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Fractional calculus techniques and methods started to be applied during the last 
decades in several fields of science and engineering. In this paper we studied the 
stability of fractional order nonlinear time-delay systems for Caputo’s derivative and 
we extended Lyapunov-Krasovskii theorem for the fractional nonlinear systems. 
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1. INTRODUCTION 

Fractional calculus is an emerging field with various applications in science 
and engineering. Fractional calculus is a good candidate to solve the dynamics of 
complex systems. During the last years fractional calculus was subjected to an 
intense debate [1-4]. Fractional differential equations started to play an important 
role in modeling anomalous diffusion, processes having long range dependence 
and so on. Several open problems remain unsolved or there were partially solved 
with this type of calculus. Among those kinds of problems we mention the question 
of stability which is of main interest in control theory. Also, the problem of time-
delay system has been discussed over many years. Time delay is very often 
encountered in different technical systems, e.g. electric, pneumatic and hydraulic 
networks, chemical processes, and long transmission lines. The existence of pure 
time delay, regardless of its presence in a control and/or state, may cause undesirable 
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system transient response, or generally, even an instability. Numerous reports have 
been published on this matter, with particular emphasis on the application of 
Lyapunov’s second method [5, 6]. 

In recent years, considerable attention has been paid to control systems 
whose processes and/or controllers are of fractional order. This is mainly due to the 
fact that many real-world physical systems are well characterized by fractional-
order differential equations, i.e., equations involving noninteger-order derivatives. 
In particular, it has been shown that viscoelastic materials having memory and 
hereditary effects [7] and dynamical processes such as semi-infinite lossy RC 
transmission [8], mass diffusion and heat conduction [9], can be more adequately 
modeled by fractional-order models than integer-order models. Moreover, with the 
success in the synthesis of real noninteger differentiator and the emergence of new 
electrical circuit element called “fractance” [10], fractional-order controllers [11, 
12] including fractional-order PID controllers [13] have been proposed to enhance 
the robustness and performance of control systems. 

Some literatures published about stability of fractional order linear time delay 
systems [14, 15]. In the base of Lyapunov’s second method, some work has been 
done in the field of stability of fractional order nonlinear systems without delay 
[16-18]. But it seems that a few attentions have been paid to the stability of 
fractional order nonlinear time-delay systems. 

The purpose of this paper is to develop the Lyapunov-Krasovskii theorem for 
fractional order nonlinear time-delay systems. 

The manuscript is organized as follows: In Section 2 some basic definitions 
of fractional calculus are mentioned. Section 3 is devoted to fractional nonlinear 
time-delay systems. Section 4 presents the generalization of the fractional 
Lyapunov-Krasovskii theorem when both fractional derivatives and delay are 
presented. Finally, the Conclusions are shown in Section 5. 

2. PRELIMINARIES AND DEFINITIONS 

In the fractional calculus the Riemann-Liouville and Caputo fractional 
derivatives are defined respectively [15, 16] 
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where ( )x t is an arbitrary differentiable function, n∈  and 
0

q
t tD  and 

0

c q
t tD  are 

the Riemann-Liouville and Caputo fractional derivatives of order q  on [ ]0 1,t t  
respectively, and ( )Γ ⋅  denotes the Gamma function. 
For 0 1q< ≤  we have 
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Some properties of Riemann-Liouville and Caputo derivatives are recalled below 
[15, 16]: 
Property 1. 
When 0 1q< < , we have  
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In particular, if ( )0 0x t = , we have 
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Property 2. 
For and 1v > − , we have  
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In particular, if 0 1q< <  and ( ) ( )0
vx t t t= −  then from Property 1, we have  
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Property 3. 
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where a  and b  are arbitrary constants. 
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Property 4. 
From the definition of Caputo’s derivative (4) when 0 1q< ≤  we have  
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3. FRACTIONAL NONLINEAR TIME-DELAY SYSTEM 

Let [ ]( ), , nC a b be the set of continuous functions mapping the interval [ ],a b  
to n . In many situations, one may wish to identify a maximum time delay r of a 
system. In this case, we are often interested in the set of continuous function 
mapping [ ], 0r−  to n , for which we simplify the notation to [ ]( ), 0 , nC C r= − . 

For any 0A >  and any continuous function of time [ ]( )0 0, , nC t r t Aψ∈ − + , 

0 0t t t A≤ ≤ + , let t Cψ ∈  be a segment of function ψ  defined as 
( ) ( )t t tψ θ = ψ + θ , 0r− ≤ θ ≤ .  

Consider Caputo fractional nonlinear time-delay system 

 ( ) ( )
0

, ,c q
t t tD x t f t x=  (11) 

where ( ) nx t ∈ , 0 1q< <  and : nf C× → . As such, to determine the future 
evolution of the state. It is necessary to specify the initial state variables ( )x t  in a 
time interval of length r , say, from 0t r−   to 0t , i.e., 

 
0

,tx = φ  (12) 

where Cφ∈  is given. In other words ( ) ( )0 , 0x t r+ θ = φ θ − ≤θ ≤ . 

for a function [ ]( ), , nC a bφ∈  define the continuous norm 
c
⋅  by 

 ( )max .
c a b≤θ≤

φ = φ θ  (13) 

Definition. For the system described by (11) the trivial solution ( )0 0x =  is said to 
be stable if for any 0t ∈  and any 0ε > , there exists a ( )0 , 0tδ = δ ε >  such that 

0t c
x < δ  implies ( )x t < ε  for 0t t≥ . It is said to be asymptotically stable if it is 
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stable and for any 0t ∈ and any 0ε > , there exists a ( )0 0 0 , 0tδ = δ ε >  such that 

0 0t c
x < δ  implies ( )lim 0

x
x t

→∞
= . It is said to be uniformly stable if it is stable and 

( ) 0δ = δ ε >  can be chosen independently of 0t . It is uniformly asymptotically 
stable if it is uniformly stable and there exists a 0 0δ >  and functions ( )δ ε , ( )T ε  

such that 
0 0t c

x < δ  and ( )0t t T≥ + ε  implies ( )x t < ε . It is globally (uniformly) 

asymptotically stable if it is (uniformly) asymptotically stable and 0δ  can be an 
arbitrary large, finite number [21]. 

4. FRACTIONAL LYAPUNOV-KRASOVSKII THEOREM 

As in the study of systems without delay, an effective method for determining 
the stability of a time-delay system is Lyapunov method. Since in a time-delay 
system the “state” at time t  required the value of ( )x t in the interval [ ],t r t− , i.e., 

tx , it is natural to expect that for a time-delay system, corresponding Lyapunov 
function be a functional ( ), tV t x depending on tx , which also should measure the 
deviation of tx  from the trivial solution 0 .  
Let ( ),V t φ  be differentiable, and let ( ),tx τ φ  be the solution of (11) at time t  with 
initial condition x = φτ . Then we calculate the Caputo derivative of ( ), tV t x  with 
respect to t  and evaluate it at t = τas follows 
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where 0 1q< < . 
 Theorem: Suppose : nf C× →  in (6) maps ( )bounded sets in C×  into 

bounded sets in n , and 1 2 3, , : + +α α α →  are continuous nondecreasing 
functions, where additionally ( ) ( )1 2,s sα α  are positive for 0s > , and 

( ) ( )1 20 0 0α = α = . If there exists a continuously differentiable functional 

:V S× →ρ , where  { }: CS C= φ∈ φ < ρρ , such that 

 ( )( ) ( ) ( )1 20 ,
c

V tα φ ≤ φ ≤ α φ  (15) 
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and 

 ( ) ( )( )0 3, 0 , 0 1.c q
t tD V t qφ ≤ −α φ < ≤  (16) 

Then the trivial solution of (11) is uniformly stable. If ( )3 0sα >  for 0s >  then it 

is uniformly asymptotically stable. If, in addition, ( )1lim
s

s
→∞

α = ∞ , then it is globally 

uniformly asymptotically stable.  
The integer order derivative version of this theorem can be found in [21, 22]. 

Proof. For any 0ε > , since 2α  is continuous and 2 (0) 0α =  we can find a 
sufficiently small ( ) 0δ = δ ε >  such that ( ) ( )2 1α δ < α ε . Hence, for any initial 

time 0t  and any initial condition 
0t

x = φ  with 
c

φ < δ , we have ( )
0

, 0c q
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and therefore by property 4 ( ) ( )0, ,tV t x V t≤ φ , for any 0t t≥ . This implies that  

 ( )( ) ( ) ( ) ( ) ( ) ( )1 0 2 2 1, , ,t c
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which implies that ( )x t < ε  for 0t t≥ . This proves the uniform stability. 

To prove uniform asymptotic stability, let 0 < ε < ρ  and ( ) 0δ = δ ε >  correspond to 

uniform stability. Choose an 0ε ≤ ρ  and designate by ( )0 0 0δ = δ ε >  where 0ε  is 
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0 0δt c

x ≤  and ( ) ( )
( )( ) ( )

1

2 0

3

1
q

T q
 α δ

ε = Γ + 
α δ ε    

where 

( )δ ε  corresponds to uniform stability. Suppose that 
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Then by using the property 4 we have 
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As a result we obtain 
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which for ( )0t t T= + ε , reduces to 
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This contradiction proves that there exists a ( )1 0 0,t t t T∈ + ε    
such that 

( ) ( )1x t < δ ε . Thus, in any case we have ( )x t < ε , ( )0 ,t t T≥ + ε  
whenever

0 0t c
x < δ , proving the uniform asymptotic stability of the trivial solution 

of (11).  
Finally if ( )1lim

s
s

→∞
α = ∞ , then 0δ  above may be arbitrary large, and ε can be 

chosen after 0δ  is given to satisfy ( ) ( )2 0 1α δ < α ε , and therefore global uniform 
asymptotic stability can be concluded.  

We observe from the above proof that 1 2 3, ,α α α   and V(t,.) need only to be 
defined in a neighborhood of zero except for the case of global stability. We also 
notice that the lower bound of V need only to be a positive function of  (0)φ . 

5. CONCLUSIONS 

The combination of the fractional calculus and delay techniques seems to 
describe better the dynamics of the complex systems namely because both theories 
take into account the memory effects. In this paper we generalized the fractional 
Lyapunov-Krasovskii theorem in the presence of Caputo fractional derivatives and 
delay. The obtained theorem contains as particular cases the fractional calculus 
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version as well as the time-delay one. The use of the Caputo fractional derivative 
was crucial for proving the obtained results. 
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