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Abstract. These notes give an introduction to the theory of repro-
ducing kernel Hilbert spaces and their multipliers. We begin with the
material that is contained in Aronszajn’s classic paper on the subject.
We take a somewhat algebraic view of some of his results and discuss
them in the context of pull-back and push-out constructions. We then
prove Schoenberg’s results on negative definite functions and his charac-
terization of metric spaces that can be embedded isometrically in Hilbert
spaces. Following this we study multipliers of reproducing kernel Hilbert
spaces and use them to give classic proofs of Pick’s and Nevanlinna’s the-
orems. In later chapters we consider generalizations of this theory to the
vector-valued setting.

1. Introduction

These are the lecture notes for a course on reproducing kernel Hilbert
spaces first given at the University of Houston in the Spring of 2006.

Reproducing kernel Hilbert spaces arise in a number of areas, including
approximation theory, statistics, machine learning theory, group represen-
tation theory and various areas of complex analysis.

2. Definitions and Basic Examples

We will consider Hilbert spaces over either the field of real numbers, R,
or of complex numbers, C. We will use F to denote either R or C, so that
when we wish to state a definition or result that is true for either the real
or complex numbers, we will use F.

Given a set X, if we equip the set of all functions from X to F,F(X,F)
with the usual operations of addition, (f + g)(x) = f(x) + g(x), and scalar
multiplication, (λ · f)(x) = λ · (f(x)), then F(X,F) is a vector space over F.

Definition 2.1. Given a set X, we will say that H is a reproducing
kernel Hilbert space(RKHS) on X over F, provided that:

(i) H is a vector subspace of F(X,F),
(ii) H is endowed with an inner product, 〈, 〉, making it into a Hilbert

space,
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2 V. I. PAULSEN

(ii) for every y ∈ X, the linear evaluation functional, Ey : H → F,
defined by Ey(f) = f(y), is bounded.

If H is a RKHS on X, then since every bounded linear functional is
given by the inner product with a unique vector in H, we have that for
every y ∈ X, there exists a unique vector, ky ∈ H, such that for every
f ∈ H, f(y) = 〈f, ky〉.

Definition 2.2. The function ky is called the reproducing kernel for the
point y. The 2-variable function defined by

K(x, y) = ky(x)

is called the reproducing kernel for H.

Note that we have,

K(x, y) = ky(x) = 〈ky, kx〉
and

‖Ey‖2 = ‖ky‖2 = 〈ky, ky〉 = K(y, y).

Problem 2.3. Show that if H is a reproducing kernel Hilbert space on X
with reproducing kernel K(x, y), then K(y, x) = K(x, y).

Definition 2.4. Let H be a reproducing kernel Hilbert space on X. We say
that H separates points provided that for x 6= y there exists f ∈ H such
that f(x) 6= f(y).

Problem 2.5. Let H be a reproducing kernel Hilbert space on X. Prove that
setting d(x, y) = sup{|f(x)− f(y)| : f ∈ H, ‖f‖ ≤ 1} defines a metric on X
if and only if H separates points. Give a formula for d(x, y) in terms of the
reproducing kernel.

Problem 2.6. Show that if H is a RKHS on X and H0 ⊆ H is a closed,
subspace, then H0 is also a RKHS on X. Prove that the reproducing kernel
for H0 for a point y is the function P0(ky) where ky is the reproducing kernel
function for H and P0 : H → H0 denotes the orthogonal projection of H onto
H0.

Thus, there is a reproducing kernel, K0(x, y), for the subspace H0. One
of the problems that we shall study later is determining the relationship be-
tween K0(x, y) and the reproducing kernel K(x, y) for the whole space. We
will see that although it is fairly easy to write down some general theorems
about this relationship, computing specific examples is much trickier.

Sometimes to fix ideas it helps to look at a non-example. Suppose that
we take the continuous functions on [0,1], C([0, 1]), define the usual 2-norm
on this space, i.e., ‖f‖2 =

∫ 1
0 |f(t)|2dt, and complete to get the Hilbert

space, L2[0, 1]. Given any point x ∈ [0, 1] it is easy to construct a sequence,
fn ∈ C([0, 1]), such that limn ‖fn‖ = 0, and limn fn(x) = +∞. Thus, there
is no way to extend the values of functions at points in C([0, 1]) to regard
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functions in L2[0, 1] as having values at points. This is just another way to
see that we can’t think of elements of L2[0, 1] as functions, in particular, it is
not a RKHS on [0,1]. One of the remarkable successes of measure theory is
showing that this completion can be regarded as equivalences of functions,
modulo sets of measure 0.

Thus, reproducing kernel Hilbert spaces are quite different from L2-spaces.
We now look at a few key examples.

The Hardy Space of the Unit Disk, H2(D).

This space plays a key role in function theoretic operator theory.
To construct H2(D), we first consider formal complex power series, f ∼∑∞
n=0 anz

n, g ∼
∑∞

n=0 bnz
n and endow them with the inner product, 〈f, g〉 =∑∞

n=0 anb̄n. Thus, we have that ‖f‖2 =
∑∞

n=0 |an|2. The map L : H2(D) →
`2(N) defined by L(f) = (a0, a1, . . .) is a linear inner product preserving
isomorphism and hence we see that H2(D) can be identified with the Hilbert
space, `2(Z+), where Z+ = {0, 1, 2, . . .} the natural numbers, N, together
with 0, and hence is itself a Hilbert space. Thus, we see that (ii) of the
above definition is met.

Next we show that every power series in H2(D), converges to define a
function on the disk. To see this note that if z ∈ D, then

|Ez(f)| = |
∞∑
n=0

anz
n| ≤

∞∑
n=0

|an||z|n ≤

(
∞∑
n=0

|an|2)1/2(
∞∑
n=0

|z|2n)1/2 = ‖f‖ · 1√
1− |z|2

.

Thus, each power series defines a function on D and the vector space opera-
tions on formal power series, clearly agrees with their vector space operations
as functions on D, and so (i) is met.

The above inequality also shows that the map, Ez is bounded with ‖Ez‖ ≤
1√

1−|z|2
and so H2(D) is a RKHS on D.

To compute the kernel, for a point w ∈ D, note that g(z) =
∑∞

n=0 w̄
nzn ∈

H2(D) and for any f(z) =
∑∞

n=0 anz
n ∈ H2(D), we have that

〈f, g〉 =
∑∞

n=0 anw
n = f(w).

Thus, g is the reproducing kernel for w and so

K(z, w) = kw(z) = g(z) =
∞∑
n=0

w̄nzn =
1

1− w̄z
.

This function is called the Szego kernel on the disk.
Finally, we can compute, ‖Ez‖ = K(z, z) = 1√

1−|z|2
, so that the above

inequality was sharp.

Problem 2.7. Let HN ⊆ H2(D) denote the subspace consisting of all func-
tions of the form f(z) =

∑∞
n=N anz

n.Find the reproducing kernel for HN .
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Sobolev Spaces on [0,1]

These are very simple examples of the types of Hilbert spaces that arise
in differential equations.

Let H = {f : [0, 1] → R : f is absolutely continuous,f(0) = f(1) =
0, f ′ ∈ L2[0, 1]}. Recall that if a function is absolutely continuous, then it is
differentiable almost everywhere and is equal to the integral of its derivative.
Clearly, H is a vector space of functions on [0,1].

We endowH with the non-negative, sesquilinear form, 〈f, g〉 =
∫ 1
0 f

′(t)g′(t)dt.
Since f is absolutely continuous and f(0) = 0, for any 0 ≤ x ≤ 1, we have

that f(x) =
∫ x
0 f

′(t)dt =
∫ 1
0 f

′(t)χ[0,x](t)dt. Thus, by the Cauchy-Schwartz
inequality,

|f(x)| ≤ (
∫ 1

0
f ′(t)2dt)1/2(

∫ 1

0
χ[0,x](t)dt)

1/2 = ‖f‖
√
x.

This last inequality shows that ‖f‖ = 0 if and only if f = 0. Thus, 〈, 〉
is an inner product on H and that for every x ∈ [0, 1], Ex is bounded with
‖Ex‖ ≤

√
x.

All that remains to show that H is a RKHS is to show that it is complete.
If {fn} is a Cauchy sequence in this norm, then {f ′n} is Cauchy in L2[0, 1]
and hence there exists g ∈ L2[0, 1] that this sequence converges to. By
the above inequality, {fn} must be pointwise Cauchy and hence we may
define a function by setting f(x) = limn fn(x). Since, f(x) = limn fn(x) =
limn

∫ x
0 f

′
n(t)dt =

∫ x
0 g(t)dt, it follows that f is absolutely continuous and

that f ′ = g, a.e. and hence, f ′ ∈ L2[0, 1]. Finally, f(0) = limn fn(0) = 0 =
limn fn(1) = f(1), and so f ∈ H.

Thus, H is a RKHS on [0,1].
It remains to find the kernel function. To do this we first formally solve

a differential equation and then show that the function we obtain by this
formal solution, belongs to H. To find ky(t), we apply integration by parts
to see that, f(y) = 〈f, ky〉 =

∫ 1
0 f

′(t)k′y(t)dt = f(t)k′y(t) −
∫ 1
0 f(t)k′′y(t)dt =

−
∫ 1
0 f(t)k′′y(t)dt.
If we let, δy denote the formal Dirac-delta function, then f(y) =

∫ 1
0 f(t)δy(t)dt.

Thus, we need to solve the boundary-value problem, −k′′y(t) = δy(t), ky(0) =
ky(1) = 0. The solution to this system of equations is called the Green’s
function for the differential equation. Solving formally, by integrating twice
and checking the boundary conditions, we find

K(x, y) = ky(x) =

{
(1− y)x, x ≤ y

(1− x)y x ≥ y
.

After formally obtaining this solution, it can now be checked that it indeed
satisfies the necessary equations to be the reproducing kernel for H.

Note that, ‖Ey‖2 = ‖ky‖2 = K(y, y) = y(1−y), which is a better estimate
than obtained above.
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Problem 2.8. Let H be the same set of functions as in the above problem,
but define a new inner product by 〈f, g〉 =

∫ 1
0 f(t)g(t) + f ′(t)g′(t)dt. Prove

that H is still a Hilbert space in this new inner product, show that the kernel
function is the formal solution to −k′′y + ky = δy, ky(0) = ky(1) = 0 and find
K(x, y).

Problem 2.9. Let H1 = {f : [0, 1] → R : f is absolutely continuous,f ′ ∈
L2[0, 1], f(0) = f(1)} and set 〈f, g〉 = f(0)g(0) +

∫ 1
0 f

′(t)g′(t)dt. Prove that
H1 is a RKHS, show that the kernel function is the formal solution to −k′′y =
δy, k

′
y(1) − k′y(0) + ky(0) = 0, ky(0) = ky(1) and that the kernel, K(x, y) =

K0(x, y) + 1, where K0(x, y) denotes the kernel of the last example. Note
that H1 is equal to the span of H and the constant functions.

Bergman Spaces on Complex Domains

Let G ⊂ C be open and connected. We let

B2(G) = {f : G→ C|f is analytic on G and
∫ ∫

G
|f(x+ iy)|2dxdy < +∞},

where dxdy denotes area measure. We define a sesquilinear form on B2(G)
by 〈f, g〉 =

∫ ∫
G f(x+ iy)g(x+ iy)dxdy. It is easily seen that this defines an

inner product on B2(G), so that B2(G) is an inner product space.

Theorem 2.10. Let G ⊆ C be open and connected. Then B2(G) is a RKHS
on G.

Proof. If we fix w ∈ G and choose R > 0 such that the closed ball of radius
R centered at w,B(w;R)−, is contained in G, then by Cauchy’s integral
formula for any 0 ≤ r ≤ R, we have f(w) = 1

2π

∫ 2π
0 f(w + reiθ)dθ.

Therefore,

f(w) =
1

πR2

∫ R

0
r(2πf(w))dr =

1
πR2

∫ R

0
r

∫ 2π

0
f(w + reiθ)dθ =

1
πR2

∫ ∫
B(w;R)

f(x+ iy)dxdy.

Thus, by Cauchy-Schwartz, it follows that |f(w)| ≤ 1
πR2 ‖f‖(

∫ ∫
B(w;R) dxdy)

1/2 =
1

R
√
π
‖f‖.

This proves that for w ∈ G the evaluation functional is bounded. So
all that remains to prove that B2(G) is a RKHS is to show that B2(G)
is complete in this norm. To this end let {fn} ⊆ B2(G) be a Cauchy
sequence. For any w ∈ G pick R as above and pick 0 < δ < d(B(w;R), Gc),
where d(·, ·) denotes the distance between the two sets. Then for any z
in the closed ball of radius R centered at w we have that the closed ball
of radius δ centered at z is contained in G. Hence, by the above estimate,
|fn(z)−fm(z)| ≤ 1

δ
√
π
‖fn−fm‖. Thus, the sequence of functions is uniformly
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convergent on every closed ball contained in G. If we let f(z) = limn fn(z)
denote the pointwise limit of this sequence, then we have that {fn} converges
uniformly to f on each closed ball contained in G and so by Montel’s theorem
f is analytic.

Since B2(G) ⊆ L2(G) and L2(G) is complete, there exists h ∈ L2(G) such
that ‖h − fn‖2 → 0. Moreover, we may choose a subsequence {fnk} such
that h(z) = limk fnk(z) a.e., but this implies that h(z) = f(z) a.e. and so
‖f − fn‖2 → 0. Thus, f ∈ B2(G) and so B2(G) is complete. �

Definition 2.11. Given any open connected subset G ⊆ C, the reproducing
kernel for B2(G) is called the Bergman kernel for the G.

The result that we proved above extends to open connected susbets of Cn

and to many complex manifolds. Knowledge of the Bergman kernel of such
domains has many applications in complex analysis and the study of this
kernel is still an active area of research.

Note also that the above inequality shows that, B2(C) = (0), since in this
case R could be taken arbitrarily large, and so |f(w)| = 0 for any f ∈ B2(C).
Thus, the only analytic function defined on the whole complex plane that is
square-integrable is the 0 function.

Problem 2.12. Let U = {x + iy : 0 < x < +∞, 0 < y < 1}. Give an
example of a non-zero function in B2(U).

When A = area(G) < +∞, then the constant function 1 is in B2(G) and
‖1‖ =

√
A. In this case it is natural to re-normalize so that ‖1‖ = 1, to do

this we just re-define the inner product to be,

〈f, g〉 =
1
A

∫ ∫
G
f(x+ iy)g(x+ iy)dxdy.

Often when books refer to the Bergman space on such a domain they mean
this normalized Bergman space. We shall adopt this convention too. So,
in particular, by the space, B2(D), we mean the space of square-integrable
analytic functions on D, with inner-product,

〈f, g〉 =
1
π

∫ ∫
D
f(x+ iy)g(x+ iy)dxdy.

Problem 2.13. Show that the Bergman kernel for B2(D) is given by K(z, w) =
1

(1−zw̄)2
.

Weighted Hardy Spaces

We now look at another family of reproducing kernel Hilbert spaces. Given
a sequence β = {βn}, with βn > 0, consider the space of all formal power
series, f(z) =

∑∞
n=0 anz

n, such that the norm,

‖f‖2
β =

∞∑
n=0

β2
n|an|2
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is finite. This is a Hilbert space with inner product, 〈f, g〉 =
∑∞

n=0 β
2
nanb̄n,

where f(z) is as above and g(z) =
∑∞

n=0 bnz
n. This Hilbert space is denoted

H2
β and is called a weighted Hardy space.
Thus, the usual Hardy space is the weighted Hardy space corresponding

to all weights βn = 1.
A power series f(z) =

∑∞
n=0 anz

n in H2
β will satisfy limn βn|an| = 0.

Hence, for n sufficiently large, we have that |an| ≤ β−1
n . Thus, the radius

of convergence Rf of f satisfies, R−1
f = lim supn |an|1/n ≤ lim supn β

−1/n
n =

(lim infn β
1/n
n )−1. Hence, f will have radius of convergence greater than,

lim inf
n→∞

(βn)−1/n ≡ R.

Thus, provided R > 0, every function in H2
β will converge to define an

analytic function on the disk of radius R and H2
β can be viewed as a space

of analytic functions on this disk.
It is easy to see that for any |w| < R, f(w) = 〈f, kw〉 where

kw(z) =
∞∑
n=0

w̄nzn

β2
n

,

is in H2
β. Thus, given the constraint on the sequence β that R > 0, we

see that H2
β is a RKHS on the disk of radius R, with reproducing kernel,

Kβ(z, w) = kw(z).

Problem 2.14. Show that B2(D) is a weighted Hardy space.

In addition to the Hardy space and Bergman space of the disk, another
widely studied weighted Hardy spaces is the Segal-Bargmann space, which
is the weighted Hardy space that one obtains by taking weights βn =

√
n!.

Since lim infn→∞(n!)−1/(2n) = +∞, this is a space of entire functions and
the reproducing kernel for this space is easily computed to be K(z, w) = ezw.

In the definition of weighted Hardy space it is not really necessary to
demand that every βn > 0. Instead one considers a space of power series
such that βn = 0 implies that the coefficient of zn is 0.

The Dirichlet space is an example of this type of weighted Hardy space.
The Dirichlet space is obtained by taking weights βn =

√
n, so that every

function in the space is 0 at 0. The resulting space of power series is seen
to define functions that are analytic on the unit disk and has a reproducing
kernel given by K(z, w) = log(1 − zw), where the branch of the logarithm
is defined by taking the negative real axis as a cut line.

Multi-Variable Examples

Given a natural number n, by a multi-index we mean a point, I =
(i1, . . . , in) ∈ (Z+)n. Given z = (z1, . . . , zn) ∈ Cn, we set zI = zi11 · · · zinn . By
a power series in n variables, we mean a formal expression of the form
f(z) =

∑
I∈(Z+)n aIz

I , where aI ∈ C are called the coefficients of f .
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We define the n-variable Hardy space, H2(Dn) to be the set of all
power series, f ∼

∑
I∈(Z+)n aIz

I , such that ‖f‖2 =
∑

I∈(Z+)n |aI |2 < +∞.

Reasoning as for the one-variable Hardy space one can see that for each
z ∈ Dn the power series converges and defines an analytic function, f(z) and
that H2(Dn) is a RKHS on Dn with kernel given by

K(z, w) =
∑

I∈(Z+)n

w̄IzI =
n∏
i=1

1
1− w̄izi

.

Similarly, we can define multi-variable Bergman spaces, B2(G) for
G ⊂ Cn an open connected subset by using 2n-dimensional Lebesgue mea-
sure. As in the one variable case, if the Lebesgue measure of G is finite then
one often uses normalized Lebesgue measure to define the norm on B2(G),
so that the constant function 1 has norm 1.

Problem 2.15. Find the reproducing kernels for the space B2(D2) with
respect to the normalized and ordinary Lebesgue measure.

2.1. The Complexification of a RKHS of Real-Valued Functions.
Let H be a RKHS of real-valued functions on the set X with reproducing
kernel, K(x, y). Let W = {f1 + if2 : f1, f2 ∈ H}, which is a vector space of
complex-valued functions on X. If we set,

〈f1 + if2, g1 + ig2〉W = 〈f1, g1〉H + i〈f2, g1〉H − i〈f1, g2〉H + 〈f2, g2〉H,
then it is easily checked that this defines an inner product on W, with
corresponding norm,

‖f1 + if2‖2
W = ‖f1‖2

H + ‖f2‖2
H.

Hence, W is a Hilbert space and since,

f1(y) + if2(y) = 〈f1 + if2, ky〉W ,
we have that W equipped with this inner product is a RKHS of complex-
valued functions on X with reproducing kernel, K(x, y).

We call W the complexification of H. Since every real-valued RKHS
can be complexified in a way that still preserves the reproducing kernel, we
shall from this point on, only consider the case of complex-valued reproduc-
ing kernel Hilbert spaces.

3. General Theory

LetX be any set and letH be a RKHS onX with kernelK. In this section
we will show that K completely determines the space H and characterize
the functions that are the kernel functions of some RKHS.

Proposition 3.1. Let H be a RKHS on the set X with kernel K. Then the
linear span of the functions, ky(·) = K(·, y) is dense in H.
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Proof. A function f ∈ H is orthogonal to the span of the functions {ky : y ∈
X} if and only if 〈f, ky〉 = f(y) = 0 for every y ∈ X, which is if and only if
f = 0. �

Lemma 3.2. Let H be a RKHS on X and let {fn} ⊆ H. If limn ‖fn−f‖ = 0,
then f(x) = limn fn(x) for every x ∈ X.

Proof. We have that |fn(x)−f(x)| = |〈fn−f, kx〉| ≤ ‖fn−f‖‖kx‖ → 0. �

Proposition 3.3. Let Hi, i = 1, 2 be RKHS’s on X with kernels, Ki(x, y), i =
1, 2. If K1(x, y) = K2(x, y) for all x, y ∈ X, then H1 = H2 and ‖f‖1 = ‖f‖2

for every f.

Proof. Let K(x, y) = K1(x, y) = K2(x, y) and let Wi = span{kx ∈ Hi :
x ∈ X}, i = 1, 2. By the above result, Wi is dense in Hi, i = 1, 2. Note that
for any f ∈ Wi, we have that f(x) =

∑
j αjkxj (x) and so it’s values as a

function are independent of whether we regard it as in W1 or W2.
Also, for such an f, ‖f‖2

1 =
∑

i,j αiαj〈kxi , kxj 〉 =
∑

i,j αiαjK(xj , xi) =
‖f‖2

2. Thus, ‖f‖1 = ‖f‖2, for all f ∈ W1 = W2.
Finally, if f ∈ H1, then there exists a sequence of functions, {fn} ⊆ W1

with ‖f − fn‖1 → 0. Since, {fn} is Cauchy in W1 it is also Cauchy in
W2, so there exists g ∈ H2 with ‖g − fn‖2 → 0. By the above Lemma,
f(x) = limn fn(x) = g(x). Thus, every f ∈ H1 is also in H2, and by an
analogous argument, every g ∈ H2 is in H1. Hence, H1 = H2.

Finally, since ‖f‖1 = ‖f‖2 for every f in a dense subset, we have that the
norms are equal for every f. �

We now look at another consequence of the above Lemma. This result
gives another means of calculating the kernel for a RKHS that is very useful.

Recall that given vectors {hs : s ∈ S} in a normed space H, indexed
by an arbitrary set S. We say that h =

∑
s∈S hs provided that for every

ε > 0, there exists a finite subset F0 ⊆ S, such that for any finite set
F, F0 ⊆ F ⊆ S, we have that ‖h−

∑
s∈F hs‖ < ε. Two examples of this type

of convergence are given by the two Parseval identities. When {es : s ∈ S}
is an orthonormal basis for a Hilbert space, H, then for any h ∈ H, we have
that

‖h‖2 =
∑
s∈S

|〈h, es〉|2

and
h =

∑
s∈S

〈h, es〉es.

Note that these types of sums do not need S to be an ordered set to
be defined. Perhaps, the key example to keep in mind is that if we set
an = (−1)n

n , n ∈ N then the series,
∑∞

n=1 an converges, but
∑

n∈N an does
not converge. In fact, for complex numbers, one can show that

∑
n∈N zn

converges if and only if
∑∞

n=1 |zn| converges. Thus, this convergence is
equivalent to absolute convergence in the complex case.



10 V. I. PAULSEN

Theorem 3.4. Let H be a RKHS on X with reproducing kernel, K(x, y). If
{es : s ∈ S} is an orthonormal basis for H, then K(x, y) =

∑
s∈S es(y)es(x)

where this series converges pointwise.

Proof. For any y ∈ X, we have that 〈ky, es〉 = 〈es, ky〉 = es(y). Hence,
ky =

∑
s∈S es(y)es, where these sums converge in the norm on H.

But since they converge in the norm, they converge at every point. Hence,
K(x, y) = ky(x) =

∑
s∈S es(y)es(x). �

For a quick example of this theorem, we can easily see that in the Hardy
space, the functions en(z) = zn, n ∈ Z+ form an orthonormal basis and
hence, the reproducing kernel for the Hardy space is given by∑

n∈Z+

en(z)en(w) =
∞∑
n=0

(zw)n =
1

1− zw
.

Returning to our earlier example of a Sobolev space on[0,1],
H = {f : [0, 1] → R : f is absolutely continuous,f(0) = f(1) = 0, f ′ ∈
L2[0, 1]}, it is easily checked that for n 6= 0, the functions

en(t) =
e2πint − 1

2πn

belong toH and are orthonormal. If f ∈ H and 0 = 〈f, en〉 = −i
∫ 1
0 f

′(t)e2πintdt
for all n ∈ N, then since the functions, {e2πint}n6=0 together with the con-
stants span L2[0, 1], we see that f ′(t) is constant and hence that f(t) is a
first degree polynomial. But the boundary conditions, f(0) = f(1) = 0 are
easily seen to imply that this polynomial is 0.

Hence, we have shown that these functions are an orthonormal basis forH.
Applying the above theorem and our earlier calculation of the reproducing
kernel, we have that,∑

n6=0
(e2πinx−1)(e2πiny−1)

4π2n2

=
∑
n6=0

cos(2πn(x− y))− cos(2πnx)− cos(2πny) + 1
2π2n2

=

{
(1− y)x, x ≤ y

y(1− x), x > y
.

Problem 3.5. Let H be a RKHS on a disk of radius R > 0. Prove that
H = H2

β for some sequence β if and only if zn ∈ H for all n ≥ 0, the set
{zn : n ≥ 0} is total and zn ⊥ zm,m 6= n. Give a formula for the weight
sequence β in this case.

If a set of functions sums to the kernel as in the above theorem, it need
not be an orthonormal basis for the RKHS, but such sets do have a very
nice and useful characterization. The following definition is motivated by
the first Parseval identity.
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Definition 3.6. Let H be a Hilbert space with inner product, 〈·, ·〉. A set of
vectors {fs : s ∈ S} ⊆ H is called a Parseval frame for H provided that

‖h‖2 =
∑
s∈S

|〈h, fs〉|2

for every h ∈ H.
For example, if {us : s ∈ S} and {vt : t ∈ T} are two orthonormal bases

forH, then the sets, {us : s ∈ S}∪{0} and {us/
√

2 : s ∈ S}∪{vt/
√

2 : t ∈ T}
are both Parseval frames for H.
Problem 3.7. Show that the set of three vectors, {( 1√

3
, 1√

2
), ( 1√

3
, 0), ( 1√

3
, −1√

2
)}

is a Parseval frame for C2.

Problem 3.8. Show that for any N ≥ 3, the set of vectors, {
√

2
N (cos(2πj

N ), sin(2πj
N )) :

j = 1, ..., N}, is a Parseval frame for C2.

Thus, in particular, we see that Parseval frames do not need to be linearly
independent sets.

The following result shows one of the most common ways that Parseval
frames arise.

Proposition 3.9. Let H be a Hilbert space, let H0 ⊆ H be a closed subspace
and let P0 denote the orthogonal projection of H onto H0. If {es : s ∈ S} is
an orthonormal basis for H, then {P0(es) : s ∈ S} is a Parseval frame for
H0.

Proof. Let h ∈ H0, then h = P0(h) and hence, 〈h, es〉 = 〈P0(h), es〉 =
〈h, P0(es)〉. Thus, ‖h‖2 =

∑
s∈S |〈h, P0(es)〉|2 and the result follows. �

The following result shows that either of the Parseval identities could have
been used to define Parseval frames.

Proposition 3.10. Let H be a Hilbert space and let {fs : s ∈ S} ⊆ H.
Then {fs : s ∈ S} is a Parseval frame if and only if h =

∑
s∈S〈h, fs〉fs for

every h ∈ H. Moreover, if {fs : s ∈ S} is a Parseval frame, then for any
h1, h2 ∈ H, we have that 〈h1, h2〉 =

∑
s∈S〈h1, fs〉〈fs, h2〉.

Proof. Let `2(S) = {g : S → C :
∑

s∈S |g(s)|2 < ∞} denote the Hilbert

space of square-summable functions and let et : S → C, et(s) =

{
1 t = s

0 t 6= s
,

be the canonical orthonormal basis. Define, V : H → `2(S), by (V h)(s) =
〈h, fs〉, so that in terms of the basis, V h =

∑
s∈S〈h, fs〉es.

We have that {fs : s ∈ S} is a Parseval frame if and only if V is an
isometry. Note that 〈h, V ∗et〉 = 〈V h, et〉 = 〈h, ft〉, and hence, V ∗et = ft.

Recall from the general theory of Hilbert spaces that V is an isometry if
and only if V ∗V = IH. But V ∗V = IH if and only if,

h = V ∗V h = V ∗(
∑
s∈S

〈h, fs〉es =
∑
s∈S

〈h, fs〉V ∗(es) =
∑
s∈S

〈h, fs〉fs,



12 V. I. PAULSEN

for every h ∈ H.
Thus, we have that {fs : s ∈ S} is a Parseval frame if and only if V is an

isometry if and only if V ∗V = IH if and only if

h =
∑
s∈S

〈h, fs〉fs,

for every h ∈ H.
Finally, since V is an isometry, for any h1, h2 ∈ H, we have that

〈h1, h2〉H = 〈V ∗V h1, h2〉H = 〈V h1, V h2〉`2(S)

=
∑
s∈S

(V h1)(s)(V h2)(s) =
∑
s∈S

〈h1, fs〉〈fs, h2〉

�

The proof of the above result shows that our first proposition about how
one could obtain a Parseval frame is really the most general example.

Proposition 3.11 (Larson). Let {fs : s ∈ S} be a Parseval frame for a
Hilbert space H, then there is a Hilbert space K containing H as a subspace
and an orthonormal basis {es : s ∈ S} for K, such that fs = PH(es), s ∈ S,
where PH denotes the orthogonal projection of K onto H.

Proof. Let K = `2(S) and let V : H → `2(S) be the isometry of the last
proposition. Identifying H with V (H) we may regard H as a subspace of
`2(S). Note that P = V V ∗ : `2(S) → `2(S), satisfies P = P ∗ and P 2 =
(V V ∗)(V V ∗) = V (V ∗V )V ∗ = V V ∗ = P. Thus, P is the orthogonal projec-
tion onto some subspace of `2(S). Since Pes = V (V ∗es) = V fs ∈ V (H), we
see that P is the projection onto V (H) and that when we identify “h ≡ V h”,
we have that P is projection onto H with Pes = V fs ≡ fs. �

The following result gives us a more general way to compute reproducing
kernels than 3.4. It was first pointed out to us by M. Papadakis.

Theorem 3.12 (Papadakis). Let H be a RKHS on X with reproducing
kernel K(x, y). Then {fs : s ∈ S} ⊆ H is a Parseval frame for H if and
only if K(x, y) =

∑
s∈S fs(x)fs(y), where the series converges pointwise.

Proof. Assuming that the set is a Parseval frame we have that, K(x, y) =
〈ky, kx〉 =

∑
s∈S〈ky, fs〉〈fs, kx〉 =

∑
s∈S =

∑
s∈S fs(y)fs(x).

Conversely, assume that the functions sum to give K as above. If αj are
scalars and h =

∑
j αjkyj is any finite linear combination of kernel functions,
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then

‖h‖2 =
∑
i,j

αjαi〈kyj , kyi〉 =
∑
i,j

αjαiK(yi, yj) =

∑
i,j

αjαi
∑
s∈S

fs(yj)fs(yi) =
∑
i,j

αjαi
∑
s∈S

〈kyj , fs〉〈fs, kyi〉 =

∑
s∈S

〈
∑
j

αjkyj , fs〉〈fs,
∑
i

αikyi〉 =
∑
s∈S

|〈h, fs〉|2.

By Proposition 3.1, the set of such vectors, h, is dense in H. Now it is
easily seen that if we take a limit of a norm convergent sequence of vectors
on both sides of this identity, then we obtain the identity for the limit
vector, too. Thus, the condition to be a Parseval frame is met by the set
{fs : s ∈ S}. �

3.1. Characterization of Reproducing Kernels. We now turn our at-
tention to obtaining necessary and sufficient conditions for a functionK(x, y)
to be the reproducing kernel for some RKHS. We first recall some facts about
matrices.

Let A = (ai,j) be a n × n complex matrix. Then A is positive(written:
A ≥ 0) if and only if for every α1, . . . , αn ∈ C we have that

∑n
i,j=1 αiαjai,j ≥

0.
Some remarks are in order. If we let 〈, 〉 denote the usual inner product

on Cn, then in terms of the inner product, A ≥ 0 if and only if 〈Ax, x〉 ≥ 0
for every x ∈ Cn. In fact the sum in the definition is 〈Ax, x〉 for the vector
x whose i-th component is the number αi.

Also, A ≥ 0 if and only if A = A∗ and every eigenvalue, λ, of A, satisfies
λ ≥ 0. For this reason, some authors might prefer to call such matrices posi-
tive semidefinite or non-negative, but we stick to the notation most common
in operator theory and C*-algebras. In the case thatA = A∗ and every eigen-
value, λ, of A, satisfies λ > 0 then we will call A strictly positive(written:
A > 0). Since A is a matrix, we see that A > 0 is equivalent to A ≥ 0 and
A invertible.

Definition 3.13. Let X be a set and let K : X×X → C be a function of two
variables. Then K is called a kernel function(written: K ≥ 0) provided
that for every n and for every choice of n distinct points, {x1, . . . , xn} ⊆ X,
the matrix, (K(xi, xj)) ≥ 0.

This terminology is by no means standard. Some authors prefer to call
kernel functions, positive definite functions, while other authors call them
positive semidefinite functions. To further confuse matters, authors who call
kernel functions, positive semidefinite functions often reserve the term pos-
itive definite function for functions such that (K(xi, xj)) is strictly positive.
Thus, some care needs to be taken when using results from different places
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in the literature. We have adopted our terminology to try avoid these prob-
lems. Also because, as we shall shortly prove, a function is a kernel function
if and only if there is a reproducing kernel Hilbert space for which it is the
reporducing kernel.

Problem 3.14. Prove that sums of kernel functions are kernel functions
and that, if K is a kernel function and f : X → C is any function, then
K2(x, y) = f(x)K(x, y)f(y) is a kernel function.

Proposition 3.15. Let X be a set and let H be a RKHS on X with repro-
ducing kernel K. Then K is a kernel function.

Proof. Fix {x1, . . . , xn} ⊆ X and α1, . . . , αn ∈ C. Then we have that∑
i,j αiαjK(xi, xj) = 〈

∑
j αjkxj ,

∑
i αikxi〉 = ‖

∑
j αjkxj‖2 ≥ 0, and the

result follows. �

We remark that, generally, for a reproducing kernel, (K(xi, xj)) > 0. For
if not, then the above calculation shows that there must exist some non-zero
vector such that ‖

∑
j αjkxj‖ = 0. Hence, for every f ∈ H we have that∑

j αjf(xj) = 〈f,
∑

j αjkxj 〉 = 0. Thus, in this case there is an equation of
linear dependence between the values of every function in H at some finite
set of points.

Such examples do naturally exist. Recall that in the Sobolev spaces on
[0,1], we were interested in spaces with boundary conditions, like, f(0) =
f(1), in which case k1(t) = k0(t).

Alternatively, many spaces of analytic functions, such as the Hardy or
Bergman spaces, contain all polynomials. Note that there is no equation of
the form,

∑
j βjp(xj) = 0 that is satisfied by all polynomials. Consequently,

the reproducing kernels for these spaces always define matrices that are
strictly positive and invertible!

Thus, for example, recalling the Szego kernel for the Hardy space, we see
that for any choice of points in the disk, the matrix, ( 1

1−λiλj
) is invertible.

For one glimpse into how powerful the theory of RKHS can be, try to show
this matrix is invertible by standard linear algebraic methods.

Although the above proposition is quite elementary, it has a converse
that is quite deep and this gives us characterization of reproducing kernel
functions.

Theorem 3.16 (Moore). Let X be a set and let K : X × X → C be a
function. If K is a kernel function, then there exists a reproducing kernel
Hilbert space of functions on X such that K is the reproducing kernel of H.

Proof. For each y ∈ X, set ky(x) = K(x, y) and let W ⊆ F(X) be the space
spanned by the set, {ky : y ∈ X}, of these functions.

We claim that there is a well-defined sesquilinear map, B : W ×W → C
given by B(

∑
j αjkyj ,

∑
i βikyi) =

∑
i,j αjβiK(yi, yj), where αj and βi are

scalars.
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To see thatB is well-defined onW , we must show that if f(x) =
∑

j αjkyj (x)
is identically zero as a function on X, then B(f, w) = B(w, f) = 0 for any
w ∈ W. Since W is spanned by the functions, ky it is enough to show that
B(f, ky) = B(ky, f) = 0. But, by the definition, B(f, ky) =

∑
j αjK(y, yj) =

f(y) = 0. Similarly, B(ky, f) =
∑

j αjK(yj , y) =
∑

j αjK(y, yj) = f(y) = 0.
Conversely, if B(f, w) = 0 for every w ∈ W , then taking w = ky, we see

that f(y) = 0. Thus, B(f, w) = 0 for all w ∈W if and only if f is identically
zero as a function on X.

Thus, B is well-defined and it is easily checked that it is sesquilinear.
Moreover,for any f ∈W we have that f(x) = B(f, kx).

Next since K is positive, for any f =
∑

j αjkyj , we have that B(f, f) =∑
i,j αjαiK(yi, yj) ≥ 0.
Thus, we have that B defines a semi-definite inner product on W . Hence,

by the same proof as for the Cauchy-Schwarz inequality, one sees that
B(f, f) = 0 if and only if B(w, f) = B(f, w) = 0 for all w ∈ W. Hence
we see that B(f, f) = 0 if and only if f is the function that is identically 0.

Therefore, B is an inner product on W .
Now given any inner product on a vector space, we may complete the

space, by taking equivalence classes of Cauchy sequences from W to obtain
a Hilbert space, H.

We must show that every element of H is actually a function on X(unlike,
say, the case of completing the continuous functions on [0,1] to get L2[0, 1]).
To this end, let h ∈ H and let {fn} ⊆ W be a Cauchy sequence that
converges to h. By the Cauchy-Schwartz inequality, |fn(x) − fm(x)| =
|B(fn − fm, kx)| ≤ ‖fn − fm‖

√
K(x, x). Hence, the sequence is pointwise

Cauchy and we may define, h(x) = limn fn(x). The usual argument shows
that this value is independent of the particular Cauchy sequence chosen.

Finally, if we let 〈·, ·〉 denote the inner product on H, then for h as above,
we have, 〈h, ky〉 = limn〈fn, ky〉 = limnB(fn, ky) = limn fn(y) = h(y).

Thus, H is a RKHS on X and since ky is the reproducing kernel for the
point y, we have that K(x, y) = ky(x) is the reproducing kernel for H. �

Moore’s theorem, together with Proposition 3.3 shows that there is a one-
to-one correspondence between RKHS’s on a set and positive functions on
the set.

Definition 3.17. Given a kernel function K : X × X → C, we let H(K)
denote the unique RKHS with reproducing kernel K.

A reproducing kernel Hilbert space, H, on X is said to separate points,
provided that for every x1 6= x2 there exists f ∈ H with f(x1) 6= f(x2).

Problem 3.18. Let K : X ×X → C be a kernel function. Prove that for
x1 6= x2 the 2 × 2 matrix, (K(xj , xi)) is strictly positive if and only if kx1

and kx2 are linearly independent. Deduce that if for every x1 6= x2, this 2×2
matrix is strictly positive, then H(K) separates points on X.
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One of the more difficult problems in the theory of RKHS’s is starting with
a positive definite function, K, to give a concrete description of the space,
H(K). We shall refer to this as the reconstruction problem. For example,
if we started with the Szego kernel on the disk, K(z, w) = 1/(1−wz), then
the space W that we obtain in the proof of Moore’s theorem consists of
linear combinations of the functions, kw(z), which are rational functions
with a single pole of order one outside the disk. Thus, the space W will
contain no polynomials. Yet the space H(K) = H2(D), which contains the
polynomials as a dense subset. In later chapters we will prove theorems
that, at least in the analytic case, will allow us to determine when H(K)
contains polynomials.

We close this chapter with a simple application of Moore’s Theorem.

Proposition 3.19. Let X be a set, let f be a non-zero function on X and
set K(x, y) = f(x)f(y). Then K is positive, H(K) is the span of f and
‖f‖ = 1.

Proof. To see that K is positive, we compute,∑
i,j αiαjK(xi, xj) = |

∑
i αif(xi)|2 ≥ 0.

To find, H(K), note that every function ky = f(y)f and hence, W is just
the one-dimensional space spanned by f . Since finite dimensional spaces are
automatically complete, H is just the span of f .

Finally, we compute the norm of f . Fix any point y such that f(y) 6= 0.
Then |f(y)|2 · ‖f‖2 = ‖f(y)f‖2 = ‖ky‖2 = 〈ky, ky〉 = K(y, y) = |f(y)|2 and
it follows that ‖f‖ = 1. �

4. Interpolation and Approximation

One of the primary applications of the theory of reproducing kernel Hilbert
spaces is to problems of interpolation and approximation. It turns out that
it is quite easy to give concrete formulas for interpolation and approximation
in these spaces.

Definition 4.1. Let X and Y be sets and let {x1, . . . , xn} ⊆ X and
{y1, . . . , yn} ⊆ Y be subsets, with the xi’s distinct points. We say that a
function g : X → Y interpolates these points, provided that g(xi) = yi, i =
1, . . . , n.

Let H be a RKHS on X with reproducing kernel, K. Assume that
{x1, . . . , xn} ⊆ X is a set of distinct points and that {λ1, . . . , λn} ⊆ C
is a collection of possibly non-distinct numbers. We will give necessary and
sufficient conditions for there to exist a function g ∈ H that interpolates
these values and then we will give a concrete formula for the unique such
function of minimum norm. We will then use this same technique to give a
solution to the reconstruction problem.

Before proceeding, we adopt the following notation. Given a finite set
F = {x1, . . . , xn} ⊆ X of distinct points, we will let HF ⊆ H denote the
subspace spanned by the functions, {kx1 , . . . , kxn}.
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Note that dim(HF ) ≤ n and its dimension would be strictly less if and
only if there is some non-zero equation of linear dependence among these
functions. To understand what this means, suppose that

∑n
j=1 αjkxj = 0,

then for every f ∈ H,

0 = 〈f,
n∑
j=1

αjkxj 〉 =
n∑
j=1

αjf(xj).

Thus, we see that dim(HF ) < n if and only if the values of every f ∈ H
at the points in F satisfy some linear relation. This can also be seen to
be equivalent to the fact that the linear map TF : H → Cn defined by
TF (f) = (f(x1), . . . , f(xn)) is not onto.

Thus, when dim(HF ) < n, there will exist (y1, . . . , yn) ∈ Cn, which can
not be interpolated by any f ∈ H.

We’ve seen that it is possible for there to be equations of linear dependence
between the kernel functions and sometimes even desirable, such as in the
case of the Sobolev space, where the boundary conditions implied that k1 =
k0 = 0.

We shall let PF denote the orthogonal projection of H onto HF .
Note that g ∈ H⊥F if and only if g(xi) = 〈g, kxi〉 = 0, i = 1, . . . , n. Hence,

for any h ∈ H, we have that

PF (h)(xi) = h(xi), i = 1, . . . , n.

Proposition 4.2. Let {x1, . . . , xn} be a set of distinct points in X and
let {λ1, . . . , λn} ⊆ C. If there exists g ∈ H that interpolates these values,
then PF (g) is the unique function of minimum norm that interpolates these
values.

Proof. By the remarks, if g1 and g2 are any two functions that interpolate
these points, then (g1 − g2) ∈ H⊥F . Thus, all possible solutions of the inter-
polation problem are of the form g + h, h ∈ H⊥F and the unique vector of
minimum norm from this set is PF (g). �

We now give necessary and sufficient conditions for the existence of any
solution to this interpolation problem.

Some comments on matrices and vectors are in order. If A = (ai,j) is an
n× n matrix and we wish to write a matrix vector equation, v = Aw, then
we need to regard v and w as column vectors. For typographical reasons it
is easier to consider row vectors, so we will write a typical column vector as
v = (v1, . . . , vn)t, where, ”t”, denotes the transpose.

We begin by recalling a calculation from the last section.

Proposition 4.3. Let X be a set, let H be a RKHS on X with kernel K
and let {x1, ..., xn} ⊆ X be a finite set of distinct points. If w = (α1, ..., αn)t

is a vector in the kernel of (K(xi, xj)), then the function, f =
∑

j αjkxj is
identically 0.
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Proof. We have that f = 0 if and only if ‖f‖ = 0. Now we compute, ‖f‖2 =∑
i,j αiαj〈kxj , kxi〉 =

∑
i,j αiαjK(xi, xj) = 〈(K(xi, xj))w,w〉Cn = 0, and the

result follows. �

Note that the above result shows that if w1 = (α1, . . . , αn)t and w2 =
(β1, . . . , βn)t are two vectors satisfying (K(xi, xj))w1 = (K(xi, xj))w2, then∑n

j=1 αjkxj (y) =
∑n

j=1 βjkxj (y) for every y ∈ X.

Theorem 4.4. (Interpolation in RKHS) Let H be a RKHS on X with repro-
ducing kernel, K, let F = {x1, . . . , xn} ⊆ X be distinct and let {λ1, . . . , λn} ⊆
C. Then there exists g ∈ H that interpolates these values if and only if
v = (λ1, . . . , λn)t is in the range of the matrix (K(xi, xj)). Moreover, in this
case if we choose w = (α1, ..., αn)t to be any vector whose image is v, then
h =

∑
i αikxi is the unique function of minimal norm in H that interpolates

these points and ‖h‖2 = 〈v, w〉.

Proof. First assume that there exists, g ∈ H such that g(xi) = λi, i =
1, ..., n. Then the solution of minimal norm is PF (g) =

∑
j βjkxj for some

scalars, β1, ..., βn. Since λi = g(xi) = PF (g)(xi) =
∑

j βjkxj (xi), we have
that w1 = (β1, ..., βn)t is a solution of v = (K(xi, xj))w.

Conversely, if w = (α1, ..., αn)t is any solution of the matrix vector equa-
tion, v = (K(xi, xj))w and we set h =

∑
j αjkxj , then h will be an interpo-

lating function.
Note that w − w1 is in the kernel of the matrix (K(xi, xj)) and hence

by the above proposition, PF (g) = h. Hence, h is the function of minimal
norm that interpolates these points. Finally, ‖h‖2 =

∑
i,j αiαjK(xi, xj) =

〈(K(xi, xj))w,w〉 = 〈v, w〉. �

Corollary 4.5. Let H be a RKHS on X with reproducing kernel, K, and
let F = {x1, . . . , xn} ⊆ X be distinct. If the matrix (K(xi, xj)) is invert-
ible, then for any {λ1, . . . , λn} ⊆ C there exists a function interpolating
these values and the unique interpolating function of minimum norm is
given by the formula, g =

∑
j αjkxj where w = (α1, ..., αn)t is given by

w = (K(xi, xj))−1v, with v = (λ1, ..., λn)t.

Assume that F = {x1, ..., xn}, that P = (K(xi, xj)) is invertible as in the
above corollary and write P−1 = (bi,j) = B. Let ej , j = 1, ..., n denote the
canonical basis vectors for Cn. The columns of B are the unique vectors
wj , j = 1, ..., n that are solutions to ej = Pwj . Thus, if we set

gjF =
∑
i

bi,jkxi ,

then gjF (xi) = δi,j , where δi,j denotes the Dirac delta function. Hence,

g =
∑
j

λjg
j
F

is the unique function in HF satisfying g(xi) = λi, i = 1, ...n.
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Definition 4.6. Let X be a set, K : X ×X → C a positive function, and
F = {x1, ..., xn} a finite set of distinct points and assume that (K(xi, xj))
is invertible. We call the collection of functions, gjF , j = 1, ...n, a partition
of unity for HF .

Problem 4.7. Let X be a set, K : X × X → C a positive function, and
F = {x1, ..., xn} a finite set of distinct points. Prove that (K(xi, xj)) is
invertible if and only if kx1 , ..., kxn are linearly independent.

Problem 4.8. Let K : X ×X → C be a kernel function and let x1, ..., xn
be a set of n distinct points in X. Prove that the dimension of the span of
{kx1 , ..., kxn} is equal to the rank of the matrix n× n matrix, (K(xi, xj)).

Problem 4.9. Let X be a set, K : X×X → C a positive function, and F =
{x1, ..., xn} a finite set of distinct points and assume that (K(xi, xj)) is in-
vertible. Assume that the constant function 1, belongs to span{kx1 , . . . , kxn}.
Prove that

∑
j g

j
F (x) = 1 for all x ∈ X.

Problem 4.10. Let K denote the Szego kernel and let z1 6= z2 be points
in the unit disk. Compute, explicitly the functions g1

F , g
2
F for F = {z1, z2}.

What happens to these functions as z1 → z2?

Problem 4.11. Repeat the above problem with the Szego kernel on the disk
replaced by the Bergman kernel on the disk.

Given a set X, we let FX denote the collection of all finite subsets of
X. The set FX is a directed set with respect to inclusion. That is, setting
F1 ≤ F2 if and only if F1 ⊆ F2 defines a partial order on FX and given
any two finite sets, F1, F2 there is always a third finite set, G, that is larger
than both, in particular, we could take, G = F1 ∪ F2. Also, recall that a
net is a generalization of the concept of a sequence, but it is indexed by an
arbitrary directed set. We will also use the concept of convergence of nets,
which is defined by analogy with convergence of sequences. These concepts
are used in a fairly self-explanatory manner in the following results. If the
reader is still uncomfortable with these notions after reading the proofs of
the following results, a good reference for further reading on nets is [3].

Proposition 4.12. Let H be a RKHS on the set X, let g ∈ H and for
each finite set F ⊆ X, let gF = PF (g), where PF denotes the orthogonal
projection of H onto HF . Then the net {gF }F∈FX converges in norm to g.

Proof. Let K(x, y) denote the reproducing kernel for H and let ky(·) =
K(·, y). Given ε > 0, by Proposition 3.1, there exists a finite collection of
points, F0 = {x1, ..., xn} and scalars, {α1, ..., αn} such that ‖g−

∑
i αikxi‖ <

ε.
Since gF0 is the closest point in HF0 to g, we have that ‖g − gF0‖ < ε.

Now let F be any finite set, with F0 ⊆ F . Since, gF is the closest point in
HF to g and gF0 ∈ HF , we have that ‖g − gF ‖ < ε, for every F0 ⊆ F , and
the result follows. �
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Before proving the next result we will need a result about finite matrices.
Recall that if A and B are self-adjoint matrices, then we write, A ≤ B or
B ≥ A to mean that B −A ≥ 0.

Proposition 4.13. Let P ≥ 0 be an n× n matrix, and let x = (x1, ..., xn)t

be a vector in Cn. If xx∗ = (xixj) ≤ cP, for some scalar, c > 0, then x
is in the range of P . Moreover, if y is any vector such that x = Py, then
0 ≤ 〈x, y〉 ≤ c.

Proof. Let R(P ) denote the range of P and N (P ) denote the kernel of P .
We have that N (P ) = R(P )⊥. Thus, we may write x = v+w with v ∈ R(P )
and w ∈ N (P ).

Now, 〈x,w〉 = 〈w,w〉, and hence, ‖w‖4 = 〈w, x〉〈x,w〉 =
∑

i,j xjwjxiwi =
〈(xixj)w,w〉 ≤ 〈cPw,w〉 = 0, since Pw = 0.

This inequality shows that w = 0 and hence, x = v ∈ R(P ).
Now if we write x = Py, then 〈x, y〉 = 〈Py, y〉 ≥ 0. As above, we have

that 〈x, y〉2 = 〈y, x〉〈x, y〉 = 〈(xixj)y, y〉 ≤ 〈cPy, y〉 = c〈x, y〉. Cancelling one
factor of 〈x, y〉 from this inequality, yields the result. �

Problem 4.14. Let P ≥ 0 be an n×n matrix. Prove that x ∈ R(P ) if and
only if there exists a constant c > 0 such that (xixj) ≤ cP.

We are now able to prove a theorem that characterizes the functions that
belong to a RKHS in terms of the reproducing kernel.

Theorem 4.15. Let H be a RKHS on X with reproducing kernel K and let
f : X → C be a function. Then the following are equivalent:

(1) f ∈ H,
(2) there exists a constant, c > 0, such that for every finite subset,

F = {x1, ...xn} ⊆ X, there exists a function h ∈ H with ‖h‖ ≤ c and
f(xi) = h(xi), i = 1, ...n,

(3) there exists a constant, c > 0, such that the function, c2K(x, y) −
f(x)f(y) is a kernel function.

Moreover, if f ∈ H, then ‖f‖ is the least c that satisfies the inequalities in
(2) and (3).

Proof. (1) implies (3). Let F = {x1, ..., xn} ⊆ X, let α1, ..., αn be scalars
and set g =

∑
j αjkxj . Then,

∑
i,j αiαjf(xi)f(xj) = |

∑
i αif(xi)|2 = |〈f, g〉|2 ≤

‖f‖2‖g‖2 = ‖f‖2
∑

i,j αiαjK(xi, xj). Since the choice of the scalars was ar-
bitrary, we have that (f(xi)f(xj)) ≤ ‖f‖2(K(xi, xj)) and so (3) follows with
c = ‖f‖.

(3) implies (2) Let F = {x1, ..., xn} ⊆ X be a finite set. Apply Propo-
sition 4.13 to deduce that the vector v whose entries are λi = f(xi) is in the
range of (K(xi, xj)). Then use the Interpolation Theorem to deduce that
there exists h =

∑
i αikxi in HF with h(xi) = f(xi). Let w denote the vector

whose components are the αi’s and it follows that ‖h‖2 = 〈v, w〉 ≤ c2 by
applying Proposition 4.13 again.
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(2) implies (1) By assumption, for every finite set F there exsits hF ∈ H
such that ‖hF ‖ ≤ c and hF (x) = f(x) for every x ∈ F. Set gF = PF (hF ),
then gF (x) = hF (x) = f(x) for every x ∈ F and ‖gF ‖ ≤ ‖hF ‖ ≤ c.

We claim that the net {gF }F∈FX is Cauchy and converges to f .
To see that the net is Cauchy, let M = sup‖gF ‖ ≤ c and fix ε > 0.

Choose a set F0 such that M − ε2

8M < ‖gF0‖. For any F ∈ FX with F0 ⊆
F we have that PF0(gF ) = gF0 and hence, 〈(gF − gF0), gF0〉 = 0. Hence,
‖gF ‖2 = ‖gF0‖2 + ‖gf − gF0‖2, and so M − ε2

8M ≤ ‖gF0‖ ≤ ‖gF ‖ ≤M.

Therefore, 0 ≤ ‖gF ‖ − ‖gF0‖ ≤ ε2

8M , and we have that ‖gF − gF0‖2 =
‖gF ‖2−‖gF0‖2 = (‖gF ‖+‖gF0‖)(‖gF ‖−‖gF0‖) ≤ 2M ε2

8M . Thus, ‖gF−gF0‖ <
ε
2 and so for any F1, F2 ∈ FX with F0 ⊆ F1, F0 ⊆ F2, it follows that
‖gF1 − gF2‖ < ε and we have proven that the net is Cauchy.

Thus, there is a function g ∈ H that is the limit of this net and hence,
‖g‖ ≤M ≤ c. But since any norm convergent net also converges pointwise,
we have that g(x) = f(x) for any x. Thus, the proof that (2) implies (1) is
complete.

Finally, given that f ∈ H, we have that the conditions of (2) and (3) are
met for c = ‖f‖. So the least c that meets these conditions is less than ‖f‖.
Conversely, in the proof that (3) implies (2), we saw that any c that satisfies
(3) satisfies (2). But in the proof that (2) implies (1), we saw that ‖f‖ ≤ c.
Hence any c that meets the inequalities in (2) or (3) must be greater than
‖f‖. �

The following result illustrates some of the surprising conequences of the
above theorem.

Corollary 4.16. Let f : D → C be a function. Then f is analytic on D and
has a square summable power series if and only if there exists c > 0 such
that K(z, w) = c2

1−zw − f(z)f(w) is a kernel function on D.

What is a bit surprising in this last result is that the analyticity of f
follows from the kernel function condition, which is just the requirement
that certain matrices be positive semidefinite.

Problem 4.17. Give the reproducing kernel condition for a function f :
[0, 1] → R to be absolutely continuous, with f(0) = f(1) and f ′ square-
integrable. Can you give a direct proof, without using the above theorem,
from this condition that f is absolutely continuous?

Problem 4.18. Let x 6= y be points in D. Prove that sup{|f(y)| : f ∈
H2(D), f(x) = 0, ‖f‖ ≤ 1} ≤ |x−y|

|1−yx|
√

1−|y|2
. Is this inequality sharp?

5. Operations on Kernels

In this section we consider how various algebraic operations on kernels ef-
fect the corresponding Hilbert spaces. The idea of examining and exploiting
such relations, along with many of the results of this section can be traced
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back to the seminal work of Aronszajn. The first result characterizes when
differences of reproducing kernels is positive.

Theorem 5.1 (Aronszajn). Let X be a set and let Ki : X×X → C, i = 1, 2
be positive with corresponding reproducing kernel Hilbert spaces, H(Ki) and
norms, ‖ · ‖i, i = 1, 2. Then H(K1) ⊆ H(K2) if and only if there exists a
constant, c > 0 such that, K1(x, y) ≤ c2K2(x, y). Moreover, in this case,
‖f‖2 ≤ c‖f‖1 for all f ∈ H(K1).

Proof. First, assume that such a constant c > 0 exists. We have that if
f ∈ H(K1) with ‖f‖1 = 1, then f(x)f(y) ≤ K1(x, y) ≤ c2K2(x, y), which
implies that f ∈ H(K2) and ‖f‖2 ≤ c. Hence, H(K1) ⊆ H(K2) and ‖f‖2 ≤
c‖f‖1.

We now prove the converse. Assume that H(K1) ⊆ H(K2) and let T :
H(K1) → H(K2) be the inclusion map, T (f) = f. If {fn} is a sequence in
H(K1) and f ∈ H(K1), g ∈ H(K2) with ‖fn−f‖1 → 0 and ‖T (fn)−g‖2 → 0,
then f(x) = limn fn(x) = limn T (fn)(x) = g(x). Thus, g = T (f) and by the
closed graph theorem, T is closed and hence bounded. Let ‖T‖ = c so that,
‖f‖2 ≤ c‖f‖1 for all f ∈ H(K1).

We claim that, K1 ≤ c2K2. To this end fix, {x1, ..., xn} ⊆ X, and scalars,
α1, ..., αn ∈ C. We set k1

y(x) = K1(x, y), k2
y(x) = K2(x, y).

We now calculate, 0 ≤ B =
∑

i,j αiαjK1(xi, xj) =
∑

i,j αiαjk
1
xj (xi) =∑

i,j αiαj〈k1
xj , k

2
xi〉2 = 〈

∑
j αjk

1
xj ,
∑

i αik
2
xi〉2 ≤ ‖

∑
j αjk

1
xj‖2·‖

∑
i αik

2
xi‖2 ≤

c‖
∑

j αjk
1
xj‖1 · ‖

∑
i αik

2
xi‖2.

Squaring the first and last terms of this inequality, we have that, B2 ≤
c2B(

∑
i,j αiαjK2(xi, xj)). Upon cancelling a factor of B from each side, the

result follows. �

Definition 5.2. Given two Hilbert spaces, Hi with norms, ‖ · ‖i, i = 1, 2,
we say that H1 is contractively contained in H2 provided that H1 is a
subspace of H2 and for every h ∈ H1, ‖h‖2 ≤ ‖h‖1.

Corollary 5.3. Let Hi, i = 1, 2 be RKHS’s on the set X with reproducing
kernels, Ki, i = 1, 2, respectively. Then H1 is contractively contained in H2

if and only if K2 −K1 is a kernel function.

Problem 5.4. Use the above Corollary to show that H2(D) is contractively
contained in B2(D).

Definition 5.5. A reproducing kernel Hilbert space on the unit disk thqt is
contractively contained in the Hardy space H2(D) is called a de Branges
space.

Problem 5.6. Show that a weighted Hardy space H2
β is a de Branges space

if and only if βn ≤ 1, for all n.

Properties of de Branges spaces played a key role in L. de Branges solution
of the Bieberbach conjecture [4]. These spaces were studied extensively in
the book [5].
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If A and B are positive matrices, then so is A+B. Thus, if Ki, i = 1, 2 are
kernel functions on a set X, then so is the function K = K1 +K2. The next
result examines the relationship between the three corresponding RKHS’s.

Theorem 5.7 (Aronszajn). Let Hi, i = 1, 2 be RKHS’s on X with repro-
ducing kernels, Ki, i = 1, 2, and norms, ‖ · ‖i, i = 1, 2. If K = K1 +K2 and
H(K) denotes the corresponding RKHS with norm, ‖ · ‖, then

H(K) = {f1 + f2 : fi ∈ Hi, i = 1, 2}
and for f ∈ H(K), we have

‖f‖2 = min{‖f1‖2
1 + ‖f2‖2

2 : f = f1 + f2, fi ∈ Hi, i = 1, 2}.
Proof. Consider the orthogonal direct sum of the two Hilbert spaces, H1 ⊕
H2 = {(f1, f2) : fi ∈ Hi} with inner product 〈(f1, f2), (g1, g2)〉 = 〈f1, g1〉1 +
〈f2, g2〉2, where 〈·, ·〉i denotes the inner product in the Hilbert space, Hi, i =
1, 2. Note that with this inner product ‖(f1, f2)‖2

H1⊕H2
= ‖f1‖2

1 + ‖f2‖2
2.

Since Hi, i = 1, 2 are both subspaces of the vector space of all functions on
X, the intersection, F0 = H1∩H2, is a well-defined vector space of functions
on X. Let N = {(f,−f) : f ∈ F0} ⊆ H1 ⊕H2.

Note that N is a closed subspace, since if ‖(fn,−fn)− (f, g)‖H1⊕H2 → 0,
then ‖fn − f‖1 → 0 and ‖ − fn − g‖2 → 0, and hence, at each point,
f(x) = −g(x).

Therefore, decomposing H1 ⊕ H2 = N + N⊥, we see that every pair,
(f1, f2) = (f,−f) + (h1, h2) with f ∈ F0 and (h1, h2) ⊥ N .

Let H denote the vector space of functions of the form {f1 + f2 : fi ∈
Hi, i = 1, 2} and define Γ : H1 ⊕H2 → H by Γ((f1, f2)) = f1 + f2.

The map Γ is a linear surjection with kernel, N and hence, Γ : N⊥ → H is
a vector space isomorphism. If we endow H with the norm that comes from
this identification, then H will be a Hilbert space. If we let P : H1 ⊕H2 →
N⊥ denote the orthogonal projection, then for every f = g1 + g2 ∈ H, we
will have that

‖f‖2 = ‖P ((g1, g2))‖2
H1⊕H2

= min{‖(g1 + g, g2 − g)‖2
H1⊕H2

: g ∈ F0}
= min{‖(f1, f2)‖2

H1⊕H2
: f = f1 + f2, fi ∈ Hi, i = 1, 2}

= min{‖f1‖2
1 + ‖f2‖2

2 : f = f1 + f2, fi ∈ Hi, i = 1, 2}.
For any two functions, f = f1 + f2, g = g1 + g2 in H we will have that

〈f, g〉H = 〈P ((f1, f2)), P ((g1, g2))〉.
It remains to see that H is a RKHS of functions on X with reproducing

kernel K. Let kiy(x) = Ki(x, y), so that kiy ∈ Hi is the kernel function.
Note that if (f,−f) ∈ N , then 〈(f,−f), (k1

y, k
2
y)〉 = 〈f, k1

y〉1 + 〈−f, k2
y〉2 =

f(y) − f(y) = 0, so that (k1
y, k

2
y) ∈ N⊥, for every y ∈ X. Thus, for any

f = f1 + f2 ∈ H, we have that 〈f, k1
y + k2

y〉H = 〈P ((f1, f2)), P ((k1
y, k

2
y))〉

= 〈P ((f1, f2)), (k1
y, k

2
y)〉 = 〈f1, k

1
y〉1 + 〈f2, k

2
y〉2 = f1(y) + f2(y) = f(y).

Thus, H is a RKHS with reproducing kernel, K(x, y) = k1
y(x) + k2

y(x) =
K1(x, y) +K2(x, y), and the proof is complete. �
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Corollary 5.8. Let Hi, i = 1, 2 be RKHS’s on X with reproducing kernels,
Ki, i = 1, 2, respectively. If H1∩H2 = (0), then H(K1+K2) = {f1+f2 : fi ∈
Hi} with ‖f1 + f2‖2 = ‖f1‖2

1 + ‖f2‖2
2 is a reproducing kernel Hilbert space

with kernel, K(x, y) = K1(x, y) + K2(x, y) and Hi, i = 1, 2 are orthogonal
subspaces of H.

Problem 5.9. Let H2
0 (D) = {f ∈ H2(D) : f(0) = 0}. Show that H2

0 (D)⊥

is the set of constant functions. Use this fact to compute the reproducing
kernel for H2

0 (D).

Problem 5.10. Let H be a RKHS on X with reproducing kernel, K, fix
x0 ∈ X and let H0 = {f ∈ H : f(x0) = 0}. Compute the kernel function for
H0.

Problem 5.11. Let α ∈ D and let ϕα(z) = z−α
1−αz denote the elementary

Mobius transform. Prove that the reproducing kernel for {f ∈ H2(D) :

f(α) = 0} is K(z, w) = ϕα(z)ϕα(w)
1−wz .

Finite Dimensional RKHS’s
We illustrate some applications of Aronzajn’s theorem by examining finite

dimensional RKHS’s.
Let H be a finite dimensional RKHS on X with reproducing kernel, K.

If we choose an orthonormal basis for H, f1, ..., fn, then by Theorem ??,
K(x, y) =

∑n
i=1 fi(x)fi(y) and necessarily these functions will be linearly

independent.
Conversely, let fi : X → C, i = 1, ..., n be linearly independent functions

and set K(x, y) =
∑

i fi(x)fi(y). We shall use the above theorem to de-
scribe the space, H(K). If we let Ki(x, y) = fi(x)fi(y), and set Li(x, y) =∑

j 6=i fj(x)fj(y), then by Proposition 3.19, H(Ki) = span{fi} and ‖fi‖i = 1,
where the norm is taken in H(Ki). Now, since K(x, y) = Ki(x, y)+Li(x, Y )
and these functions are linearly independent, H(Ki) ∩ H(Li) = (0), and
by Corollary 5.8, these will be orthogonal subspaces of H(K). Thus, these
functions are an orthonormal basis for H(K).

By contrast, consider the kernel, K(x, y) = f1(x)f1(y) + f2(x)f2(y) +
(f1(x) + f2(x))(f1(y) + f2(y)), where f1 and f2 are linearly independent.
By Papadakis’ theorem, these functions will be a Parseval frame for H(K)
and, hence, H(K) will be the 2-dimensional space spanned by, f1 and f2.
But since the three functions are not linearly independent, they can not be
an orthonormal basis. We now use Aronszajn’s theorem to figure out the
precise relationship between these functions.

Set L1(x, y) = f1(x)f1(y) + f2(x)f2(y) and let
L2(x, y) = (f1(x)+f2(x))(f1(y) + f2(y)). By the above reasoning, f1, f2 will
be an orthonormal basis for H(L1) and H(L2) will be the span of the unit
vector f1 + f2. Thus, by Aronszajn’s theorem, ‖f1‖2

H(K) =
min{‖rf1 + sf2‖2

H(L1) + ‖t(f1 + f2)‖2
H(L2) : f1 = rf1 + sf2 + t(f1 + f2)} =
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min{|r|2 + |s|2 + |t|2 : 1 = r+ t, 0 = s+ t} = 2/3. Similarly, ‖f2‖2
H(K) = 2/3

and from this it follows that ‖f1 + f2‖2
H(K) = 2/3.

Problem 5.12. Determine, 〈f1, f2〉H(K) for the last example. Find an or-
thonormal basis for this space.

Pull-Backs, Restrictions and Composition Operators

Let X be a set, let S ⊆ X be a subset and let K : X×X → C be positive
definite. Then the restriction of K to S × S is also positive definite. Thus,
we can use K to form a RKHS of functions on X or on the subset, S and it
is natural to ask about the relationship between these two RKHS’s.

More generally, if S is any set and ϕ : S → X is a function, then we let,
K ◦ϕ : S×S → C, denote the function given by, K ◦ϕ(s, t) = K(ϕ(s), ϕ(t)).
When ϕ is one-to-one it is easily seen that K ◦ ϕ is positive definite on S.
We will show below that this is true for a genreal function ϕ. Thus, it is
natural to ask about the relationship between the RKHS H(K) of functions
on X and the RKHS H(K ◦ ϕ) of functions on S. When S is a subset of
X, then the case discussed in the first paragraph is the special case of this
latter construction where we take ϕ to be the inclusion of S into X.

Proposition 5.13. Let ϕ : S → X and let K be a kernel function on X.
Then K ◦ ϕ is a kernel function on S.

Proof. Fix s1, ..., sn ∈ S, scalars, α1, ..., αn and let {x1, ..., xp} = {ϕ(s1), ..., ϕ(sn)},
so that p ≤ n. Set Ak = {i : ϕ(si) = xk} and let βk =

∑
i∈Ak αi. Then∑

i,j

ᾱiαjK(ϕ(si), ϕ(sj)) =
∑
k,l

∑
i∈Ak

∑
j∈Al

ᾱiαjK(xk, xl) =
∑
k,l

β̄kβlK(xk, xl) ≥ 0.

Hence, K ◦ ϕ is a kernel function on S. �

Theorem 5.14. Let X and S be sets, let K : X×X → C be positive definite
and let ϕ : S → X be a function. Then H(K ◦ ϕ) = {f ◦ ϕ : f ∈ H(K)},
and for u ∈ H(K ◦ ϕ) we have that ‖u‖H(K◦ϕ) = inf{‖f‖H(K) : u = f ◦ ϕ}.

Proof. Let f ∈ H(K), with ‖f‖H(K) = c, then f(x)f(y) ≤ c2K(x, y) in
the positive definite order. Since this is an inequality of matrices over all
finite sets, we see that f ◦ ϕ(s)f ◦ ϕ(t) ≤ c2K(ϕ(s), ϕ(t)). Hence, by ??,
f ◦ ϕ ∈ H(K ◦ ϕ) with ‖f ◦ ϕ‖H(K◦ϕ) ≤ c.

This calculation shows that there exists a contractive, linear map, Cϕ :
H(K) → H(K ◦ ϕ) given by Cϕ(f) = f ◦ ϕ.

Set ht(·) = K(ϕ(·), ϕ(t)), so that these are the kernel functions for H(K ◦
ϕ). Note that for any finite set of points and scalars, if u =

∑
i αihti , then

‖u‖H(K◦ϕ) = ‖
∑

i αikϕ(ti)‖H(K). It follows that there is a well-defined isom-
etry, Γ : H(K ◦ ϕ) → H(K), satisfying, Γ(ht) = kϕ(t).

We have that Cϕ◦Γ is the identity on H(K ◦ϕ) and the result follows. �
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Definition 5.15. Given sets, X and S, a function ϕ : S → X, and a positive
definite function, K : X×X → C, we call H(K ◦ϕ) the pull-back of H(K)
along ϕ and we call the linear map, Cϕ : H(K) → H(K ◦ϕ) the pull-back
map.

Note that 〈Γ(ht), ky〉H(K) = kϕ(t)(y) = K(y, ϕ(t)) = K(ϕ(t), y) = ky(ϕ(t)) =
Cϕ(ky)(t) = 〈ht, Cϕ(ky)〉H(K◦ϕ). Since the linear spans of such functions are
dense in both Hilbert spaces, this calculation shows that Cϕ = Γ∗. Since Γ
is an isometry its range is a closed subspace and it follows that Γ∗ = Cϕ
is an isometry on the range of Γ and is 0 on the orthocomplement of the
range. Such a map is called a coisometry.

Thus, in the case that S ⊆ X and ϕ is just the inclusion map, so that
K ◦ϕ = K

∣∣
Y
, we see that Cϕ is the coisometry that identifies the closure of

the subspace of H(K) spanned by {ky : y ∈ Y } which are functions on X,
with the same set of functions regarded as functions on Y .

The theory of composition operators is a special case of the pull-back
construction.

Given sets Xi, i = 1, 2 and kernel functions Ki : Xi × Xi → C, i = 1, 2,
we wish to identify those functions, ϕ : X1 → X2 such that there is a
well-defined, bounded map, Cϕ : H(K2) → H(K1) given by Cϕ(f) = f ◦ ϕ.

Theorem 5.16. Let Xi, i = 1, 2 be sets, ϕ : X1 → X2 a function and Ki :
Xi ×Xi → C, i = 1, 2 kernel functions. Then the following are equivalent:

(1) {f ◦ ϕ : f ∈ H(K2)} ⊆ H(K1),
(2) Cϕ : H(K2) → H(K1) is a bounded, linear operator,
(3) there exists a constant, c > 0, such that K2 ◦ ϕ ≤ c2K1.

Moreover, in this case, ‖Cϕ‖ is the least such constant c.

Proof. Clearly, (2) implies (1). To see that (3) implies (2), let f ∈ H(K2),
with ‖f‖ = M. Then f(x)f(y) ≤M2K2(x, y), which implies that,

f(ϕ(x))f(ϕ(y)) ≤M2K2(ϕ(x), ϕ(y)) ≤M2c2K1(x, y).

Thus, it follows that Cϕ(f) = f ◦ϕ ∈ H(K1) with ‖Cϕ(f)‖1 ≤ c‖f‖2. Hence,
Cϕ is bounded and ‖Cϕ‖ ≤ c.

Finally, by the previous theorem, (1), is equivalent to the statement that
H(K2 ◦ ϕ) ⊆ H(K1), which is equivalent to the kernel inequality, (3), by
Aronszajn’s Theorem 5.1.

The statement in Aronszajn’s Theorem regarding the norms of inclusion
maps proves the last statement. �

Problem 5.17. Let X = D and let K be the Szego kernel. Describe the
spaces, H(K ◦ϕ) for ϕ(z) = z2 and for ϕ(z) = z−α

1−αz , α ∈ D a simple Mobius
map.

Problem 5.18. Let R = {x + iy : x > 0} denote the right-half plane, and
let ϕ : R→ D be defined by ϕ(z) = z−1

z+1 . Compute the pull-back of the Szego
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kernel. Show that h ∈ ϕ∗(H2(D)) if and only if the function f(z) = h(1+z
1−z )

is in H2(D).

An Application to the Theory of Group Representations
The theory of composition operators is an important tool in the study of

unitary representations of groups and gives a very quick proof of a result
known as Naimark’s dilation theorem. Given a group G with identity e,
a Hilbert space H. We call a homomorphism, π : G → B(H), such that
π(e) = IH and π(g−1) = π(g)∗, i.e., such that π(g) is unitary, for all g ∈ G,
a unitary representation of G on H. A unitary representation is said
to be cyclic, if there exists, v0 ∈ H, such that the linear span of π(G)v0 =
{π(g)v0 : g ∈ G} is dense in H.
Definition 5.19. Let G be a group and let p : G→ C be a function. Then
p is called a positive definite function on G provided that for every n
and every g1, ..., gn ∈ G, the matrix (p(g−1

i gj)) is positive semidefinite.

Note that saying that p is positive definite is the same as requiring that
Kp : G×G→ C defined by Kp(g, h) = p(g−1h) is a kernel function. Thus,
to every positive definite function on G there is associated a RKHS, H(Kp).
Note that in this space, the kernel function for evaluation at the identity
element is ke(g) = p(g−1).

Now fix, g ∈ G and consider the function, ϕ : G → G defined by ϕ(h) =
g−1h.We have thatK◦ϕ(g1, g2) = K(g−1g1, g

−1g2) = p((g−1g1)−1(g−1g2)) =
K(g1, g2). Thus, by the above Theorem there is a well-defined contractive lin-
ear map, Ug : H(Kp) → H(Kp) with (Ugf)(h) = f(g−1h) for any f ∈ H(Kp).
Now (Ug1 ◦ Ug2)(f)(h) = (Ug2f)(g−1

1 h) = f(g−1
2 g−1

1 h) = (Ug1g2f)(h), and so
the map π : G→ B(H(Kp)), is a homomorphism. Since Ug−1 ◦Ug = IH(Kp),
and both of these maps are contractions, it follows that they must both be
invertible isometries and hence, unitaries.

Thus, to every positive definite function on p on G, we have associated
a unitary representation, π : G → B(H(Kp)), by setting π(g) = Ug. This
construction gives an immediate proof of a theorem of Naimark.

Theorem 5.20 (Naimark’s Dilation theorem). Let G be a group and let
p : G → C be a positive definite function. Then there exists a Hilbert space
H, a unitary representation π : G → B(H), and a vector v ∈ H, such that
p(g) = 〈π(g)v, v〉. Moreover, any function of this form is positive definite.

Proof. Let H = H(Kp), let π(g) = Ug and let v = ke. We have that
〈π(g)ke, ke〉 = (π(g)ke)(e) = ke(g−1) = p(g).

Finally, if f(g) = 〈π(g)v, v〉, and we pick {g1, ..., gn} ⊆ G and scalars
α1, ..., αn ∈ C, then we have that

n∑
i,j=1

αiαjf(g−1
i gj) = 〈w,w〉

where w =
∑n

j=1 αjπ(gj)v and so p is a positive definite function. �
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Given a positive definite function p on a group, the representation that
we get by considering composition operators on H(Kp) is also cyclic, with
cycic vector ke. To see this note that (Ugke)(h) = ke(g−1h) = K(g−1h, e) =
p(h−1g) = K(h, g) = kg(h). Thus, Ugke = kg, and hence, the span of π(G)ke
is equal to the span of {kg : g ∈ G} which is always dense in the RKHS.

Conversely, assume that we have a unitary representation γ of G on
some Hilbert space H, which has a cyclic vector v0 and we define p(g) =
〈γ(g)v0, v0〉. By Naimark’s theorem, we know that p is positive definite.

Now consider the Hilbert space, H(Kp) and unitary representation π of
G. We claim that there is a Hilbert space isomorphism, W : H(Kp) → H,
such that Wke = v0 and Wπ(g) = γ(g)W, for all g ∈ G.

To define W we set, Wkg = γ(g)v0, and extend linearly. Note that

‖
∑
i

αikgi‖2 =
∑
i,j

αiαjkgi(gj) =
∑
i,j

αiαjp(g−1
j gi)

=
∑
i,j

αiαj〈γ(g−1
j gi)v0, v0〉 = ‖

∑
i

αiγ(gi)v0‖2.

This equality shows that W is well-defined and an isometry. Thus, W can
be extended by continuity to an isometry from all of H(Kp) onto H. Finally,

Wπ(g)kg1 = Wπ(g)π(g1)ke = Wπ(gg1)ke =

Wkgg1 = γ(gg1)v0 = γ(g)γ(g1)v0 = γ(g)Wkg1

and since these vectors span the space, Wπ(g) = γ(g)W.
Thus, the representation γ is unitarily equivalent to the representation π,

via a map that carries the cyclic vector v0 to the vector ke.
These calculations show that if one requires the vector v appearing in

the dilation of a positive definite function in Naimark’s dilation theorem,
then up to a unitary equivalence, we are in the situation where H = H(Kp),
π(g) = Ug and v = ke.

Problem 5.21. Prove that the function p(x) = cos(x) is a positive definite
function on the group (R,+). Show that H(Kp), is two-dimensional and
explicitly describe the unitary representation of R on this space.

Problem 5.22. Let p(z) =
∑n

k=0 akz
k, with ak ≥ 0, k = 0, ..., n. Show that

p is a positive definite function on the circle group, (T, ·) and that H(Kp) is
n+ 1-dimensional. Explicitly describe the unitary representation.

Problem 5.23. Let p(n) =

{
1 n even
0 n odd

. Prove that p is a positive definite

function on (Z,+), find H(Kp) and the corresponding unitary representa-
tion.

Products of Kernels and Tensor Products of Spaces
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Recall that if Hi, i = 1, 2 are Hilbert spaces, then we can form their tensor
product, H1 ⊗ H2, which is a new Hilbert space. If 〈·, ·〉i, i = 1, 2, denotes
the respective inner products on the spaces, then to form this new space,
we first endow the algebraic tensor product with the inner product obtained
by setting, 〈f ⊗ g, h ⊗ k〉 = 〈f, h〉1〈g, k〉2 and extending linearly and then
completing the algebraic tensor product in the induced norm. One of the key
facts about this completed tensor product is that it contains the algebraic
tensor product faithfully, that is, the inner product satisfies, 〈u, u〉 > 0, for
any u 6= 0 in the algebraic tensor product.

Now if H and F are RKHS’s on sets X and S, respectively, then it is
natural to want to identify an element of the algebraic tensor product, u =∑n

i=0 hi ⊗ fi with the function, û(x, s) =
∑n

i=0 hi(x)fi(s). The following
theorem shows that not only is this identification well-defined, but that it
also extends to the completed tensor product.

Theorem 5.24. Let H and F be RKHS’s on sets X and S, with reproducing
kernels, K1(x, y) and K2(s, t). Then K((x, s), (y, t)) = K1(x, y)K2(s, t) is a
kernel function on X × S and the map u → û extends to a well-defined,
linear isometry from H⊗F onto the reproducing kernel Hilbert space H(K).

Proof. Set k1
y(x) = K1(x, y) and k2

t (s) = K2(s, t). Note that if u =
∑n

i=1 hi⊗
fi, then 〈u, k1

y ⊗ k2
t 〉H⊗F =

∑n
i=1〈hi, k1

y〉H〈fi, k2
t 〉F = û(y, t).

Thus, we may extend the mapping u → û from the algebraic tensor
product to the completed tensor product as follows. Given u ∈ H ⊗ F ,
define a function on X × S by setting û(y, t) = 〈u, k1

y ⊗ k2
t 〉H⊗F .

It is readily seen that the set L = {û : u ∈ H ⊗ F} is a vector space
of functions on X × S. Moreover, the map u → û will be one-to-one unless
there exists a non-zero u ∈ H⊗F such that û(y, t) = 0 for all (y, t) ∈ X×S.
But this latter condition would imply that u is orthogonal to the span of
{k1

y ⊗ k2
t : (y, t) ∈ X × S}. But since the span of {k1

y : y ∈ X} is dense in H
and the span of {k2

t : t ∈ S} is dense in F , it readily follows that the span
of {k1

y ⊗ k2
t : (y, t) ∈ X × S} is dense in H ⊗ F . Hence, if û = 0, then u is

orthogonal to a dense subset and so u = 0.
Thus, we have that the map u→ û is one-to-one from H⊗F onto L and

we may use this identification to give L the structure of a Hilbert space.
That is, for u, v ∈ H ⊗F , we set 〈û, v̂〉L = 〈u, v〉H⊗F .

Finally, since for any (y, t) ∈ X × S, we have that û(y, t) = 〈û, k̂1
y ⊗ k2

t 〉,
we see that L is a reproducing kernel Hilbert space with kernel

K((x, s), (y, t)) = 〈k̂1
y ⊗ k2

t , k̂
1
x ⊗ k2

s〉L
= 〈k1

y ⊗ k2
t , k

1
x ⊗ k2

s〉H⊗F = 〈k1
y, k

1
x〉H〈k2

t , k
2
s〉F = K1(x, y)K2(s, t)

and so K is a kernel function.
By the uniqueness of kernels, we have that L = H(K) as sets of functions

and as Hilbert spaces. Thus, the map u→ û is an isometric linear map from
H⊗F onto H(K). �
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Corollary 5.25. If X and S are sets and K1 : X × X → C and K2 :
S × S → C are kernel functions, then K : (X × S)× (X × S) → C given by
K((x, s), (y, t)) = K1(x, y)K2(s, t) is positive definite.

Definition 5.26. We call the 4 variable function K((x, s), (y, t)) = K1(x, y)K2(s, t)
the tensor product of the kernels K1 and K2.

A slightly more subtle corollary is given by the following.

Corollary 5.27. Let X be a set and let Ki : X × X → C, i = 1, 2 be
kernel functions, then their product, P : X × X → C given by P (x, y) =
K1(x, y)K2(x, y) is a kernel function.

Proof. Given any points, {x1, ..., xn}, set wi = (xi, xi), and then we have
that the n× n matrix, (P (xi, xj)) = (K(wi, wj)) ≥ 0. �

Definition 5.28. We call the 2 variable kernel, P (x, y) = K1(x, y)K2(x, y)
the product of the kernels.

Given Ki : X × X → C, i = 1, 2 we have two kernels and two RKHS’s.
The first is the tensor product, K : (X ×X)× (X ×X) → C which gives a
RKHS of functions on X ×X. The second is the product, P : X ×X → C
which gives a RKHS of functions on X. The relationship between these two
spaces can be seen by using the results of the last subsection.

Let ∆ : X → X×X denote the diagonal map, defined by ∆(x) = (x, x).
Then P (x, y) = K(∆(x),∆(y)), that is, P = K ◦∆. Thus, H(P ) is the pull-
back of H(K) = H(K1)⊗H(K2) along the diagonal map.

The last corollary can be used to prove a familiar fact from matrix theory.

Definition 5.29. Let A = (ai,j) and B = (bi,j) be two n×n matrices. Then
their Schur product is the n× n matrix,

A ∗B = (ai,jbi,j).

Corollary 5.30 (Schur). Let P = (pi,j) and Q = (qi,j) be n × n matrices.
If P ≥ 0 and Q ≥ 0, then P ∗Q ≥ 0.

Proof. Consider the n point set, X = {1, ..., n}. If we regard the matrices
P and Q as functions on X ×X, then they are kernel functions. Apply the
last corollary. �

Conversely, if one knows the Schur product result, then one can deduce
directly that products of kernel functions are kernel functions. The following
problem shows how to give a matrix theoretic proof of Schur’s result.

Problem 5.31. (i) Prove that an n× n matrix is rank 1 if and only if
it is of the form, (αiβj) for some choice of scalars.

(ii) Prove that an n × n rank 1 matrix is positive if and only if it is of
the form (αiαj), for some choice of scalars.

(iii) Prove that every positive n × n rank k matrix can be written as a
sum of k positive rank 1 matrices.
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(iv) Prove that the Schur product is distributive over sums, i.e., (A+B)∗
(C +D) = A ∗ C +B ∗ C +A ∗D +B ∗D.

(v) Deduce Schur’s result.

Problem 5.32. Prove that the Bergman space, B2(D) is the pull-back of
H2(D)⊗H2(D) along the diagonal.

Push-Outs of RKHS’s

Given a RKHS H(K) on X and a function ψ : X → S we would also like
to induce a RKHS on S. To carry out this construction, we first consider
the subspace, H̃ = {f ∈ H(K) : f(x1) = f(x2)wheneverψ(x1) = ψ(x2)}.
If K̃(x, y) denotes the reproducing kernel for this subspace and we set,
k̃y(x) = K̃(x, y), then it readily follows that, whenever ψ(x1) = ψ(x2)
and ψ(y1) = ψ(y2), we have that, k̃y(x1) = k̃y(x2) and k̃y1 = k̃y2 . Thus,
for any such pair of points, K̃(x1, y1) = K̃(x2, y2). It follows that there
is a well-defined positive definite function on Kψ : S × S → C given by
Kψ(s, t) = K̃(ψ−1(s), ψ−1(t)).

We call the RKHS, H(Kψ) on S, the push-out of H(K) along ψ.
As an example, we consider the Bergman space on the disk, B2(D). This

space has a reproducing kernel given by the formula,

K(z, w) =
1

(1− wz)2
=

∞∑
n=0

(n+ 1)(wz)n.

If we let ψ : D → D, be defined by ψ(z) = z2, then we can pull B2(D) back
along ψ and we can push B2(D) forward along ψ. We compute the kernels
in each of these cases.

The kernel for the pull-back is simply,

K ◦ ψ(z, w) =
1

(1− w2z2)2
=

∞∑
n=0

(n+ 1)(wz)2n.

For the push-out, we first compute, H̃. Note that ψ(z1) = ψ(z2) if and
only if z2 = ±z1. Thus, H̃ = {f ∈ B2(D) : f(z) = f(−z)}, i.e., the subspace
of even functions. This subspace is spanned by the even powers of z, and
consequently, it has kernel,

K̃(z, w) =
∞∑
n=0

(2n+ 1)(wz)2n.

Since, ψ−1(z) = ±
√
z, we see that the push-out of B2(D), is the new

RKHS of functions on the disk with reproducing kernel,

Kψ(z, w) = K̃(±
√
z,±

√
w) =

∞∑
n=0

(2n+ 1)(wz)n.
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Thus, the pull-back and the push-out of B2(D) are both spaces of analytic
functions on D spanned by powers of z and these powers are orthogonal
functions with different norms. The push-out is a weighted Hardy space,
but the pull-back is not a weighted Hardy space. If we generalized the
definition of a weighted Hardy space, by allowing some of the weights to be
0, then the pull-back is a generalized weighted Hardy space.

Problem 5.33. Let ψ : D → D, be defined by ψ(z) = z2, as above, and
compute the pull-back and push-out of H2(D) along ψ.

6. Multipliers of Reproducing Kernel Hilbert Spaces

In this section we develop the theory of functions that multiply a repro-
ducing kernel Hilbert space back into itself.

Definition 6.1. Let H be a RKHS on X with kernel function, K. A function
f : X → C is called a multiplier of H provided that fH ≡ {fh : h ∈ H} ⊆
H. We let M(H) or M(K) denote the set of multipliers of H.

More generally, if Hi, i = 1, 2 are RKHS’s on X with reproducing ker-
nels, Ki, i = 1, 2, then a function, f : X → C, such that fH1 ⊆ H2, is
called a multiplier of H1 into H2 and we let M(H1,H2) denote the set of
multipliers of H1 into H2, so that M(H,H) = M(H).

Given a multiplier, f ∈ M(H1,H2), we let Mf : H1 → H2, denote the
linear map, Mf (h) = fh.

Clearly, the set of multipliers, M(H1,H2) is a vector space and the set of
multipliers, M(H), is an algebra.

Proposition 6.2. Let H be a RKHS on X with kernel K and let f : X →
C be a function, let H0 = {h ∈ H : fh = 0} and let H1 = H⊥0 . Set
Hf = fH = fH1 and define an inner product on Hf by 〈fh1, fh2〉f =
〈h1, h2〉 for h1, h2 ∈ H1. Then Hf is a RKHS on X with kernel, Kf (x, y) =
f(x)K(x, y)f(y).

Proof. By definition, Hf is a vector space of functions on X and the linear
map, h→ fh is a surjective, linear isometry from H1 onto Hf . Thus, Hf is
a Hilbert space.

Decomposing, ky = k0
y + k1

y, with kiy ∈ Hi, we have that Ki(x, y) =
kiy(x), i = 1, 2, are the kernels for Hi, i = 1, 2.

To see that Hf is a RKHS, note that for any fixed y ∈ X and h ∈
H1, f(y)h(y) = f(y)〈h, ky〉 = f(y)〈fh, fky〉f = 〈fh, f(y)fk1

y〉f , which shows
that evaluation at y is a bounded linear functional in ‖ · ‖f , and that
Kf (x, y) = f(y)f(x)k1

y(x).However, fk0
y = 0, and hence, f(x)K0(x, y)f(y) =

0, from which the result follows. �

We are now in a position to characterize multipliers.

Theorem 6.3. Let Hi, i = 1, 2 be a RKHS’s on X with kernels, Ki, i = 1, 2
and let f : X → C. The following are equivalent:
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(i) f ∈M(H1,H2),
(ii) f ∈M(H1,H2), and Mf is a bounded operator, i.e., Mf ∈ B(H1,H2),
(iii) there exists a constant, c ≥ 0, such that f(x)K1(x, y)f(y) ≤ c2K2(x, y).

Moreover, in these cases, ‖Mf‖ is the least constant, c satisfying the in-
equality in (iii).

Proof. Clearly, (ii) implies (i).
(i) ⇒ (iii). By the above Proposition, Hf = fH1 with the norm and inner

product defined as above is a RKHS with kernel,Kf (x, y) = f(x)K1(x, y)f(y).
But since, Hf ⊆ H2, by [?], there exists a constant c > 0, such that,
f(x)K1(x, y)f(y) = Kf (x, y) ≤ c2K2(x, y).

(iii) ⇒ (ii). Since the kernel of the space,Hf = fH1,Kf (x, y) = f(x)K1(x, y)f(y) ≤
c2K2(x, y), by [?], we have that fH1 ⊆ H2. Now decompose, H1 = H1,0 ⊕
H1,1, where fH1,0 = (0), and given any h ∈ H1, write h = h0 +h1 with hi ∈
H1,i, i = 0, 1. Then ‖fh‖H2 = ‖fh1‖H2 ≤ c‖fh1‖Hf = c‖h1‖H1,1 ≤ c‖h‖H1 .
Thus, Mf is bounded and ‖Mf‖ ≤ c.

Finally, if ‖Mf‖ = C, then for any h1 ∈ H1,1, ‖fh1‖H2 ≤ C‖h1‖H1 =
C‖fh1‖Hf . Thus, applying [?] again, we have that f(x)K1(x, y)f(y) =
Kf (x, y) ≤ C2K2(x, y) and the result follows. �

Corollary 6.4. Let Hi, i = 1, 2 be RKHS’s on X with reproducing ker-
nels, Ki(x, y) = kiy(x), i = 1, 2. If f ∈ M(H1,H2), then for every y ∈
X,M∗

f (k
2
y) = f(y)k1

y.
Thus, when, K1 = K2, every kernel function is an eigenvector of M∗

f .
Moreover, we have that

‖f‖∞ ≤ ‖Mf‖,
so that every multiplier is a bounded function on X.

Proof. For any h ∈ H1, we have that

〈h, f(y)k1
y〉1 = f(y)h(y) = 〈Mf (h), k2

y〉2 = 〈h,M∗
f (k

2
y)〉,

and hence, f(y)k1
y = M∗

f (k
2
y).

Now, if K1 = K2 = K, then M∗
f (ky) = f(y)ky, and hence, |f(y)| ≤

‖M∗
f ‖ = ‖Mf‖, and the last inequality follows. �

These problems outline an alternate proof of the above theorem, by show-
ing instead that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

Problem 6.5. Use the closed graph theorem, to give a direct proof that (i)
implies (ii).

Problem 6.6. Note that Mf is bounded if and only if M∗
f is bounded,

‖Mf‖ = ‖M∗
f ‖ and that, in this case, M∗

f (k
2
y) = f(y)k1

y. Let ‖M∗
f ‖ = c,

and for any points, x1, ..., xn ∈ X and any choice of scalars, α1, ..., αn, com-
pute ‖

∑
i αik

2
xi‖

2 and use it to show that f(x)K1(x, y)f(y) ≤ c2K2(x, y).
Thus, proving that (ii) implies (iii).
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Finally, note that in the above proof that (iii) implies (ii), we first proved
that (iii) implies (i).

By the above results, we see that f ∈ M(H), then for any point y ∈ X,
such that ‖ky‖ 6= 0, we can recover the values of f by the formula,

f(y) =
〈ky,M∗

f (ky)〉
K(y, y)

=
〈Mf (ky), ky〉
K(y, y)

.

This motivates the following definition.

Definition 6.7. Let H be a RKHS on X with kernel K(x, y), and let T ∈
B(H). Then the function

BT (y) =
〈T (ky), ky〉
K(y, y)

,

defined at any point where K(y, y) 6= 0, is called the Berezin transform
of T.

We present one application of the Berezin transform concept.
For every Hilbert space, H, there is a topology on B(H) called the weak

operator topology. This topology is characterized by the fact that a net
{Tλ} ⊆ B(H) converges to an operator T ∈ B(H) if and only if for every pair
of vectors, h, k ∈ H, limλ〈Tλ(h), k〉 = 〈T (h), k〉. Note that if {Tλ} converges
in the weak topology to T , then {T ∗λ} converges in the weak topology to T ∗.

Corollary 6.8. Let H be a RKHS on X. Then {Mf : f ∈ M(H)} is a
unital subalgebra of B(H) that is closed in the weak operator topology.

Proof. It is easy to see that the identity operator is the multiplier corre-
sponding to the constant function, 1, and that products and linear combi-
nations of multipliers are multipliers. Thus, this set is a unital subalgebra
of B(H).

To see that it is closed in the weak operator topology, we must show that
the limit of a net of multipliers is again a multiplier. Let {Mfλ} be a net
of multipliers that converges in the weak operator topology to T . Then for
every point y where it is defined, limλ fλ(y) = BT (y).

Set f(y) = BT (y), whenever ky 6= 0, and f(y) = 0, when ky = 0. We
claim that T = Mf . To see note that 〈h, T ∗(ky)〉 = limλ〈h,M∗

fλ
(ky)〉 =

〈h,M∗
f (ky)〉, and the result follows. �

Problem 6.9. Show that BT ∗ = BT .

Problem 6.10. Show that if f ∈M(H), then BMfM
∗
f

= |f |2.

Problem 6.11. Let f(z) = a0 + a1z, show that f ∈ M(H2(D)) and that
f ∈ M(B2(D)). Compute BM∗

fMf
, for both these spaces. Deduce that in

general, BM∗
fMf

6= BMfM
∗
f
.



RKHS 35

Definition 6.12. Let G ⊆ C be an open connected set, then H∞(G) denotes
the functions that are analytic on G and satisfy,

‖f‖∞ ≡ sup{|f(z)| : z ∈ G} < +∞.

It is not hard to see that H∞(G) is an algebra of functions on G that
is norm complete and satisfies, ‖fg‖∞ ≤ ‖f‖∞‖g‖∞, that is, H∞(G) is a
Banach algebra.

Theorem 6.13. Let G ⊆ C be a bounded, open set, then M(B2(G)) =
H∞(G), and for f ∈M(B2(G)), ‖Mf‖ = ‖f‖∞.

Proof. Since the constant function, 1 ∈ B2(G), we have that if f ∈M(B2(G)),
then f = f · 1 ∈ B2(G). Thus, M(B2(G)) ⊆ B2(G), and so every function
in M(B2(G)) is analytic on G.

Moreover, by the above Corollary, ‖f‖∞ ≤ ‖Mf‖, and hence,M(B2(G)) ⊆
H∞(G).

Conversely, if f ∈ H∞(G) and h ∈ B2(G), then

‖fh‖2
B2(G) =

∫ ∫
|f(x+ iy)h(x+ iy)|2dxdy

≤ ‖f‖2
∞

∫ ∫
|h(x+ iy)|2dxdy = ‖f‖2

∞‖h‖2
B2(G).

Thus, f ∈M(B2(G)) with ‖Mf‖ ≤ ‖f‖∞ and the result follows. �

Problem 6.14. Let G ⊆ C be an open set and assume that there are
enough functions in B2(G) to separate points on G. Prove that M(B2(G)) =
H∞(G), and that ‖f‖∞ = ‖Mf‖.

We now turn our attention to determining the multipliers of H2(D). For
this we will need the identification of the Hardy space of the disk with the
Hardy space of the unit circle. Recall that if we endow the unit circle in the
complex plane, T, with normalized arc length measure, then∫

T
f(s)ds =

1
2π

∫ 2π

0
f(eit)dt

and that with respect to this measure, the functions, en(eit) = eint, n ∈ Z,
form an orthonormal basis for L2(T). Given any function in f ∈ Lp(T), 1 ≤
p ≤ +∞, we can define its Fourier coefficients by the formula,

f̂(n) =
1
2π

∫ 2π

0
f(eit)e−intdt.

The maps, ψn : Lp(T) → C defined by ψn(f) = f̂(n), are bounded linear
functionals, and hence, the set

Hp(T) ≡ {f ∈ Lp(T) : f̂(n) = 0, for all n ≤ 0},
is a norm closed subspace for 1 ≤ p ≤ +∞ which is also weak*-closed in
the case when 1 < p ≤ +∞. These spaces are called the Hardy spaces of
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the circle. Note that H2(T) is the Hilbert space with orthonormal basis,
en, n ≥ 0.

If f ∈ Hp(T), then its Cauchy transform defined by the formula,

f̃(z) =
1
2π

∫ 2π

0

f(eit)
1− ze−it

dt

is easily seen to be an analytic function on the disk. By comparing orthonor-
mal bases, we can see that the Cauchy transform defines a Hilbert space
isomorphism, i.e., an onto isometry, between H2(T) and the space H2(D).
It is somewhat more difficult to show, but the Cauchy transform also de-
fines an isometry from H∞(T) onto H∞(D). See [?] for a proof of this fact.
For these reasons the set of functions obtained as the Cauchy transforms of
Hp(T) are denoted, Hp(D) and referred to as the Hardy spaces of the unit
disk.

One other fact about the Hardy spaces that we shall need is that if for
f ∈ Hp(T) and 0 ≤ r < 1, we define fr(eit) = f̃(reit), then fr ∈ Hp(T), 1 ≤
p ≤ +∞, with ‖fr‖p ≤ ‖f‖p, and for 1 ≤ p < +∞, limr→1‖f − fr‖p = 0. In
the case p = +∞, the functions, fr, converge to f in the weak*-topology,
but not necessarily the norm topology. In fact, they converge in the norm
topology to f if and only if f is equal almost everywhere to a continuous
function.

With these preliminaries out of the way we can now characterize the
multipliers of H2(D).

Theorem 6.15. M(H2(D)) = H∞(D), and for f ∈ H∞(D), ‖Mf‖ = ‖f‖∞.

Proof. Let f ∈M(H2(D)), then f = f · 1 ∈ H2(D) and hence, f is analytic
on D. Moreover, since, ‖f‖∞ ≤ ‖Mf‖, we see that f ∈ H∞(D).

Now let, f ∈ H∞(D), so that f = g̃, for some function, g ∈ H∞(T)
and ‖f‖∞ = ‖g‖∞, where the first norm is the supremum over the disk
and the second is the essential supremum over the unit circle. Since g
is essentialy bounded, we see that Mg : H2(T) → L2(T) is bounded and
‖Mg‖ ≤ ‖g‖∞. By computing Fourier coefficients of gen, one sees that gen ∈
H2(T), for all n ≥ 0, and hence that g ·H2(T) ⊆ H2(T). Also, by comparing
Fourier coefficients, one sees that g̃en(z) = f(z)zn, and thus for any h ∈
H2(T), f(z)h̃(z) = g̃h(z) ∈ H2(D). Thus, f ∈ M(H2(D)) and ‖Mf‖ =
‖Mg‖ ≤ ‖g‖∞ = ‖f‖∞, and the result follows. �

We now take a look at some special multipliers of H2(D).

Definition 6.16. A function, h ∈ L∞(T) is called an inner function if
|h(eit)| = 1, a.e. and an inner function that is in H∞(T) is called an an-
alytic inner function. More generally, g ∈ H∞(D) is called an analytic
inner function if g is the Cauchy transform of an analytic inner function,
that is, if g = h̃ for some inner function h ∈ H∞(T).

Let α1, ..., αn ∈ D, be distinct points, let ϕαi(z) = z−αi
1−ᾱiz , denote the

corresponding Mobius maps and let m1, ...,mn be integers with mi ≥ 1, i =
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1, ..., n. Then the function,

B(z) =
n∏
i=1

ϕmiαi (z),

is called the Blaschke product corresponding to the points, α1, ..., αn, and
multiplicities, m1, ...,mn.

Since, |ϕα(eit)| = |e−it eit−α
1−ᾱeit | = |1−e−itα

1−ᾱeit | = 1, we see that every Mo-
bius map and more generally, every Blaschke product is an analytic inner
function.

Proposition 6.17. Let f ∈ H∞(D) be an inner function, then Mf : H2(D) →
H2(D) is an isometry and the range of Mf is the RKHS with kernel, f(z)f(w)

1−wz .

Proof. Let f = g̃, then for any h ∈ H2(T), we have that,

‖gh‖2 =
1
2π

∫ 2π

0
|g(eit)h(eit)|2dt =

1
2π

∫ 2π

0
|h(eit)|2dt = ‖h‖2,

and so Mg is an isometry. By Proposition ??, the kernel function for the
range space is as given. �

We now wish to concretely identify the subspace of H2(D) that is the
range of a Blaschke product. We first need a preliminary result.

Given an integer, m ≥ 1, we let f (m) denote the m − th derivative of a
function f .

Proposition 6.18. Let w ∈ D and let m ≥ 1, be an integer. Then zm(1−
w̄z)−m−1 ∈ H2(D) and for f ∈ H2(D), 〈f, zm(1 − w̄z)−m−1〉 = f (m)(w).
Thus, the map, E(m)

w : H2(D) → C, defined by E
(m)
w (f) = f (m)(w), is a

bounded linear functional.

Proof. We have that

zm(1− w̄z)−m−1 = (
∂

∂w̄
)m(1− w̄z)−1 = (

∂

∂w̄
)m

∞∑
n=0

(w̄z)n

=
∞∑
n=m

n(n− 1) · · · (n− (m− 1))w̄n−mzn,

which can be seen to be square-summable.
Given any f(z) =

∑∞
n=0 anz

n, we have that 〈f, zm(1 − w̄z)−m−1〉 =∑∞
n=m ann(n − 1) · · · (n − (m − 1))wn−m = f (m)(w), and the result fol-

lows. �

Theorem 6.19. Let α1, . . . , αn ∈ D, be distinct points, let mi ≥ 1, be
integers, and let B(z) be the corresponding Blaschke product. Then

B(z) ·H2(D) = {f ∈ H2(D) : f (j)(αk) = 0, 1 ≤ k ≤ n, 1 ≤ j ≤ mk},
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and consequently, the reproducing kernel for this subspace is

B(z)B(w)
1− w̄z

.

Proof. By the above result we know that the reproducing kernel for the
subspace B(z) · H2(D) is given by B(z)B(w)

1−w̄z . Thus, it remains to prove the
set equality.

It is clear that B(z) · H2(D) is contained in the set on the right. Con-
versely, any function in the set on the right can be written as, f(z) =
(z − α1)m1 · · · (z − αn)mng(z), where g is analytic on D. Setting, h(z) =
(1− ᾱ1z)m1 · · · (1− ᾱnz)mng(z), we have that h is analytic on D and f(z) =
B(z)h(z) and it remains to show that h ∈ H2(D).

But we know that there exists a function, f1 ∈ H2(T) such that for almost
all t, limr→1 f(reit) = f1(eit). Thus, setting h1(eit) = limr→1B(reit)f(reit) =
B(eit)f1(eit), defines a function a.e. on the circle, with |h1(eit)| = |f1(eit)|, a.e.,
from which it follows that h1 ∈ L2(T).

However, limr→1B(reit)−1 = B(eit), and hence, limr→1 h(reit) = h1(eit), a.e.,
from which it follows that h1 ∈ H2(D) and that h is the Cauchy transform
of h1. Thus, h ∈ H2(D) and the theorem follows. �

Problem 6.20. Prove that for every w ∈ D, and integer m ≥ 1, the map
E

(m)
w : B2(D) → C is bounded and that it is given by the inner product with

( ∂
∂w̄ )m(1− w̄z)2.

7. Negative Definite Functions

Definition 7.1. The function ψ : X ×X → C is called negative definite
provided ∀x1, x2, . . . , xn ∈ X, ∀α1, α2, . . . , αn ∈ C such that

∑n
j=1 αj = 0,

we have
∑n

i,j=1 ᾱiαjψ(xi, xj) ≤ 0.

Proposition 7.2 (Berg, Christensen, Bessel). Let ψ : X × X → C, fix
x0 ∈ X. Then ψ is negative definite if and only if K(x, y) = ψ(x, x0) +
ψ(y, x0)− ψ(x, y)− ψ(x0, x0) is a kernel function.

Proof. (⇐) : Let
∑n

j=1 αj = 0, then we get

0 ≤
n∑

i,j=1

ᾱiαjK(xi, xj) =
n∑

i,j=1

ᾱiαjψ(xi, x0) +
n∑

i,j=1

ᾱiαjψ(xj , x0)

−
n∑

i,j=1

ᾱiαjψ(xi, xj)−
n∑

i,j=1

ᾱiαjψ(x0, x0) = 0+0−
n∑

i,j=1

ᾱiαjψ(xi, xj)− 0.

This implies
∑n

i,j=1 ᾱiαjψ(xi, xj) ≤ 0, therefore ψ is a negative function.
(⇒) Given α1, α2, . . . , αn ∈ C, let α0 = −

∑n
j=1 αj , then

∑n
j=0 αj = 0.

Therefore
∑n

i,j=0 ᾱiαjK(xi, xj) = 0 + 0−
∑n

i,j=0 ᾱiαjψ(xi, xj) + 0,
⇒ [K(xi, xj)]ni,j=0 ≥ 0 ⇒ [K(xi, xj)]ni,j=1 ≥ 0. �
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Theorem 7.3 (Schoenberg, 1940). Let (X, d) be a metric space. Then ∃H
a Hilbert space and φ : X → H an isometry i.e. ‖φ(x) − φ(y)‖ = d(x, y) if
and only if d2(x, y) is negative definite.

Proof. (⇒) : Let
∑n

j=1 αj = 0, then we have

n∑
i,j=1

ᾱiαjd
2(xi, xj) =

n∑
i,j=1

ᾱiαj‖φ(xi)− φ(xj)‖2 =
n∑

i,j=1

ᾱiαj〈φ(xi)−φ(xj), φ(xi)−φ(xj)〉

=
n∑

i,j=1

ᾱiαj〈φ(xi), φ(xi)〉−
n∑

i,j=1

ᾱiαj〈φ(xi), φ(xj)〉−
n∑

i,j=1

ᾱiαj〈φ(xj), φ(xi)〉

+
n∑

i,j=1

ᾱiαj〈φ(xj), φ(xj)〉 = 0−‖
n∑
i=1

ᾱiφ(xi)‖
2

−‖
n∑
j=1

αjφ(xj)‖
2

+ 0 ≤ 0.

(⇐) : By previous proposition (BCB),

K(x, y) = d2(x, x0) + d2(y, x0)− d2(x, y)− d2(x0, x0)

⇒ K(x, y) = d2(x, x0) + d2(y, x0)− d2(x, y)

is a kernel function. Look at H(K), let φ(x) =
√

2
2 kx.

Note that K(x, y) = K(y, x). Compute

‖φ(x)− φ(y)‖2 =
1
2
〈kx−ky, kx−ky〉 =

1
2

{
K(x, x)−K(x, y)−K(y, x)+K(y, y)

}
=

1
2

{
[d2(x, x0) + d2(x, x0)− d2(x0, x0)]− 2[d2(x, x0) + d2(y, x0)− d2(x, y)]

+[d2(y, x0)+d2(y, x0)−d2(y, y)]
}

= d2(x, y) ⇒ φ(x) =
√

2
2
kx is an isometry.

�

Problem 7.4. Show ψ(x, y) =
(
sin(x− y)

)2 is negative definite on R.

Theorem 7.5 (Schoenberg). The function ψ : X × X → C is negative
definite if and only if e−tψ is a kernel function ∀t > 0.

Proof. (⇐) : Note that Kt(x, y) = e−tψ(x,y) is a kernel function ∀t > 0.
Then γt(x, y) = 1−Kt(x, y) is negative definite function:
Let

∑n
i=1 αi = 0, then

n∑
i,j=1

ᾱiαjγt(xi, xj) =
n∑

i,j=1

ᾱiαj ·1−
n∑

i,j=1

ᾱiαjKt(xi, xj) = −
n∑

i,j=1

ᾱiαjKt(xi, xj) ≤ 0

Now, γt(x, y) being negative definite ∀t > 0 implies γt(x,y)
t negative definite,

i.e.

lim
t→0

γt(x, y)
t

= lim
t→0

1− e−tψ(x,y)

t
= ψ(x, y) is negative definite (if it exists).
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(⇒) : If ψ is negative definite, then tψ is negative definite
⇒ e−tψ is a kernel. Therefore, assuming ψ negative definite, it’s enough to
show e−ψ is a kernel. Hence, let ψ be negative definite, then (by BCB)
⇒ K(x, y) = ψ(x, x0) + ψ(y, x0)− ψ(x, y)− ψ(x0, x0) is a kernel,
⇒ K̃(x, y) = eK(x,y) = 1 +K(x, y) + K2(x,y)

2! + · · · is a kernel too.
Next, we have

K̃(x, y) = e

(
ψ(x,x0)+ψ(y,x0)−ψ(x,y)−ψ(x0,x0)

)
= eψ(x,x0) · eψ(y,x0) · e−ψ(x,y) · e−ψ(x0,x0)

⇒ e−ψ(x,y) = eψ(x0,x0) · e−ψ(x,x0) · K̃(x, y) · e−ψ(y,x0)

⇒ e−ψ(x,y) = α0 · f(x) · K̃(x, y) · f(y), where f(x) = e−ψ(x,x0),
⇒ e−ψ is a kernel function. �

Example: It can happen that a matrix A = (aij) ≥ 0, but (|aij |) is not
positive definite.∣∣∣
 1 1

3
z
3

1
3 1 1

3
z̄
3

1
3 1

∣∣∣ = 1 · 8
9
− 1

3
(1
3
− z̄

9
)

+
z

3
(1
9
− z̄

3
)

=
7
9

+
z̄

27
+

z

27
− |z|2

9

for z =
√

7eiθ.

Suppose A ∈ Mn(C), set X = {1, . . . , n}, define K : X × X → C by
K(i, j) = aij , then K is kernel, but |K| is not a kernel.
On the other hand, if K : X ×X → C is a kernel, then K̄ is kernel.
Because

∑n
i,j=1 ᾱiαjK(xi, xj) =

∑n
i,j=1 ᾱiαjK(xj , xi) ≥ 0,

⇒ K(x, y) · K̄(x, y) = |K|2(x, y) is a kernel.
But, if we had a negative definite function ψ : X×X → C, K(x, y) = e−ψ(x,y)

kernel, look at K2(x, y) = e−
ψ(x,y)

2 kernel ⇒ K(x, y) =
(
K2(x, y)

)2.
Then |K(x, y)| = |K2(x, y)

2| = |K2(x, y)|2 ⇒ |K| is kernel.

Definition 7.6. Let K : X × X → C be a kernel. Then K is infinitely
divisible provided that ∀n ∈ N, ∃Kn : X × X → C kernel such that
(Kn)n = K.

Proposition 7.7. Let K : X ×X → C be an infinitely divisible kernel, via
K ′
ns. Then |Kn| is a kernel, ∀n ∈ N, and |K| is a kernel, too.

Proof.

K = (Kn)n = (K2n)2n ⇒ |K| = |Kn|n = |K2n|2n ⇒ |Kn| = |K2n|2

⇒ |Kn| is a kernel,∀n and |K| = |Kn|n is a kernel, too.
Or |K| = |K2|2 ⇒ |K| is a kernel.

�
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Theorem 7.8. Let K : X ×X → C be a kernel, K(x, y) > 0 ∀x, y.
Then K is infinitely divisible ⇐⇒ ψ(x, y) = − log(K(x, y)) is negative
definite.

Proof. (⇐) : Let ψ(x, y) = − log(K(x, y)) be negative definite. Then e−ψ(x,y) =
K(x, y) is positive definite. Set Kn(x, y) = e−

ψ(x,y)
n ⇒ K is ∞− divisible.

(⇒) : From previous proposition, we have

K(x, y) = Kn(x, y)
n = |Kn(x, y)|n.

We know |Kn| are all kernel functions and |K| = |Kn|n. Then

ψ(x, y) = − log(K(x, y)) = −n log(|Kn|(x, y)).

Let t = 1
n ,

(
e−

1
n
ψ(x,y)

)n = K(x, y) ⇒ e−
ψ(x,y)
n = K(x, y)1/n = |Kn| kernel

function, ∴ e−
m
n
ψ(x,y) =

(
e−

ψ(x,y)
n

)m = |Kn|m(x, y) is kernel.
⇒ e−tψ(x,y) > 0, ∀t > 0 ( taking limits of rationals )
⇒ ψ(x, y) is negative definite. �

8. Block or Operator Matrices

Let H,K be any two Hilbert spaces, then H⊕K =
{( h

k

)
: h ∈ H, k ∈ K

}
.

Let A =
[
A11 A12

A21 A22

]
∈ B(H⊕K),

where A11 ∈ B(H), A12 ∈ B(K,H), A21 ∈ B(H,K), A22 ∈ B(K).

A

(
h
k

)
=
[
A11 A12

A21 A22

](
h
k

)
=
[
A11h+A12k
A21h+A22k

]
.

Proposition 8.1. Let A ∈ B(K,H). Then ‖A‖ ≤ 1 ⇐⇒
[
IH A
A∗ IK

]
≥ 0.

Proof. (⇐) :

0 ≤ 〈
[
IH A
A∗ IK

][
−Ak
k

]
,

[
−Ak
k

]
〉 = 〈

[
−Ak +Ak
−A∗Ak + k

]
,

[
−Ak
k

]
〉

= 〈−A∗Ak + k, k〉 = −〈Ak,Ak〉+ 〈k, k〉 = −‖Ak‖2 + ‖k‖2.

So, we get 0 ≤ −‖Ak‖2 + ‖k‖2 ⇒ ‖Ak‖2 ≤ ‖k‖2 ∀k ⇒ ‖A‖ ≤ 1.
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(⇒) :

〈
[
IH A
A∗ IK

][
h
k

]
,

[
h
k

]
〉 = 〈

[
h+Ak
A∗h+ k

]
,

[
h
k

]
〉

= 〈h, h〉+ 〈Ak, h〉+ 〈A∗h, k〉+ 〈k, k〉 ≥ ‖h‖2 + ‖k‖2 − 2‖Ak‖‖h‖

=
(
‖h‖ − ‖k‖

)2 + 2‖h‖
(
‖k‖ − ‖Ak‖

)︸ ︷︷ ︸
≥0, A contractive

≥ 0.

�

Example: Let Uθ =
[

cos θ − sin θ
sin θ cos θ

]
, 0 ≤ θ ≤ π

2 , ‖Uθ‖ = 1,

let B =
[

cos θ sin θ
sin θ cos θ

]
= cos θ · I + sin θ

[
0 1
1 0

]
,

σ(B) = cos θ ± sin θ, ‖B‖ = cos θ + sin θ > 1, 0 < θ < π
2 .

If 0 ≤ θ ≤ π
4 , then ‖B‖ = 1√

2
+ 1√

2
=
√

2 > 1, θ = π
4 .

Note that from a previous example, we have P = (pij) ≥ 0,
but (|pij |) not positive, as it is demonstrated below:

1 0 cos θ − sin θ
0 1 sin θ cos θ

cos θ sin θ 1 0
− sin θ cos θ 0 1

 ≥ 0, but


1 0 cos θ sin θ
0 1 sin θ cos θ

cos θ sin θ 1 0
sin θ cos θ 0 1

 � 0.

9. RKHS and Cholesky’s Algorithm

Lemma 9.1 (Cholesky). P = (pij)ni,j=0 ≥ 0 ⇐⇒ R = P −
(
p̄0ip0j

p00

)
≥ 0.

Note: Look at (0, i)th entry of R, we get r0j = p0j −
p̄00p0j

p00
= 0,

ri0 = pi0 −
p̄0ip00

p00
= 0, then R looks as R =

 0 · · · 0
... P̄n×n
0

 .

Cholesky algorithm is really used for factoring positive square matrices
P ≥ 0 as P = U∗U , where U is an upper triangular matrix. Here is how it
works:

Example: Deduce whether P =

 1 2 3
2 6 7
3 7 12

 ≥ 0. If yes, factorize it.
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Solution: Calculate

R = P − 1
1

 1 2 3
2 4 6
3 6 9

 =

 0 0 0
0 2 1
0 1 3

⇒ P̃ =
(

2 1
1 3

)
.

Then

R̃ = P̃ − 1
2

(
4 2
2 1

)
=
(

0 0
0 5/2

)
⇒ P ≥ 0.

Therefore

P =
1
1

 1 2 3
2 4 6
3 6 9


︸ ︷︷ ︸0BB@
1
2
3

1CCA“
1 2 3

”

+
1
2

 0 0 0
0 4 2
0 2 1


︸ ︷︷ ︸0@ 2√

2
1√
2

1A“
2√
2

1√
2

”
+

 0 0 0
0 0 0
0 0 5/2

 .

i.e.

P =

 1 0 0
2 2√

2
0

3 1√
2

√
5
2

 ·

 1 2 3
0 2√

2
1√
2

0 0
√

5
2

 = U∗U.

Recall: Let H be an RKHS and K its kernel, x0 ∈ X, M = {f ∈ H :

f(x0) = 0}, then KM = KH − KM⊥ = K(x, y) − kx0(x)kx0(y)
K(x0, x0)

≥ 0, since

H = M⊕M⊥, M⊥ = span{kx0}, KM⊥ =
kx0(x)kx0(y)
‖kx0‖2

.

Cholesky’s lemma’s proof: (⇒) : Let P = (pij) ≥ 0, andX = {0, 1, . . . , n}.
Denote K(i, j) = pij , i.e. K is a kernel function.

Then KM(i, j) = K(i, j)− K(i, 0)K(j, 0)
K(0, 0)

⇒ (KM(i, j)) = (pij)−
(
pi0p̄0j

p00

)
≥ 0, pi0 = p̄0i.

(⇐) : Assume R = P −
(
p0ip̄0j

p00

)
≥ 0

⇒ P = R+
(
p0ip̄0j

p00

)
≥ 0 as a sum of 2 positive matrices. �
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Recall bijective Moebius maps ϕα : D → D, α ∈ D, ϕα(z) =
z − α

1− ᾱz
.

Note that ϕα(α) = 0, ϕ−α = ϕα
−1.

Also, if f : D → D, α, β ∈ D, f(zi) = λi, ϕα(λi) = µi, ϕβ(zi) = ζi,
then h = ϕα ◦ f ◦ ϕ−β : D → D gives h(ζi) = µi.

Lemma 9.2.
(

1− λiλ̄j
1− ziz̄j

)
≥ 0 ⇒

(
1− ϕα(λi)ϕα(λj)
1− ϕβ(zi)ϕβ(zj)

)
≥ 0.

Proof.

(
1− ϕα(λi)ϕα(λj)

1− ziz̄j

)
=


1−

(
λi − α

1− ᾱλi

)(
λ̄j − ᾱ

1− αλ̄j

)
1− ziz̄j


=
(

1
1− ᾱλi

· (1− |α|2)(1− λiλ̄j)
1− ziz̄j

· 1
1− αλ̄j

)

= (1− |α|2) ·
(

1
1− ᾱλi

)
︸ ︷︷ ︸

D

·
(

1− λiλ̄j
1− ziz̄j

)
︸ ︷︷ ︸

≥0

·
(

1
1− αλ̄j

)
︸ ︷︷ ︸

D∗

= (1− |α|2) ·D ·
(

1− λiλ̄j
1− ziz̄j

)
·D∗ ≥ 0.

Similarly, we get(
1− λiλ̄j

1− ϕβ(zi)ϕβ(zj)

)
=

1
1− |β|2

· (1− β̄zi)︸ ︷︷ ︸
D̃

·
(

1− λiλ̄j
1− ziz̄j

)
︸ ︷︷ ︸

≥0

· (1− βz̄j)︸ ︷︷ ︸
D̃∗

≥ 0.

�

Theorem 9.3 (Pick’s theorem). Given z1, z2, . . . , zn ∈ D such that
zi 6= zj ∀i 6= j, λ1, λ2, . . . , λn ∈ D, then ∃f ∈ H∞(D), ‖f‖∞ ≤ 1 such

that f(zi) = λi, 1 ≤ i ≤ n ⇐⇒
(

1− λiλ̄j
1− ziz̄j

)
≥ 0.

Proof. (⇒) : ‖f‖∞ = ‖Mf‖H2(D) ≤ 1 ⇒
(
1− f(z)f(w)

)
KH2(z, w) is a ker-

nel function. Thus, evaluating at z1, z2, . . . , zn, we get

(
1− f(zi)f(zj)

1− ziz̄j

)
≥

0.

(⇐) : Assume
(

1− λiλ̄j
1− ziz̄j

)
≥ 0. We will do by induction on n:

Case for n = 1 : We have
1− |λ1|2

1− |z1|2
≥ 0 ⇒ |λ1| ≤ 1. Set f(z) = λ1.

Assume true for n.
Then, for given z0, z1, z2, . . . , zn ∈ D, λ0, λ1, λ2, . . . , λn ∈ D
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such that
(

1− λiλ̄j
1− ziz̄j

)
(n+1)×(n+1)

≥ 0,

apply lemma where α = λ0, β = z0, µi = ϕα(λi), ζi = ϕβ(zi) 0 ≤
i ≤ n.
Note that µ0 = ϕλ0(λ0), ζ0 = ϕz0(z0). Then,

0 ≤
(

1− µiµ̄j
1− ziz̄j

)
=


1 · · · 1
...
(

1− µiµ̄j
1− ziz̄j

)
n×n

1

 . Use Cholesky:

⇒ 0 ≤
(

1− µiµ̄j
1− ziz̄j

− 1
)

=
(
ziz̄j − µiµ̄j

1− ziz̄j

)
n×n

.

Conjugate by D =


1
z1

. . .
1
zn

⇒ 0 ≤

1−
(
µi
zi

)(
µj
zj

)
1− ziz̄j


n×n

.

∴ ∃h ∈ H∞(D) such that ‖h‖∞ ≤ 1 and h(ζi) = ζi
−1 · µi = µi

ζi
, 1 ≤ i ≤ n.

Let g(z) = z · h(z), g ∈ H∞(D), ‖g‖∞ = ‖h‖∞ ≤ 1.

Then g(ζi) = µi, 1 ≤ i ≤ n, g(ζ0) = g(0) = 0 = µ0.

Let f = ϕ−α ◦ g ◦ ϕβ,
then f(zi) = ϕ−α(g(ϕβ(zi))) = ϕ−α(g(ζi)) = ϕ−α(µi) = λi, 0 ≤ i ≤ n.

�

There are deeper results achieved from D. Marshall, who showed that given
z1, z2, . . . , zn ∈ D, λ1, λ2, . . . , λn ∈ D, ∃a1, a2, . . . , an ∈ D and |c| ≤ 1
such that

f(z) = c

n∏
i=1

ϕai(z),

which is called the Blaschke Product, ‖f‖∞ ≤ 1, f(zi) = λi, 1 ≤ i ≤ n.

Now, let’s consider 2-Point Pick’s theorem:

Let z1, z2, λ1, λ2 ∈ D, ∃f(zi) = λi ⇐⇒
(

1− λiλ̄j
1− ziz̄j

)
≥ 0

⇐⇒

(
1− ϕλ1(λi)ϕλ1(λj)
1− ϕz1(zi)ϕz1(zj)

)
≥ 0 ⇐⇒ α = λ1, β = z1.(

1 1

1 1−|ϕλ1
(λ2)|2

1−|ϕz1 (z2)|2

)
≥ 0 ⇐⇒ |ϕz1(z2)|2 − |ϕλ1(λ2)|2

1− |ϕz1(z2)|2
≥ 0

⇐⇒ |ϕλ1(λ2)|2 ≤ |ϕz1(z2)|2.
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Hence,

{∃f, f(zi) = λi, i = 1, 2 with‖f‖∞ ≤ 1} ⇐⇒ |ϕλ1(λ2)| ≤ |ϕz1(z2)|.

Definition 9.4. dH(z1, z2) = |ϕz2(z1)| is called pseudo-hyperbolic metric.

Theorem 9.5 (A generalization of Schwartz’s Lemma by Pick). If f : D →
D, then dH(f(z1), f(z2)) ≤ dH(z1, z2).

Analogues of Pick’s theorem

Abrahamse: Let G ⊂ C be a ”nice g-holed domain”, i.e. G is a bounded
open region where δG consists of g + 1 disjoint smooth curves. Denote
Tg = {λ = (λ1, λ2, . . . , λg) : |λi| = 1, i = 1, . . . , g}.
Let {Kλ(z, w)} be a family of kernels on G satisfying:

1) ∀λ,Kλ(z, w) is analytic in z, co-analytic in w,
2) ∀ fixed z, w, the map λ→ Kλ(z, w) is continuous,
3) Given z1, . . . , zn ∈ G,µ1, . . . , µn ∈ D,∃f ∈ H∞(G), f(zi) = µi,∀i

and ‖f‖∞ ≤ 1 ⇐⇒ ((1− µiµ̄j)Kλ(zi, zj)) ≥ 0,∀λ ∈ Tg.

Example: Fix 0 < q < 1, let Aq = {z : q < |z| < 1} and
Kt(z, w) =

∑∞
−∞

(zw̄)n

1+q2n+1·q−2t . Then, we have

Kt+1(z, w) =
∞∑
−∞

(zw̄)n

1 + q2n+1 · q−2(t+1)
=

∞∑
−∞

(zw̄)n

1 + q2(n−1)+1 · q−2t

=
∞∑

m=−∞

(zw̄)m+1

1 + q2m+1 · q−2t
= zw̄Kt(z, w) = zKt(z, w)w̄.

Note: ((1− µiµ̄j)Kt(zi, zj)) ≥ 0 ⇐⇒ ((1− µiµ̄j)ziKt(zi, zj)z̄j) ≥ 0 ⇐⇒
((1− µiµ̄j)Kt+1(zi, zj)) ≥ 0.

Theorem 9.6 (Abrahamse, 1979). Given z1, . . . , zn ∈ Aq, µ1, . . . , µn ∈
D,∃f ∈ H∞(Aq) such that f(zi) = µi, ‖f‖∞ ≤ 1 ⇐⇒ ((1− µiµ̄j)Kt(zi, zj)) ≥
0,∀0 ≤ t ≤ 1.

Theorem 9.7 (Fedorov-Visinikov / McCullugh, 1990). Given z1, . . . , zn ∈
Aq, µ1, . . . , µn ∈ D,∃f ∈ H∞(Aq) such that f(zi) = µi, ‖f‖∞ ≤ 1 ⇐⇒
∃t1, t2 such that ((1− µiµ̄j)Ktk(zi, zj)) ≥ 0, k = 1, 2.
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Open Problem: Let G be any g−holed domain, fix z1, . . . , zn ∈ G. Does
there exist a finite subset Λz ⊆ Tg, enough to check Abrahamse for λ ∈ Λz
???

Theorem 9.8 (Agler). Let zi ∈ D2, zi = (αi, βi), µ1, . . . , µn ∈ D then
∃f ∈ H∞(D2) such that f(zi) = f((αi, βi)) = µi,∀i, ‖f‖∞ ≤ 1
⇐⇒ ∃P,Q ∈Mn(C), P = (pij) ≥ 0, Q = (qij) ≥ 0
such that (1− µiµ̄j) = ((1− αiᾱj)pij) +

(
(1− βiβ̄j)qij

)
.

Theorem 9.9 (Pick’s version). 0 ≤
(

1− µiµ̄j
1− ziz̄j

)
= P = (pij) ⇐⇒ (1 −

µiµ̄j) = ((1− ziz̄j)pij).

Theorem 9.10 (Dual Version). Let zi = (αi, βi) ∈ D2, µ1, . . . , µn ∈ D,
then ∃f ∈ H∞(D2) such that f(zi) = f((αi, βi)) = µi, ‖f‖∞ ≤ 1 ⇐⇒
((1 − µiµ̄j) = (rij)) ≥ 0,∀(rij) ∈ Mn(C) such that ((1− αiᾱj)rij) ≥ 0 and(
(1− βiβ̄j)rij

)
≥ 0.

Another Direction of Generalizations
Given K : X×X → C a kernel function, recall if f ∈M(HK), then ‖f‖∞ ≤
‖Mf‖ and ‖Mf‖ ≤ 1 ⇐⇒ (1 − f(x)f(y))K(x, y) is a kernel. If, for given
x1, . . . , xn ∈ X,µ1, . . . , µn ∈ D,∃f ∈ M(HK) with ‖Mf‖ ≤ 1, f(xi) = µi,
then ((1− µiµ̄j)K(xi, xj)) ≥ 0.

Definition 9.11. K is called a Pick kernel, if ∀n, ∀x1, . . . , xn ∈ X, ∀µ1, . . . , µn ∈
D, ((1− µiµ̄j)K(xi, xj)) ≥ 0 ⇒ ∃f ∈M(HK) with ‖f‖∞ ≤ ‖Mf‖ ≤ 1.

The above definition is still not very well-understood, but there exists a
definition of a complete Pick Kernel.

Theorem 9.12 (McCullugh - Quiggen). The function K : X × X → C
is a complete Pick Kernel if and only if there exists a Hilbert space

L,B = ball(L), ϕ : X → B such that K(x, y) =
1

1− 〈ϕ(x), ϕ(y)〉
.

10. Vector-Valued RKHS’s

Definition 10.1. Let C be a Hilbert space, and X be a set such that the
collection of all functions from X to C is a vector space under pointwise
sum. H is a called a RKHS of C-valued functions provided:

i) H is a Hilbert space,
ii) H is a vector space of C-valued functions ,
iii) ∀y ∈ X, the linear map Ey : H → C, Ey(f) = f(y) is bounded.

Example: Let H be a RKHS on X. Then H(n) = {

 f1
...
fn

 : fi ∈ H} and

for any f ∈ H, ‖f‖2 = ‖f1‖2 + · · · + ‖fn‖2, 〈f, g〉H(n) =
∑n

i=1〈fi, gi〉. So,
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H(n) is a Hilbert space. Given f ∈ H(n), regard f as a function f : X → Cn

as f(x) =

 f1(x)
...

fn(x)

. Clearly, H(n) satisfies i), ii) of the definition.

Need to show, ∀y ∈ X,Ey : H(n) → Cn is bounded:
Since H is a RKHS, then ∃ky ∈ H such that fi(y) = 〈fi, ky〉H, which implies

f(y) =

 〈f1, ky〉
...

〈fn, ky〉

⇒ ‖f(y)‖2
Cn =

∑n
i=1 |fi(y)|2 =

∑n
i=1 |〈fi, ky〉|2

. ≤
∑n

i=1 ‖fi‖2
H‖ky‖2

H = ‖ky‖2
H · ‖f‖2

H(n)

⇒ Ey is a bounded linear map, and ‖Ey‖ ≤ ‖ky‖H .

Looking at f =

 f1
...
fn

 ∈ H(n), we see ‖Ey‖ = ‖ky‖, therefore H(n) is a

RKHS of Cn-valued functions.

Definition 10.2. Given an RKHS H of C-valued functions on X, set K :
X ×X → B(C) by K(x, y) = Ex ◦ E∗y ∈ B(C), then K is called operator-
valued reproducing kernel of H.

10.1. Matrices of Operators. .
Fix C a Hilbert space, consider Tij ∈ B(C), 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then we

regard T = (Tij)m×n : Cn → Cm by T

 v1
...
vn

 =


∑n

j=1 T1jvj
...∑n

j=1 Tmjvj

 and T

is bounded, ‖T‖2 =
∑n,m

i,j=1 ‖Tij‖2 ⇒ T ∈ B(Cn, Cm).
Let Pij ∈ B(C), 1 ≤ i, j ≤ n, P = (Pij) ∈ B(Cn). Then P ≥ 0 ⇐⇒

〈Pv, v〉 ≥ 0,∀v ∈ Cn. Having v =

 v1
...
vn

, then 〈Pv, v〉Cn =
∑n

i,j=1〈Pijvj , vi〉C .

Proposition 10.3. Let H be an RKHS of C-valued functions, K(x, y) =
ExE

∗
y ∈ B(C) kernel, let x1, . . . , xn ∈ X. Then (K(xi, xj)) ∈ B(Cn) is

positive (semi-definite).

Proof. Let v ∈ Cn, then we have

〈(K(xi, xj))v, v〉 =
n∑

i,j=1

〈K(xi, xj)vj , vi〉 =
n∑

i,j=1

〈ExiE∗xjvj , vi〉

=
n∑

i,j=1

〈E∗xjvj , E
∗
xivi〉 = ‖

n∑
j=1

E∗xjvj‖
2 ≥ 0

�
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Proposition 10.4. Let H be an RKHS of C-valued functions, K(x, y) =
ExE

∗
y ∈ B(C) kernel,et x1, . . . , xn ∈ X, v1, . . . , vn ∈ C. Then the function

g(x) =
∑n

i=1K(x, xi)vi ∈ H for any g : X → C.

Proof.

g(x) =
n∑
i=1

K(x, xi)vi =
n∑
i=1

ExE
∗
xivi = Ex (

n∑
i=1

E∗xivi)︸ ︷︷ ︸
∈H,E∗xi :C→H

,

⇒ g =
n∑
i=1

E∗xivi ∈ H.

�

Note: K(x, y) = ExE
∗
y ⇒ K(x, y)∗ = (ExE∗y)

∗ = EyE
∗
x = K(y, x).

Take f ∈ H, v ∈ C, then 〈f(x), v〉C = 〈Ex(f), v〉 = 〈f,E∗x(v)〉H.
Let x1, x2, . . . , xn ∈ X, v1, v2, . . . , vn ∈ C, g =

∑n
j=1E

∗
xjvj ∈ H.

Then ‖g‖2 = ‖
∑n

j=1E
∗
xjvj‖

2 = 〈
∑n

j=1E
∗
xjvj ,

∑n
i=1E

∗
xivi〉

=
∑n

i,j=1〈ExiE∗xjvj , vi〉 = 〈(K(xi, xj))

 v1
...
vn

 ,

 v1
...
vn

〉.
Proposition 10.5. Let x1, x2, . . . , xn ∈ X, v1, v2, . . . , vn ∈ C. Then the
functions g =

∑n
j=1E

∗
xjvj are dense in H.

Proof. Let f ∈ H be orthogonal to the span{g : g =
∑n

j=1E
∗
xjvj}.

Then we have ∀x ∈ X, ∀v ∈ C, f ⊥ E∗x ⇐⇒ 〈f,E∗xv〉H = 0 ⇐⇒
〈Ex(f), v〉C = 〈f(x), v〉C = 0,∀v ∈ C. This implies f(x) = 0,∀x ∈ X, there-
fore f = 0. So g =

∑n
j=1E

∗
xjvj are dense in H. �

Proposition 10.6. Let H,H′ be two RKHS of C-valued functions on X,
and K(x, y),K ′(x, y) be their kernels respectively. If K = K ′, then H = H′
and ‖f‖H = ‖f‖H′.

Proof. By the definition, g(·) =
∑

j=1K(·, xj)vj =
∑

j=1K
′(·, xj)vj , which

implies g ∈ H ∩ H′ and such g’s are dense in both spaces. Then ‖g‖2
H =

〈(K(xi, xj))

 v1
...
vn

 ,

 v1
...
vn

〉 = 〈(K ′(xi, xj))

 v1
...
vn

 ,

 v1
...
vn

〉 = ‖g‖2
H′ .

�

Example: Let H be the ordinary RKHS on X, define H(n) = {~f = f1
...
fn

 : fi ∈ H}, and ‖~f‖2
H(n) =

∑n
i=1 ‖fi‖2

H which gives RKHS of Cn-

valued functions.
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Let K(x, y) ∈ B(C), Kn(x, y) ∈ B(Cn) = Mn be the kernels of H, H(n).

We know Ey : H(n) → Cn, Ey(~(f)) =

 f1(y)
...

fn(y)

 =

 〈f1, ky〉
...

〈fn, ky〉

, and

E∗y : Cn → H(n) with 〈Ey(f),

 λ1
...
λn

〉Cn = 〈

 f1(y)
...

fn(y)

 ,

 λ1
...
λn

〉Cn =

∑n
j=1 λ̄jfj(y) =

∑n
j=1 λ̄j〈fj , ky〉H =

∑n
j=1〈fj , λjky〉H = 〈

 f1
...
fn

 ,

 λ1ky
...

λnky

〉H(n) .

Therefore E∗y(

 λ1
...
λn

) =

 λ1ky
...

λnky

.

Now consider 〈Kn(x, y)

 λ1
...
λn

 ,

 µ1
...
µn

〉Cn = 〈ExE∗y

 λ1
...
λn


︸ ︷︷ ︸

λ

,

 µ1
...
µn


︸ ︷︷ ︸

µ

〉 =

〈E∗y(λ), E∗x(µ)〉H(n) = 〈λky, µkx〉H(n) = λµ̄K(x, y) =
∑n

j=1 λjµ̄iK(x, y).

So, Kn(x, y) =

K(x, y) 0
. . .

0 K(x, y)

, i.e. Kn(x, y) = K(x, y) · In.

Let H be an RKHS of functions, let C be some arbitrary Hilbert space.
Write Ẽy : H → C such that Ẽy(f) = 〈f, ky〉. Recall the Hilbert Space
Tensor Product, then H⊗ C = {

∑
fi ⊗ vi : fi ∈ H, vi ∈ C}−.

Recall H1, C1 given Hilbert spaces, T ∈ B(H,H1), R ∈ B(C, C1), then there
exists T⊗R : H⊗C → H1⊗C1 bounded, and ‖T⊗R‖ = ‖T‖·‖R‖. Consider
Ẽy : H → C and IC : C → C, then there exists a unique bounded operator
Ẽy ⊗ IC : H⊗ C → C⊗ C ∼= C. So (Ẽy ⊗ IC)(

∑
i fi ⊗ vi) =

∑
i Ẽy(fi)⊗ vi =∑

i fi(y)vi and ‖Ẽy ⊗ IC‖ = ‖Ẽy‖. Define K = {(Ẽy ⊗ I)(u) : u ∈ H ⊗ C},
i.e K = {û(y) : u ∈ H ⊗ C} is a set of C-valued functions.
Claim: For any u1, u2 ∈ H ⊗ C}, we have û1 = û2 ⇐⇒ u1 = u2:
Pick a basis {eα}α∈A for C. Every u ∈ H ⊗ C} has a unique expansion
as u =

∑
fα ⊗ eα, where fα ∈ H, and ‖u‖2

H⊗C =
∑

α ‖fα‖2
H. Therefore

u1 =
∑
f1
α ⊗ eα and u2 =

∑
f2
α ⊗ eα. Then û1 = û2 ⇐⇒

∑
f1
α(y)eα =∑

f2
α(y)eα,∀y, ⇐⇒ f1

α(y) = f2
α(y) ⇐⇒ f1

α = f2
α,∀α ∈ A ⇐⇒ u1 = u2.

Using the claim, then as vector spaces K ∼= H ⊗ C, since ˆu1 + u2 = û1 +
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û2, ˆαu1 = αû1. If we set ‖û‖K = ‖u‖H⊗C , then K is a Hilbert space of C-
valued functions. For y ∈ X, û(y) = (Ẽy ⊗ IC)(u) and ‖û(y)‖C ≤ ‖Ẽy ⊗ IC‖ ·
‖u‖H⊗C = ‖Ẽy‖ ·‖û‖K. Therefore, K is an RKHS of C-valued functions with
Ey(û) = û(y) = (Ẽy ⊗ IC)(u). Hence, K ∼= H ⊗ C is an RKHS of C-valued
functions if u =

∑n
i=1 fi ⊗ vi and û(x) =

∑n
i=1 fi(x)vi.

Note: Let C = Cn, and H(n) = {~f =

 f1
...
fn

 : fi ∈ H}. Then identify

~f =

 f1
...
fn

 = f1 ⊗ e1 + · · ·+ fn ⊗ en︸ ︷︷ ︸
H⊗Cn

=
∑n

i=1 fi ⊗ ei.

Proposition 10.7. Let H be an RKHS of functions with kernel K(x, y), let
C be any Hilbert space. If we regard H⊗C as an RKHS of C-valued functions
as above, then the kernel of H⊗ C is defined as KC(x, y) = K(x, y) · IC.

Proof. Look at Ex : H⊗ C → C and E∗x : C → H⊗ C. Then,
for any v, w ∈ C, f ∈ H, we have E∗x(v) = kx ⊗ v and
〈f ⊗ w,E∗x(v)〉H⊗C = 〈Ex(f ⊗ w), v〉C = 〈f(x)w, v〉C = f(x)〈w, v〉C
= 〈f, kx〉H〈w, v〉C = 〈f ⊗ w, kx ⊗ v〉H⊗C .
So KC(x, y) = ExE

∗
y ∈ B(C), therefore 〈KC(x, y)v, w〉C = 〈E∗yv,E∗xw〉H⊗C

= 〈ky ⊗ v, kx ⊗ w〉 = 〈ky, kx〉H〈v, w〉C = 〈K(x, y) · ICv, w〉.
Hence, KC(x, y) = K(x, y) · IC . �

Corollary 10.8.

H⊗ Cn = {~f =

 f1
...
fn

 : fi ∈ H, ‖~f‖2 =
n∑
i=1

‖fi‖2}.

Proof. Earlier, we showed that the right hand side of the above is a Cn-
valued RKHS with kernel ky(x)ICn , which is a kernel for the left hand side.

�

Recall from the scalar case the bounded linear functionals f → f(x), with
|f(x)| = |〈f, kx〉| ≤ ‖f‖ · ‖kx‖ ⇒ |f(x)| ≤ ‖f‖K(x, x)1/2.

Proposition 10.9. Let H be an RKHS of C-valued functions. Then ∀f ∈
H, ‖f(x)‖C ≤ ‖f‖ · ‖K(x, x)1/2‖.

Proof. Note that ‖K(x, x)1/2‖2 = ‖(K(x, x)1/2)∗K(x, x)1/2‖ = ‖K(x, x)‖.

‖f(x)‖2
C = 〈f(x), f(x)〉C = 〈Ex(f), Ex(f)〉 = 〈E∗xEx(f), f〉 ≤ ‖E∗xEx‖·‖f‖2

= ‖ExE∗x‖ · ‖f‖2 = ‖K(x, x)‖ · ‖f‖2 ⇒ ‖f(x)‖C ≤ ‖f‖ · ‖K(x, x)1/2‖.

�



52 V. I. PAULSEN

Definition 10.10. The map K : X × X → B(C) is positive, provided
∀x1, . . . , xn ∈ X, ∀n, the matrix (K(xi, xj)) ∈Mn(B(C)) = B(Cn) is positive-
definite, i.e. (K(xi, xj)) ≥ 0.

Theorem 10.11 (Extension of Moore). Let K : X×X → B(C) be a positive
function. Then there exists a unique RKHS of C-valued functions, H, such
that K is the kernel function for H.

Proof. Let W = {g(·) =
∑n

j=1K(·, xj)vj : ∀xj ∈ X, ∀vj ∈ C} be the set of
those C-valued functions. DefineB : W×W → C byB((

∑n
j=1K(·, xj)vj ,

∑n
i=1K(·, xi)wi)) =∑n

i,j=1〈K(xi, xj)vj , wi〉.
B is well-defined: Suppose f(·) =

∑n
j=1K(·, xj)vj and f(x) = 0,∀x.

Want to show B(f, h) = 0, B(h, f) = 0. It is enough to take h(·) = K(·, y)w
by linearity. Then B(f, h) =

∑n
j=1〈K(y, xj)vj , w〉 = 〈f(y), w〉 = 0. Simi-

larly, B(h, f) = 0, therefore B is well-defined.
B is an inner-product on W : Let f(·) = K(·, x)v, and h(·) = K(·, y)w.

• Clearly, we have B(f1 + f2, h) = B(f1, h) +B(f2, h),
and B(f, h1 + h2) = B(f, h1) +B(f, h2),
and B(λf, h) = λB(f, h).

• B(f, h) = 〈K(y, x)v, w〉C = 〈v,K(y, x)∗w〉
= 〈v,K(x, y)w〉C = 〈K(x, y)w, v〉 = B(h, f).

• f(·) =
∑n

j=1K(·, xj)vj ⇒ B(f, f) =
∑n

i,j=1〈K(xi, xj)vj , vi〉 ≥ 0
B(f, f) = 0 ⇐⇒

∑n
i,j=1〈K(xi, xj)vj , vi〉 = 0.

Consider B(f + λth, f + λth) = B(f, f) + λ̄tB(f, h) + λtB(h, f) +
|λ|2t2B(h, h) ≥ 0, then ∀λ, t, pick λ such that−2t|B(f, h)|+t2B(h, h) ≥
0,∀t,
⇒ −|B(f, h)| ≥ 0 ⇒ B(f, h) = 0,∀h.
Let h(·) = K(·, y)w, then 0 = B(f, h) =

∑n
j=1〈K(y, xj)vj , w〉C =

〈f(y), w〉 = 0,∀y, w. Therefore f = 0.
Hence, B is an inner product on W .
Now, let H be the Hilbert space obtained by completing W . Then this
H is a space of C-valued functions: Idea of showing it, consists of taking
{fn} ⊆ W , a Cauchy sequence. Then ∀x, {fn(x)} is Cauchy in C, which
implies ∃ f : X → C defined by f(x) = limn→∞ fn(x). And the rest is
similar... �

Theorem 10.12 (Sums of Kernels). Let H1,H2 be two RKHS’s of C-valued
functions on X with kernels K1,K2 respectively. Then H = {f = f1 + f2 :
fi ∈ Hi, i = 1, 2} with norm ‖f‖2

H = ‖f1+f2‖2
H = inf{‖f1‖2

H1
+‖f2‖2

H2
} is an

RKHS of C-valued functions on X with kernel K(x, y) = K1(x, y)+K2(x, y).

Proof. Look at K = H1 ⊕ H2 = {(f1, f2) : ‖(f1, f2)‖2 = ‖f1‖2 + ‖f2‖2}.
Define Γ : K → H by Γ((f1, f2)) = f1 + f2, which is onto. Let N = KerΓ.
N is closed: Let {(fn1 , fn2 )} ⊆ N be a sequence such that (fn1 , f

n
2 ) →

(f1, f2). Then f1(x) = limn f
n
1 (x) = limn(−fn2 (x)) = −f2(x) ⇒ f1(x) +

f2(x) = 0∀x, i.e. f1 + f2 = 0. Hence, (f1, f2) ∈ N ⇒ N is closed.
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Therefore, Γ : N⊥ → H is an one-to-one map. So, Γ is an isometry on
N⊥, and H with this norm is a Hilbert space.
Now, let f ∈ H, f = f1 + f2, where (f1, f2) ∈ N⊥. Then

‖f(x)‖ ≤ ‖f1(x)‖+ ‖f2(x)‖ ≤ ‖E1
x‖ · ‖f1‖H1 + ‖E2

x‖ · ‖f2‖H2

≤ (‖E1
x‖2 + ‖E2

x‖2)1/2(‖f1‖2
H1

+ ‖f2‖2
H2

)1/2

⇒ ‖f(x)‖ ≤
√
‖E1

x‖2 + ‖E2
x‖2 · ‖f‖H ⇒ H is an RKHS.

Let Ex : H → C and K(x, y) = ExE
∗
y . To show that K(x, y) = K1(x, y) +

K2(x, y), it is enough to show that for any v ∈ C, E∗yv = E1∗
yv + E2∗

yv,
i.e. E∗yv = K1(·, y)v +K2(·, y)v. Since K(x, y)v = Ex(E∗yv) = K1(x, y)v +
K2(x, y)v, then done.
Claim: (K1(·, y)v,K2(·, y)v) ∈ N⊥: Let (f1, f2) ∈ N , then

〈(f1, f2), (K1(·, y)v,K2(·, y)v)〉H1⊕H2 = 〈f1, E
1∗
yv〉H1 + 〈f2, E

2∗
yv〉H2

= 〈E1
y(f1), v〉C + 〈E2

y(f2), v〉C = 〈f1(y) + f2(y), v〉C = 0

Let f1 + f2 ∈ H, where (f1, f2) ∈ N⊥, then

〈(f1 + f2), (E1∗
yv + E2∗

yv)〉H = 〈(f1, f2), (E1∗
yv,E

2∗
yv)〉H1⊕H2

= 〈f1, E
1∗
yv〉H1 + 〈f2, E

2∗
yv〉H2 = 〈f1(y), v〉C + 〈f2(y), v〉C

= 〈f1(y) + f2(y), v〉C = 〈Ey(f1 + f2), v〉C = 〈f1 + f2, E
∗
yv〉H.

Therefore, E∗yv = E1∗
yv + E2∗

yv. �

Theorem 10.13 (Douglas’ Factorization Theorem). Let H1.H2,K be three
given Hilbert spaces, B ∈ B(H1,K), F ∈ B(H2,K). Then t.f.a.e. :

1) Range(F ) ⊆ Range(B),
2) There exists m > 0, such that FF ∗ ≤ m2BB∗,
3) There exists X ∈ B(H2,H1), such that F = BX.

Proof. (3) ⇒ (1) : It is obvious.
(1) ⇒ (3) : Let N1 = Ker(B), then B : N⊥

1 → Range(B) is one-to-one map.
For each h2 ∈ H2, there exists a unique h1 ∈ clN⊥

1 such that F (h2) = B(h1),
since Range(F ) ⊆ Range(B). Define X(h2) = h1.

• X is linear: By the above, for any h2, h
′
2 ∈ H2, we can have F (h2) =

B(h1), F (h′2) = B(h′1), which implies F (h2 + h′2) = B(h1 + h′1).
Therefore X(h2 +h′2) = h1 +h′1 = X(h2)+X(h′2). Similarly, we can
show X(αh2) = αX(h2).

• X is bounded: Let hn2 → h2, and X(hn2 ) → h1. Need to show
X(h2) = h1. Let hn1 = X(hn2 ), then F (hn2 ) = B(hn1 ), where F (hn2 ) →
F (h2) and B(hn1 ) → B(h1), therefore F (h2) = B(h1). Hence, by
Closed Graph theorem, we have X(h2) = h1.

(3) ⇒ (2) : Let F = BX, let ‖X‖ = m.
Then XX∗ ≤ m2I ⇒ B(XX∗)B∗ ≤ B(m2I)B∗ ⇒ FF ∗ ≤ m2BB∗.
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(2) ⇒ (3) : Having FF ∗ ≤ m2BB∗, then ‖F ∗k‖2 = 〈FF ∗k, k〉 ≤ m2〈BB∗k, k〉 =
m2‖B∗k‖2. Define Y : Range(B∗)︸ ︷︷ ︸

⊆H1

→ Range(F ∗)︸ ︷︷ ︸
⊆H2

by Y (B∗k) = F ∗k.

• Y is well-defined: Suppose B∗k1 = B∗k2 ⇒ B∗(k1 − k2) = 0 ⇒
F ∗(k1 − k2) = 0 ⇒ F ∗k1 = F ∗k2.

• Y is linear: It is obvious by the definition.
• Y is bounded by m: ‖Y (B∗k)‖ = ‖F ∗k‖ ≤ m‖B∗k‖.

We extend Y to Ỹ by continuity as Ỹ : Range(B∗) → H2.
Let P : H1 → Range(B∗), then Ỹ P = Z : H1 → H2 and Z is bounded by
m, and ZB∗k = Y B∗k = F ∗k, which implies ZB∗ = F ∗ ⇒ F = BZ∗. Let
X = Z∗. Done. �

Lemma 10.14 (1). Let H be an RKHS of C-valued functions on X with
kernel K(x, y), let v1, . . . , vn ∈ C. Then ∃ g ∈ H such that g(xi) = vi,∀i if

and only if

v1...
vn

 ∈ Range((K(xi, xj))1/2).

Proof. Define B ∈ B(H, Cn) by B(f) =

f(x1)
...

f(xn)

 =

Ex1(f)
...

Exn(f)

. Consider

〈B(f),

v1...
vn

〉Cn = 〈

f(x1)
...

f(xn)

 ,
v1...
vn

〉Cn =
n∑
i=1

〈f(xi), vi〉 = 〈f,
n∑
i=1

E∗xivi〉.

Hence, B∗ : Cn → H can be defined as B∗ =

E
∗
x1
...

E∗xn

, and we have

B∗(

v1...
vn

) =
n∑
i=1

E∗xivi =
n∑
i=1

K(·, xi)vi.

Next, BB∗ : Cn → Cn and BB∗ = (E∗xiExj ) = K(xi, xj) = ((K(xi, xj))1/2)2,
which implies Range((K(xi, xj))1/2) = Range(B), andv1...
vn

 ∈ Range(B) ⇐⇒ ∃ f ∈ H such that

v1...
vn

 =

f(x1)
...

f(xn)

. �

Lemma 10.15 (2). Let H be an RKHS of C-valued functions on X with
kernel K(x, y), let f ∈ H, and for each finite subset F ⊆ X, set gF = PF (f),
where PF is the orthogonal projection onto span{K(·, x)v : x ∈ F, v ∈ C}.
Then, the net {gF : F finite} converges in norm to f .
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Sketch of the proof: 1) Show gF (x) = f(x),∀x ∈ F .
2) Rest is the same as in scalar case(done before).

Definition 10.16. Let v, w ∈ C, let Rv,w = v ⊗ w̄ denote the operator
defined by Rv,w(z) = 〈z, w〉v.

Some important properties about Rv,w:

(1) Rv,w is rank-1 operator.
(2) LetR : C → C be some rank-1 operator, choose any v ∈ Range(R), v 6=

0. Then R(z) = λ(z)v, where λ is some scalar function. By linearity
of R, we have λ(z1 + z2)v = R(z1 + z2) = R(z1) +R(z2) = λ(z1)v +
λ(z2)v, i.e. λ(z1 + z2) = λ(z1) + λ(z2). Similarly, λ(αz) = αλ(z).
Hence, λ is linear.
Look at |λ(z)| · ‖v‖ = ‖R(z)‖ ≤ ‖R‖ · ‖z‖ ⇒ |λ(z)| ≤ (‖R‖‖v‖ )‖z‖,
which implies λ is a bounded linear functional. Therefore, ∃w ∈ C
such that λ(z) = 〈z, w〉 ⇒ R(z) = 〈z, w〉v, i.e. R = Rv,w.

(3) Similarly, if R : C → C is of rank-n, choose an orthonormal basis
{v1, . . . , vn} for Range(R), and get R =

∑n
i=1Rvi,wi .

(4) Rαv,w = (αv)⊗ w̄ = α(v ⊗ w̄) = αRv,w,
and Rv,αw = v ⊗ (αw) = ᾱ(v ⊗ w̄) = ᾱRv,w.

(5) Let C = Cn, let v =

α1
...
αn

, and w =

β1
...
βn

, thenRv,w =

α1β̄1 · · · α1β̄n
...

...
αnβ̄1 · · · αnβ̄n

,

i.e. Rv,w = (αiβ̄j).

Theorem 10.17 (3). Let H be an RKHS of C-valued functions on X with
kernel K(x, y), let f : X → C. Then, t.f.a.e.:

i) f ∈ H,
ii) ∃m ≥ 0, such that ∀x1, . . . , xn ∈ X, ∃h ∈ H with ‖h‖ ≤ m and

h(xi) = f(xi),∀1 ≤ i ≤ m.
iii) ∃m ≥ 0, such that f(x) ⊗ f(y) ≤ m2K(x, y), i.e. m2(K(xi, xj)) −

(f(xi)⊗ f(xj)) ≥ 0.

Moreover, the least such m that works is m = ‖f‖.

Proof. (i) ⇒ (iii) : Fix x1, . . . , xn ∈ X, v1, . . . , vn ∈ C,
let g(·) =

∑n
j=1K(·, xj)vj =

∑n
j=1E

∗
xjvj . Then

‖g‖2 =
n∑

i,j=1

〈E∗xjvj , E
∗
xivi〉 =

n∑
i,j=1

〈K(xi, xj)vj , vi〉 = 〈(K(xi, xj))

v1...
vn

 ,
v1...
vn

〉.
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Therefore, letting m = ‖f‖, we have

m2
n∑

i,j=1

〈K(xi, xj)vj , vi〉 −
n∑

i,j=1

〈f(xi)⊗ f(xj)vj , vi〉

= m2 ·‖g‖2−
n∑

i,j=1

〈〈vj , f(xj)〉f(xi), vi〉 = m2 ·‖g‖2−
n∑

i,j=1

〈vj , f(xj)〉〈f(xi), vi〉

= m2 · ‖g‖2 − |
n∑
j=1

〈vj , f(xj)〉|2 = ‖f‖2 · ‖g‖2 − |
n∑
j=1

〈E∗xjvj , f〉|
2

= ‖f‖2 · ‖g‖2 − |〈g, f〉|2 ≥ 0 by Cauchy-Schwarz.

(iii) ⇒ (ii) : Fix x1, . . . , xn ∈ X, v1, . . . , vn ∈ C. Define T ∈ B(C, Cn) by

T (λ) = λ

v1...
vn

, then T ∗ : Cn → C, T ∗(

z1...
zn

) =
∑n

j=1〈zj , vj〉. Substitute

v1, . . . , vn ∈ C with f(x1), . . . , f(xn) ∈ C, then T ∗(

z1...
zn

) =
∑n

j=1〈zj , f(xj)〉.

Look at TT ∗ : Cn → Cn, then

〈(TT ∗)

v1...
vn

 ,
w1

...
wn

〉 = 〈T ∗

v1...
vn

 , T ∗
w1

...
wn

〉
= 〈

n∑
j=1

〈zj , f(xj)〉,
n∑
i=1

〈wi, f(xi)〉〉C =
n∑

i,j=1

〈zj , f(xj)〉〈wi, f(xi)〉

=
n∑

i,j=1

〈zj , f(xj)〉〈f(xi), wi〉 = 〈(f(xi)⊗ f(xj))

v1...
vn

 ,
w1

...
wn

〉.
Hence, TT ∗ = (f(xi)⊗ f(xj)).

Let B ∈ B(H, Cn), B(g) =

g(x1)
...

g(xn)

, then BB∗ = (K(xi, xj)) and

m2BB∗ ≥ TT ∗ by (iii), which implies ∃X : C → H such that T = BX, let
h = X(1). Then ‖h‖ ≤ ‖X‖ · 1 ≤ m. Therefore,f(x1)

...
f(xn)

 = T (1) = BX(1) = B(h) =

h(x1)
...

h(xn)

 .
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(ii) ⇒ (i) : Let F be the set of all finite subsets of X. Then ∀F ∈
F , ∃hF ∈ H such that hF (x) = f(x), x ∈ F, ‖hF ‖ ≤ m. Look at the
projection PF : H → HF = {g : g(x) = 0,∀x ∈ F}⊥. Then, for any
x ∈ F, (PFhF )(x) = hF (x) = f(x) and ‖PFhF ‖ ≤ ‖hF ‖.
WLOG, let hF ∈ HF , we claim {hF }F∈F is a Cauchy net:
Given ε ≥ 0, let M = sup{‖hF ‖ : F ∈ F} ≤ m. Pick Fo such that

M2 − ε2

4
≤ ‖hFo‖2 ≤M2. Choose F containing Fo, then (hF − hFo) ∈ H⊥F0

,

therefore ‖hF ‖2 = ‖hFo‖2 + ‖hF − hFo‖2 ≤ M2 by Pythagorea theorem.

Then ‖hF − hFo‖2 ≤ ε2

4
⇒ ‖hF − hFo‖ ≤

ε

2
. Therefore, for any F1, F2 con-

taining Fo, we have ‖hF1 −hF2‖ ≤ ‖hF1 −hFo‖+ ‖hF2 −hFo‖ < ε⇒ {hF } is
Cauchy. Hence, ∃h ∈ H such that h = limF hF . Given xo ∈ X,Fo = {xo},
then ∀F containing Fo, xo ∈ F , we have hF (xo) = f(xo).
Therefore, h(xo) = limF hF (xo) = f(xo),∀xo ∈ X ⇒ h = f ⇒ ‖f‖ ≤
m. �

Proposition 10.18 (1). Let H1,H2 be two RKHS’s of C-valued functions
on X with kernels K1(x, y),K2(x, y) and norms ‖ · ‖1, ‖ · ‖2 respectively.
If there exists m ≥ 0 such that K2(x, y) = m2K1(x, y),∀x, y ∈ X, then
H1 = H2 and ‖f‖1 = m‖f‖2.

Proof. By property (3), f ∈ H1 ⇐⇒ f ∈ H2. Norms work by ”moreover”
part, i.e. ‖f‖1 = m‖f‖2. �

Proposition 10.19 (2). Let H1,H2 be two RKHS’s of C-valued functions
on X with kernels K1(x, y),K2(x, y) respectively. If H1 ⊆ H2 and I1 : H1 →
H2 the inclusion map, then I1 a bounded linear map, and I∗1 (K2(·, y)v) =
K1(·, y)v.

Proof. Suppose fn → f in H1, and I1(f) → g in H2. Need to show I1(f) = g
in H2: We have f(x) = limn fn(x) = limn I1(fn)(x) = g(x) ⇒ f = g.
Let f ∈ H1, then

〈I∗1 (K2(·, y)v), f〉1 = 〈K2(·, y)v, I1(f)〉2 = 〈E2∗
y(v), f〉2 = 〈v,E2

y(f)〉C
= 〈v, f(y)〉C = 〈v,E1

y(f)〉C = 〈E1∗
y(v), f〉1 = 〈K1(·, y)v, f〉1.

Hence, I∗1 (K2(·, y)v) = K1(·, y)v. �

Theorem 10.20 (3). Let H1,H2 be two RKHS’s of C-valued functions on
X with kernels K1(x, y),K2(x, y) respectively. If there exists m > 0 such
that K1(x, y) ≤ m2K2(x, y),∀x, y ∈ X, then H1 ⊆ H2 and ‖f‖2 ≤ m‖f‖1.
Conversely, if H1 ⊆ H2, then ∃m such that K1(x, y) ≤ m2K2(x, y) and
m = ‖I1‖, where I1 : H1 → H2 is the inclusion operator.

Proof. Assume K1(x, y) ≤ m2K2(x, y). Let f ∈ H1, then f(x) ⊗ f(y) ≤
‖f‖2

1K1(x, y) ≤ ‖f‖2
1m

2K2(x, y) ⇒ f ∈ H2 and ‖f‖2 ≤ m‖f‖1.
Conversely, if H1 ⊆ H2, then ‖I1‖ = m <∞ and I∗1 (K2(·, y)v) = K1(·, y)v.
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Fix x1, . . . , xn ∈ X, v1, . . . , vn ∈ C, then
n∑

i,j=1

〈K1(xi, xj)vj , vi〉C = ‖
n∑
j=1

K1(·, xj)vj‖2
H1

= ‖I∗1 (
n∑
j=1

K2(·, xj)vj)‖2
H1

≤ ‖I∗1‖2 · ‖
n∑
j=1

K2(·, xj)vj‖2
H2

= ‖I∗1‖2 ·
n∑

i,j=1

〈K2(xi, xj)vj , vi〉C .

Therefore, K1(x, y) ≤ m2K2(x, y). �

Lemma 10.21. Let A,B ∈ B(C), v, w ∈ C,then A(v⊗ w̄)B∗ = Av⊗Bw.

Proof. (A(v⊗w̄)B∗)(z) = A(v⊗w̄)B∗(z) = A[〈B∗(z), w〉v] = 〈B∗(z), w〉Av =
〈z,Bw〉Av = [Av ⊗Bw](z),∀z. Therefore A(v ⊗ w̄)B∗ = Av ⊗Bw. �

Theorem 10.22. Let H1,H2 be two RKHS’s of C-valued functions on X
with kernels K1(x, y),K2(x, y) respectively, let F : X → B(C). Then t.f.a.e.:

1) F · H1 ⊆ H2,
2) MF : H1 → H2, MF (h1) = F · h1 is bounded,
3) ∃ c > 0 such that F (x)K1(x, y)F (y)∗ ≤ c2K2(x, y).The least such c

is ‖MF ‖ = c.

Proof. 1) ⇒ 2) : Use Closed Graph Theorem.
2) ⇒ 3) : Let c = ‖MF ‖, then for any h ∈ H1, we have
E2
x(MFh) = F (x) · h(x) = F (x) · E1

x(h) ⇒ E2
xMF = F (x)E1

x,∀x.
And M∗

FE
2
y
∗ = E1

y
∗
F (y)∗,∀y, MF ·M∗

F ≤ c2 · I.
So, F (x)K1(x, y)F (y)∗ = F (x)E1

xE
1
y
∗
F (y)∗ = E2

xMF ·M∗
FE

2
y
∗

≤ E2
x(c

2 · I)E2
y
∗ = c2K2(x, y).

3) ⇒ 1) : There exists c > 0 such that F (x)K1(x, y)F (y)∗ ≤ c2K2(x, y).
Let h ∈ H1, then h(x)⊗ h(y) ≤ ‖h‖2

1K1(x, y).
(F (x)h(x))⊗ (F (y)h(y)) = F (x)[h(x)⊗ h(y)]F (y)∗

≤ ‖h‖2
1F (x)K!(x, y)F (y)∗ ≤ c2‖h‖2

1K2(x, y)
⇒ F (·)h(·) ∈ H2 and ‖F (·)h(·)‖2 ≤ c‖h‖1,
i.e. F · H1 ⊆ H2, moreover ‖MF ‖ ≤ c. �

Recall Mf : H1 → H2, in scalar case we proved ‖f‖∞ ≤ ‖Mf‖.
What about in operator spaces?

Corollary 10.23. If MF : H1 → H2 is bounded, then M∗
F (E∗yv) = E∗yF (y)∗v,

i.e. M∗
F (K(·, y)v) = K(·, y)F (y)∗v.

We have ‖M∗
F (E∗yv)‖2 ≤ ‖MF ‖2‖E∗yv‖2.

‖M∗
F (E∗yv)‖2 = ‖E∗yF (y)∗v‖2 = 〈E∗yF (y)∗v,E∗yF (y)∗v〉 = 〈F (y)K(y, y)F (y)∗v, v〉,

and
‖MF ‖2‖E∗yv‖2 = ‖MF ‖2〈E∗yv,E∗yv〉 = ‖MF ‖2〈K(y, y)v, v〉.

Therefore,
F (y)K(y, y)F (y)∗ ≤ ‖MF ‖2K(y, y).
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AssumeK(y, y) is invertible, thenK(y, y) = P 2 with P > 0 invertible. Then
F (y)P 2F (y)∗ ≤ ‖MF ‖2P 2 ⇒ (P−1F (y)P )(PF (y)∗P−1) ≤ ‖MF ‖2 · I
⇒ ‖P−1F (y)P‖ ≤ ‖MF ‖. Facts: Given T ∈ B(C), σ(T ) = {λ ∈ C :

(T − λI) not invertible}, then

1) σ(T ) is compact set,
2) r(T ) = {|λ| : λ ∈ σ(T )} ≤ ‖T‖, the spectral radius of T .
3) r(T ) = lim infn ‖Tn‖1/n,
4) When K(y, y) has no kernel, then r(F (y)) ≤ ‖MF ‖.

Example: Look atH2(D)m = {~f =

f1
...
fn

 : fi ∈ H2(D), ‖f‖2 =
∑m

i=1 ‖fi‖2
H2(D)},

and K(z, w) =
1

1− zw̄
· Im, let F : D → Mm. Then by the theorem,

MF : H2(D)m → H2(D)m is bounded, and say

‖MF ‖ = 1 ⇐⇒ F (z)K(z, w)F (w)∗ ≤ K(z, w),

i.e.

F (z)F (w)∗
1

1− zw̄
· Im ≤ 1

1− zw̄
· Im ⇐⇒

(
I − F (z)F (w)∗

1− zw̄

)
≥ 0.

Take z = w = z1, then
(
I − F (z)F (z)∗

1− |z|2

)
≥ 0, which implies I−F (z)F (z)∗ ≥

0, i.e. I ≥ F (z)F (z)∗, so ‖F (z)‖Mm ≤ 1.
Therefore, sup{‖F (z)‖Mm : z ∈ D} ≤ ‖MF ‖. Assume sup{‖F (z)‖Mm : z ∈
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D} = C, and let h =

h1
...
hm

 ∈ H2(D)m, then we have

‖MF · h‖2 = ‖


∑m

j=1 f1jhj
...∑n

j=1 fmjhj

 ||2 =
m∑
i=1

‖
m∑
j=1

fijhj‖2
H2(D)

= lim
r→1

m∑
i=1

1
2π

∫ 2π

0
|
m∑
j=1

fij(reiθ)hj(reiθ)|2dθ

= lim
r→1

1
2π

∫ 2π

0
‖


∑m

j=1 f1j(reiθ)hj(reiθ)
...∑m

j=1 fmj(re
iθ)hj(reiθ)

 ‖2
Cmdθ

= lim
r→1

1
2π

∫ 2π

0
‖F (reiθ)h(reiθ‖2dθ ≤ lim

r→1

1
2π

· C2

∫ 2π

0
‖h(reiθ‖2dθ

≤ C2
[
‖h1‖2 + · · ·+ ‖hm‖2

]
= C2 · ‖h‖2 ⇒ ‖MF ‖ ≤ C.

Therefore, ‖MF ‖ = sup{‖F (z)‖Mm : z ∈ D}.

11. Linear Fractional Maps

Consider ϕU (z) =
az + b

cz + d
, U =

[
a b
c d

]
, and ϕα·U = ϕu(z).

WLOG, assume detu = 1, i.e. ad− bc = 1.

Let J =
[
1 0
0 −1

]
, U =

[
a b
c d

]
, which is called a J-contraction if and only

if UJU∗ ≤ J , and U is J-unitary if and only if UJU∗ = J .

Proposition 11.1. If U is J-unitary, then U−1 is J-unitary, too.

Proof. UJU∗ = J ⇒ U−1JU−1∗ = U−1(UJU∗)U−1∗ = J. �

Proposition 11.2. ϕV ◦ ϕU = ϕV ·U

Proof. Let U =
[
a b
c d

]
, V =

[
e f
g h

]
, then V · U =

[
ae+ cf be+ df
ag + ch bg + dh

]
.

Then,

ϕV (ϕU (z)) = ϕV

(
az + b

cz + d

)
=
e
[
az+b
cz+d

]
+ f

g
[
az+b
cz+d

]
+ h

=
(ae+ cf)z + (be+ df)
(ag + ch)z + (bg + dh)

= ϕV ·U (z).

�
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Theorem 11.3. The map ϕU : D → D is an automorphism if and only if
U is a J-contraction; and ϕU : D → D is an onto map if and only if U is
J-unitary.

Proof. Assume ϕU (D) ⊆ D, which implies |ϕU (z)|2 ≤ 1 ⇐⇒ |az + b|2 ≤
|cz+d|2. This implies, |a|2|z|2+ab̄z+ ābz̄+|b|2 ≤ |c|2|z|2+cd̄z+ c̄dz̄+|d|2 ⇒
0 ≤ (|c|2 − |a|2)|z|2 + (cd̄− ab̄)z + (c̄d− āb)z̄ + (|d|2 − |b|2), (*).
Then, ∀t ∈ [0, 1],we have 0 ≤ (|c|2− |a|2)t2− 2(cd̄− ab̄)t+ (|d|2− |b|2). This
implies

0 ≤ 〈
[
|c|2 − |a|2 |cd̄− ab̄|
|cd̄− ab̄| |d|2 − |b|2

](
t
−1

)
,

(
t
−1

)
〉,

or ∀z ∈ D, say t = z̄, |z| ≤ 1, then

0 ≤ 〈
[
|c|2 − |a|2 cd̄− ab̄
cd̄− ab̄ |d|2 − |b|2

](
z̄
−1

)
,

(
z̄
−1

)
〉.

If U is J-contraction, then U∗
[
1 0
0 −1

]
U ≤

[
1 0
0 −1

]
. Then,[

ā c̄
b̄ d̄

] [
1 0
0 −1

] [
a b
c d

]
=
[
ā −c̄
b̄ −d̄

] [
a b
c d

]
=
[
|a|2 − |c|2 āb− c̄d
ab̄− cd̄ |b|2 − |d|2

]
≤
[
1 0
0 −1

]
.

This implies A =
[
1 + |c|2 − |a|2 c̄d− āb

cd̄− ab̄ |d|2 − |b|2 − 1

]
≥ 0.

Hence, 0 ≤ 〈A
(
z̄
−1

)
,

(
z̄
−1

)
〉 = (∗) + |z|2 − 1 ≤ (∗). Therefore, (*) is

positive. So, U,U−1 J-contractive implies ϕU : D → D is an automorphism.
�

12. Linear Fractional Operator-Valued Maps

Definition 12.1. Let H be a Hilbert space, A,B,C,D ∈ B(H), let U =[
A B
C D

]
, J =

[
IH 0
0 −IH

]
. Then U is called a J-contraction if U∗JU ≤ J ,

and U is called J-unitary if U∗JU = J .

Proposition 12.2. If U is J-unitary, then U is left-invertible.

Proof. J−1(U∗JU) = J−1J = I ⇒ (J−1U∗J)︸ ︷︷ ︸
U−1

= I. �

• In finite dimensions, U is invertible and U−1 = JU∗J .
• Let H = l2, let S be the forward shift operator, i.e. Sej = ej+1, let

U =
[
S 0
0 S

]
. Then U∗JU = J , so U is J-unitary, but not invertible

(it is not onto).
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Proposition 12.3. If U is J-unitary and invertible, then U−1 is J-unitary,
too.

Proof. U−1∗JU−1 = U−1∗[U∗JU ]U−1 = J . �

Proposition 12.4. Let U be an invertible operator( i.e. dimH <∞), then
U is J-unitary if and only if U∗ is J-unitary.

Proof. Assume U is J-unitary and invertible, then U−1 = JU∗J is J-
unitary by previous propositon, which implies (JU∗J)∗J(JU∗J) = J . But,
(JU∗J)∗J(JU∗J) = JUJJJU∗J = JUJU∗J . Hence, (U∗)∗JU∗ = UJU∗ =
J(JUJU∗J)J = JJJ = J , i.e. U∗ is J-unitary. The converse follows by
reversing roles of U and U∗. �

Example: Let ‖B‖ ≤ 1, and U =
[

(1−BB∗)−1/2 (1−BB∗)−1/2B

(1−BB∗)−1/2B∗ (1−BB∗)−1/2

]
=
[
(1−BB∗)−1/2 0

0 (1−BB∗)−1/2

] [
1 B
B∗ 1

]
. Then, we have[

1 B
B∗ 1

]
J

[
1 B
B∗ 1

]
=
[

1 B
B∗ 1

] [
1 0
0 −1

] [
1 B
B∗ 1

]
=
[

1 −B
B∗ −1

] [
1 B
B∗ 1

]
=
[
1−BB∗ 0

0 B∗B − 1

]
=
[
1−BB∗ 0

0 −(1−B∗B)

]
=
[
(1−BB∗)1/2 0

0 (1−B∗B)1/2

]
J

[
(1−BB∗)1/2 0

0 (1−B∗B)1/2

]
.

Therefore, UJU∗ = J ⇒ U is J-unitary..

Let U∗ =
[

(1−BB∗)−1/2 (1−BB∗)−1/2B

(1−BB∗)−1/2B∗ (1−BB∗)−1/2

]
.

Proposition 12.5. Let ‖B‖ ≤ 1, then UB =
[

(1−BB∗)−1/2 −B(1−B∗B)−1/2

−B∗(1−BB∗)−1/2 (1−B∗B)−1/2

]
is J -unitary and invertible.(which implies U∗B is J-unitary.)

Proof.
[

1 −B
−B∗ 1

]
J

[
1 −B

−B∗ 1

]
=
[

1 −B
−B∗ 1

] [
1 0
0 −1

] [
1 −B

−B∗ 1

]
=[

1−BB∗ 0
0 B∗B − 1

]
. Note that UB =

[
1 −B

−B∗ 1

] [
(1−BB∗)−1/2 0

0 (1−B∗B)−1/2

]
.

It is easy to check that U∗BJUB = J , i.e. UB is J-unitary.

To see that UB is invertible, it’s enough to show that
[

1 −B
−B∗ 1

]
is invert-

ible. But, using Cholesky, we have
[

1 −B
−B∗ 1

]
=
[

1 0
−B∗ R

] [
1 −B
0 R

]
,

where R =
√

1−B∗B is positive and invertible. Hence,
[
1 −B
0 R

]−1

=[
1 BR−1

0 R−1

]
, and

[
1 o

−B∗ R

]−1

=
[

1 0
R−1B∗ R−1

]
. We are done. �
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Definition 12.6. Let U =
[
A B
C D

]
, then set ψU (X) = (AX + B)(CX +

D)−1 for any X where the inverse exists.

Theorem 12.7. Let U =
[
A B
C D

]
be a J-contraction, ‖X‖ ≤ 1. Then

(CX+D) is invertible and ‖ψU (X)‖ < 1, i.e. ψU : B → B, where B denotes
the unit ball of B(H), when dimH <∞.

Proof. U∗JU ≤ J ⇒
[
X∗ I

]
[U∗JU ]

[
X
I

]
≤
[
X∗ I

]
J

[
X
I

]
. Then,

(AX +B)∗(AX +B)− (CX +D)∗(CX +D) =
[
X∗ I

]
[U∗JU ]

[
X
I

]
≤
[
X∗ I

]
J

[
X
I

]
= X∗X − I, which implies

(AX +B)∗(AX +B) + I ≤ X∗X + (CX +D)∗(CX +D),

therefore

0 < (1− ‖X‖2)I < I −X∗X ≤ (CX +D)∗(CX +D),

which gives
δ · I ≤ (CX +D)∗(CX +D) = M.

Hence, there exists R such that RM = [R(CX +D)∗](CX +D) = I when
dimH <∞, so (CX +D) is invertible.
We have (AX + B)∗(AX + B) ≤ (CX + D)∗(CX + D) + (X∗X − I)︸ ︷︷ ︸

<0

<

(CX+D)∗(CX+D) ⇒ (CX +D)∗−1(AX+B)∗(AX+B)(CX+D)−1 < I,
which gives to us the wanted result

ψ∗U (X) · ψU (X) < I ⇒ ‖ψU (X)‖ < 1.

�

Proposition 12.8. Let U =
[
A B
C D

]
and V =

[
E F
G H

]
be a J-contractions.

Then ψV ◦ ψU (X) = ψV U (X).

Proof.

ψV ◦ ψU (X) = ψV ((AX +B)(CX +D)−1)

= [E(AX +B)(CX +D)−1 + F ][G(AX +B)(CX +D)−1 +H]−1

= [(EAX+EB+FCX+FD)(CX+D)−1][(GAX+GB+HCX+HD)(CX+D)−1]−1

= [(EA+FC)X+(EB+FD)][(GA+HC)X+(GB+HD)]−1 = ψV U (X).

�
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13. Matrix-Valued Pick Interpolation

Theorem 13.1. Let z1, . . . , zn ∈ D, X1, . . . , Xn ∈ Mm, α ∈ D, and let

U =
[
A B
C D

]
be J-unitary. Then(
I −XiX

∗
j

1− ziz∗j

)
≥ 0 ⇐⇒

(
I − ψU (X∗

i )
∗ψU (X∗

j )

1− ϕα(zi)ϕα(zj)

)
.

Proof. Since ψ−1
U = ψU−1 , where U−1 is J-unitary, and ϕ−1

α = ϕα−1 , then it
will be enough to prove ′ ⇒′ direction. It is also sufficient to prove:

(1)

(
I −XiX

∗
j

1− ziz∗j

)
≥ 0 ⇒

(
I −XiX

∗
j

1− ϕα(zi)ϕα(zj)

)
≥ 0,

and

(2)

(
I −XiX

∗
j

1− ziz∗j

)
≥ 0 ⇒

(
I − ψU (X∗

i )
∗ψU (X∗

j )
1− ziz∗j

)
≥ 0.

The proof of (1) is identical to the scalar case, so we will focus on (2).[
Xi I

]
[U∗JU ]

[
X∗
j

I

]
= (AX∗

i +B)∗(AX∗
j +B)− (CX∗

i +D)∗(CX∗
j +D),

and since U is J-unitary, i.e. U∗JU = J , then[
Xi I

]
[U∗JU ]

[
X∗
j

I

]
=
[
Xi I

]
J

[
X∗
j

I

]
= XiX

∗
j − I, therefore

(AX∗
i +B)∗(AX∗

j +B)− (CX∗
i +D)∗(CX∗

j +D) = XiX
∗
j − I.

Note that,

I −XiX
∗
j = (CX∗

i +D)∗(CX∗
j +D)− (AX∗

i +B)∗(AX∗
j +B)

= (CX∗
i +D)∗[I−(CX∗

i +D)∗−1(AX∗
i +B)∗(AX∗

j+B)(CX∗
j+D)−1](CX∗

j+D)

= (CX∗
i +D)∗[I − ψU (X∗

i )
∗ψU (X∗

j )](CX
∗
j +D)

⇒

(
I − ψU (X∗

i )
∗ψU (X∗

j )
1− ziz∗j

)
=

(
(CX∗

i +D)∗−1

(
I −XiX

∗
j

1− ziz∗j

)
(CX∗

j +D)−1

)
.

Denoting D̃ =

(CX∗
1 +D)∗−1 0

. . .
0 (CX∗

n +D)∗−1

, a diagonal matrix,

we get the wanted result as follows(
I − ψU (X∗

i )
∗ψU (X∗

j )
1− ziz∗j

)
= D̃

(
I −XiX

∗
j

1− ziz∗j

)
D̃∗ ≥ 0.

�

Proposition 13.2. Let ‖X‖ ≤ 1, then (I−X∗X)±1/2X∗ = X∗(I−XX∗)±1/2.
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Proof. Let P = I −X∗X ≥ 0, Q = I −XX∗ ≥ 0.
Note PX∗ = X∗ −X∗XX∗ = X∗(I −XX∗) = X∗Q. Hence,
P 2X∗ = P (PX∗) = PX∗Q = X∗Q2, and by induction PnX∗ = X∗Qn.
Letting p be a polynomial, we get p(P )X∗ = X∗p(Q).
Now, let {pn(t)} be a sequence of polynomials,
that converges uniformly to the function

√
t on 0 ≤ t ≤ 1.

Then P 1/2X∗ = limn pn(P )X∗ = limnX
∗pn(Q) = X∗Q1/2, and

P−1/2X∗ = P−1/2(X∗Q1/2)Q−1/2 = P−1/2(P 1/2X∗)Q−1/2 = X∗Q−1/2. �

Theorem 13.3 ( Matrix-Valued Version of Pick ). Let z1, . . . , zn ∈ D, X1, . . . , Xn ∈
Mm. Then there exists F = (fij) : D →Mm with fij ∈ H∞, ‖F‖∞ ≤ 1 and

F (zi) = Xi ⇐⇒
(
I −XiX

∗
j

1− ziz̄j

)
≥ 0.

Proof. (⇒) : Look at MF : H2(D)(m) → H2(D)(m), ‖MF ‖ = ‖F‖∞ ≤ 1.

K(z, w) =
1

1− zw̄
· Im ⇒ 0 ≤ K(z, w)− F (z)K(z, w)F (w)∗,

i.e.
(

I

1− ziz̄j

)
−
(
F (zi)F (zj)∗

1− ziz̄j

)
≥ 0 ⇒

(
I −XiX

∗
j

1− ziz̄j

)
≥ 0.

(⇐) : We will do it by induction on n:
It is clear for n = 1, assume F (z1) = X constant, done.
Assume it is true for all sets of n points in D, and n matrices X’s in Mm.

Given z0, z1, . . . , zn ∈ D, X0, X1, . . . , Xn ∈Mm with
(
I −XiX

∗
j

1− ziz̄j

)n
i,j≥1

≥ 0.

Let α = z0 and U = UX0 =
[

(1−X0X
∗
0 )−1/2 −X0(1−X∗

0X0)−1/2

−X∗
0 (1−X0X

∗
0 )−1/2 (1−X∗

0X0)−1/2

]
.

Then,
ψUX0

(X∗
0 ) =

(
(I −X∗

0X0)−1/2X∗
0 −X∗

0 (I −X0X
∗
0 )−1/2

)
·

·
(
−X0(I −X∗

0X0)−1/2X∗
0 + (I −X0X

∗
0 )−1/2

)−1
.

But, by previous proposition, (I −X∗
0X0)−1/2X∗

0 = X∗
0 (I −X0X

∗
0 )−1/2,

since ‖X0‖ ≤ 1, therefore ψUX0
(X∗

0 ) = 0.

Next, by last theorem

(
I − ψUX0

(X∗
i )
∗ψUX0

(X∗
j )

1− ϕα(zi)ϕα(zj)

)
≥ 0 (∗).

Let Wi = ψUX0
(X∗

i )
∗ ⇒W0 = 0, and λi = ϕα(zi) ⇒ λ0 = 0, but λi 6= 0, i =

1, . . . , n, then using (∗), we get


I · · · I

...
(
I −WiW

∗
j

1− λiλ̄j

)
I

 ≥ 0 ⇒
(
I −WiW

∗
j

1− λiλ̄j
− I

)
≥ 0︸ ︷︷ ︸

byCholesky′slemma

.
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i.e. we get(
λiλ̄j −WiW

∗
j

1− λiλ̄j

)
≥ 0 ⇒

I −
(
Wi
λi

)(
Wj

λj

)∗
1− λiλ̄j


n×n

≥ 0.

Hence, by the inductive hypothesis, ∃H : D → Mn, with ‖H‖∞ ≤ 1 such
that H(λi) = Wi

λi
, i = 1, 2, . . . , n, and G(z) = zH(z), ‖G‖∞ ≤ 1, analytic,

which gives G(λi) = λiF (λi) = Wi, i = 0, 1, 2, . . . , n.
Let F (z) = ψU−1

X0

(G(ϕ−α(z))∗)∗, which is analytic.

Then F (zi) = ψU−1
X0

(G(λi)∗)
∗ = ψU−1

X0

(W ∗
i )∗ = (X∗

i )
∗ = Xi. �
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