit theorem, asd → ∞,

√
d

[(‖X1‖p
p

d
, . . . ,

‖Xn‖p
p

d

)
− (µp, . . . ,µp)

]
D→ σpZn.

Applying the delta method with the mappingf (x1, . . . ,xn) = (x1/p
1 , . . . ,x1/p

n ) (which
is differentiable at(µp, . . . ,µp) sinceµp > 0), we obtain

√
d

[(‖X1‖p

d1/p
, . . . ,

‖Xn‖p

d1/p

)
− (µ1/p

p , . . . ,µ1/p
p )

]
D→ σpµ1/p−1

p

p
Zn.

Thus, by continuity of the maximum and minimum functions,

d1/2−1/p
(

max
1≤i≤n

‖Xi‖p− min
1≤i≤n

‖Xi‖p

)
D→ σpµ1/p−1

p

p
Mn.

⊓⊔

In the previous analysis,n (the sample size) was fixed whereasd (the dimension)
was allowed to grow to infinity. A natural question that arises concerns the impact of
letting n be a function ofd such thatn tends to infinity asd → ∞ (Mallows, 1972).
Proposition 5 below offers a first answer.

Proposition 5. Fix p ≥ 1, and assume that0 < E|X|3p < ∞ and σp > 0. For any
sequence of positive integers{n(d)}d≥1 converging to infinity and satisfying

n(d) = o

(
d1/5

log6/5d

)
, as d→ ∞, (8)

we have

pan(d)d
1/2−1/p

µ1/p−1
p σp

(
max

1≤i≤n(d)
‖Xi‖p− min

1≤i≤n(d)
‖Xi‖p

)
−2an(d)bn(d)

D→E+E′,

where an and bn are as in (6), and E and E′ are as in (7).

Proof. In the following, we letδ (d) = 1/ logd. For future use note that

δ 2(d) logn(d)→ 0 and
n5(d)

dδ 6(d)
→ 0, asd → ∞. (9)

In the proof we shall often suppress the dependence ofn andδ ond. For 1≤ i ≤ n,
we set

Xi = (X1,i , . . . ,Xd,i) and ‖Xi‖p
p =

d

∑
j=1

|Xj ,i |p.
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We see that forn≥ 1,
(
‖X1‖p

p−dµp√
dσp

, . . . ,
‖Xn‖p

p−dµp√
dσp

)

=

(
∑d

j=1 |Xj ,1|p−dµp√
dσp

, . . . ,
∑d

j=1 |Xj ,n|p−dµp√
dσp

)

:= (Y1, . . . ,Yn) = Yn ∈ R
n.

As above, letZn = (Z1, . . . ,Zn) be a centered Gaussian random vector inR
n, with

identity covariance matrix. Write, for 1≤ j ≤ d,

ξξξ j =

(
|Xj ,1|p− µp√

dσp
, . . . ,

|Xj ,n|p− µp√
dσp

)

and note that∑d
j=1 ξξξ j = Yn. Setβ = ∑d

j=1‖ξξξ j‖3
2. Then, by Jensen’s inequality,

E‖ξξξ j‖3
2 = E

(
∑n

i=1 (|Xj ,i |p− µp)
2

dσ2
p

)3/2

≤
(

n
dσ2

p

)3/2

E
∣∣ |X|p− µp

∣∣3 .

This gives that for anyδ > 0, possibly depending uponn,

B := βnδ−3 ≤ n5/2
√

dσ3
p

E
∣∣ |X|p− µp

∣∣3 δ−3.

Applying a result of Yurinskiı̆ (1977) as formulated in Section 4 of Chapter 10 of
Pollard (2001) we get, on a suitable probability space depending onδ > 0, there
exist random vectorsYn andZn satisfying

P

{
‖Yn−Zn‖2 > 3δ

}
≤CB

(
1+

|log(B)|
n

)
, (10)

whereC is a universal constant. Using the fact that

∣∣∣∣max
1≤i≤n

xi − max
1≤i≤n

yi

∣∣∣∣≤
√

n

∑
i=1

(xi − yi)
2,

we get, for allε > 0,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi |> ε

}
≤ P

{√
2logn‖Yn−Zn‖2 > ε

}
.

Thus, for alld large enough,
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P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi |> ε

}
≤ P

{√
2logn‖Yn−Zn‖2 > 3δ

√
2logn

}

(sinceδ
√

logn→ 0 asd → ∞)

= P

{
‖Yn−Zn‖2 > 3δ

}
.

From (10), we deduce that for allε > 0 and alld large enough,

P

{
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi |> ε

}
≤CB

(
1+

|log(B)|
n

)
.

But, by our choice ofδ (d) and (9),

B

(
1+

|log(B)|
n

)
→ 0,

so that
an| max

1≤i≤n
Yi − max

1≤i≤n
Zi |= oP(1).

Similarly, one proves that

an| min
1≤i≤n

Yi − min
1≤i≤n

Zi |= oP(1).

Thus, by (7), we conclude that

(
an(max

1≤i≤n
Yi −bn),an( min

1≤i≤n
Yi +bn)

)
D→ (E,−E′). (11)

Next, we have
(

an(max
1≤i≤n

Yi −bn),an( min
1≤i≤n

Yi +bn)

)

=

(
an

(
max1≤i≤n‖Xi‖p

p√
dσp

−
√

dµp

σp
−bn

)
, an

(
min1≤i≤n‖Xi‖p

p√
dσp

−
√

dµp

σp
+bn

))

=

(
an

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)
, an

(
min1≤i≤n‖Xi‖p

p√
dσp

−β ′
n

))
,

whereβn =
√

dµp
σp

+bn andβ ′
n =

√
dµp
σp

−bn. Note thatan → ∞ and (11) imply that
both

max1≤i≤n‖Xi‖p
p√

dσp
−βn

P→ 0 and
min1≤i≤n‖Xi‖p

p√
dσp

−β ′
n

P→ 0. (12)

Observe also that by a two term Taylor expansion, for a suitable β̃n betweenβn and
(max1≤i≤n‖Xi‖p

p)/(
√

dσp),
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pan

β 1/p−1
n




(

max1≤i≤n‖Xi‖p
p√

dσp

)1/p

−β 1/p
n





= an

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)

+
an

β 1/p−1
n

1− p
2p

β̃ 1/p−2
n

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)2

.

We obtain by (11) and (12) that

a2
n

(
max1≤i≤n‖Xi‖p

p√
dσp

−βn

)2
β̃ 1/p−2

n

anβ 1/p−1
n

= OP

(
1

anβn

)
= oP(1).

Similarly,

pan

(β ′
n)

1/p−1



(

min1≤i≤n‖Xi‖p
p√

dσp

)1/p

−
(
β ′

n

)1/p




= an

(
min1≤i≤n‖Xi‖p

p√
dσp

−β ′
n

)
+oP(1).

Keeping in mind thatβn /β ′
n → 1, we get

pan

β 1/p−1
n




(

max1≤i≤n‖Xi‖p
p√

dσp

)1/p

−β 1/p
n ,

(
min1≤i≤n‖Xi‖p

p√
dσp

)1/p

−
(
β ′

n

)1/p





D→ (E,−E′)

and hence

pan

β 1/p−1
n

(
max1≤i≤n‖Xi‖p

(
√

dσp)1/p
− min1≤i≤n‖Xi‖p

(
√

dσp)1/p
−β 1/p

n +(β ′
n)

1/p

)
D→ E+E′.

Next notice that (8) implies thatbn/
√

d → 0, asd → ∞. Thus, recalling

βn√
dup/σp

= 1+
bn√

dµp/σp
and

β ′
n√

dup/σp
= 1− bn√

dµp/σp
,

we are led to

pan

β 1/p−1
n

(
β 1/p

n −
(
β ′

n

)1/p
)
= 2anbn+O(anb2

nβ−1
n ) = 2anbn+o(1).
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Therefore we get

pan(d)d
1/2−1/p

µ1/p−1
p σp

(
max

1≤i≤n(d)
‖Xi‖p− min

1≤i≤n(d)
‖Xi‖p

)
−2an(d)bn(d)

D→E+E′.

⊓⊔

4 Proof of Lemma 2

In the sequel, to lighten notation a bit, we setY = Yd. Choose anyε > 0 andδ >
0 such thatϕ has continuous derivativesϕ ′ and ϕ ′′ on Iδ = [µ − δ ,µ + δ ] and
|ϕ ′′(µ)−ϕ ′′(x)| ≤ ε for all x∈ Iδ . We see that by Taylor’s theorem that forY ∈ Iδ

ϕ(Y) = ϕ(µ)+ϕ ′(µ)(Y− µ)+2−1ϕ ′′(µ̃)(Y− µ)2, (13)

whereµ̃ lies betweenY andµ . Clearly,

∣∣∣∣Eϕ(Y)−ϕ(µ)− σ2ϕ ′′(µ)
2d

∣∣∣∣

=
∣∣E
(
ϕ(Y)−

(
ϕ(µ)+ϕ ′(µ)(Y− µ)+2−1ϕ ′′(µ)(Y− µ)2))∣∣

≤
∣∣E
({

ϕ(Y)−
(
ϕ(µ)+ϕ ′(µ)(Y− µ)+2−1ϕ ′′(µ)(Y− µ)2)}1{Y ∈ Iδ}

)∣∣

+E
(∣∣ϕ(Y)

∣∣1{Y /∈ Iδ}
)
+E

(∣∣P(Y)
∣∣1{Y /∈ Iδ}

)
,

where
P(y) = ϕ(µ)+ϕ ′(µ)(y− µ)+2−1ϕ ′′(µ)(y− µ)2.

Now using (13) and|ϕ ′′(µ)−ϕ ′′(x)| ≤ ε for all x∈ Iδ , we may write
∣∣E
({

ϕ(Y)−
(
ϕ(µ)+ϕ ′(µ)(Y− µ)+2−1ϕ ′′(µ)(Y− µ)2)}1{Y ∈ Iδ}

)∣∣

≤ ε
2
E(Y− µ)2 =

εσ2

2d
.

Next, we shall bound

E
(∣∣ϕ(Y)

∣∣1{Y /∈ Iδ}
)
+E

(∣∣P(Y)
∣∣1{Y /∈ Iδ}

)
:= ∆ (1)

d +∆ (2)
d .

Recall that we assume that for somer > 1, condition (4) holds. In this case, by
Theorem 28 on page 286 of Petrov (1975) applied with “r” replaced by “r +1”, for
all δ > 0,

P
{
|Y− µ | ≥ δ

}
= o(d−r). (14)

Then, by using Hölder’s inequality and (5), we get

∆ (1)
d ≤

(
E
∣∣ϕ(Y)

∣∣s)1/s(
P{Y /∈ Iδ}

)1/r
= o(d−1).
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We shall next bound∆ (2)
d . Obviously from (14)

|ϕ(µ)|P{Y /∈ Iδ}= o(d−1).

Furthermore, by Cauchy-Schwarz inequality and (14),

E
∣∣ϕ ′(µ)(Y− µ)1{Y /∈ Iδ}

∣∣≤
∣∣ϕ ′(µ)

∣∣σd−1/2o(d−r/2) = o(d−1),

and by Hölder’s inequality withp= (r +1)/2 and

q−1 = 1− p−1 = 1−2/(r +1) = (r −1)/(r +1),

we have

2−1
∣∣ϕ ′′(µ)

∣∣E
(
(Y− µ)21{Y /∈ Iδ}

)

≤ 2−1
∣∣ϕ ′′(µ)

∣∣ (E|Y− µ |r+1)2/(r+1) (
P{Y /∈ Iδ}

)1/q
.

Applying Rosenthal’s inequality (see equation (2.3) in Giné et al., 2003) we obtain

E|Y− µ |r+1 = E

∣∣∣∣∣d
−1

d

∑
i=1

(Yi − µ)

∣∣∣∣∣

r+1

≤
(

15(r +1)
log(r +1)

)r+1

max
(

d−(r+1)/2(
EY2)(r+1)/2

,d−r
E|Y|r+1

)
.

Thus (
E|Y− µ |r+1)2/(r+1)

= O(d−1),

which when combined with (14) gives

2−1
∣∣ϕ ′′(µ)

∣∣(E|Y− µ |r+1)2/(r+1) (
P{Y /∈ Iδ}

)(r−1)/(r+1)
= o(d−1).

Thus
∆ (2)

d = o(d−1).

Putting everything together, we conclude that for anyε > 0

limsup
d→∞

d

∣∣∣∣Eϕ(Yd)−ϕ(µ)− σ2ϕ ′′(µ)
2d

∣∣∣∣≤
εσ2

2
.

Sinceε > 0 can be chosen arbitrarily small, this completes the proof.
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